
Datalad-OSF
Release 0.3.0+15.g52545e3.dirty

DataLad team

Dec 08, 2023

CONTENTS

1 Documentation overview 3
1.1 Introduction . 3
1.2 Quickstart . 4
1.3 Tutorial . 6
1.4 Contributing . 19
1.5 Acknowledgments . 19
1.6 Command line reference . 19
1.7 Python API . 23
1.8 git-annex utilities . 26

2 Indices and tables 29

Index 31

i

ii

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

This DataLad extension enables DataLad to work with the Open Science Framework (OSF). Use it to publish your
dataset’s data to an OSF project to utilize the OSF for dataset data storage and share and collaborate on datasets.

The extension was created during the OHBM Hackathon 2020 and wouldn’t have been possible without a dedicated
team of volunteers. If you want to get in touch or on board as well, please see our contributing guidelines.

CONTENTS 1

handbook.datalad.org/en/latest/r.html?extensions
https://www.datalad.org
https://www.osf.io/
https://ohbm.github.io/hackathon2020/
https://github.com/datalad/datalad-osf#contributors-
https://github.com/datalad/datalad-osf#contributors-

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

2 CONTENTS

CHAPTER

ONE

DOCUMENTATION OVERVIEW

1.1 Introduction

1.1.1 The Open Science Framework

The Open Science Framework (OSF), developed and maintained by the Center for Open Science (COS), is a tool that
promotes open, centralized workflows by enabling capture of different aspects and products of the research life-cycle,
including developing a research idea, designing a study, storing and analyzing collected data, and writing and publishing
reports or papers. In the scientific community, it is commonly used for registered reports, as a preprint server, and for
study archival and data sharing. In order to use the OSF, a free registration is required.

The core functionality of the OSF is its ability to create and develop projects, with a project being a private or public
workspace for collaboration, data sharing, or data archival. Projects have an associated storage (either via OSF storage
or third party providers) for (large) data, and can have components, associated sub-projects. Each OSF user, project,
component, and file is given a unique, persistent uniform resource locator (URL) to enable sharing and promote attri-
bution. Projects can also be assigned digital object identifiers (DOIs) and archival resource keys (ARKs) if they are
made publicly available.

The OSF is a powerful, accessible, and free data sharing and collaboration platform for researchers. However, the
storage that OSF provides is not unlimited. Please check their current storage capacity and check if it fits your needs.

1.1.2 Goal of the extension

This extension allows DataLad to work with the Open Science Framework (OSF) to make sharing and collaboration
on data or DataLad datasets even easier. It comes with several features that enable the following main use cases:

1. Export existing datasets to the OSF

2. Clone published datasets from the OSF

3. Utilize OSF projects as a third party storage provider for annexed data

4. Export single-view snapshots of datasets to an OSF project

To enable these use cases, a dataset is published as an OSF project, and its OSF storage is used as a git-annex special
remote to publish (large) file contents. Major OSF flexibility is exposed to control whether the resulting project is
private (default) or public, and to attach meaningful metadata to it. You can find out demonstrations of these use cases
in the Tutorial.

3

https://www.osf.io/
https://www.osf.io/
https://www.osf.io/
https://www.osf.io/
https://help.osf.io/article/137-osf-storage-caps
https://www.datalad.org
https://www.osf.io/
https://git-annex.branchable.com/special_remotes/
https://git-annex.branchable.com/special_remotes/

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

1.1.3 What can I use this extension for?

You can use this extension to publish, store, collaborate on, or share your dataset (data) via the OSF. Here is some
inspiration on what you could do:

• Publish your study (including its version history, data, code, results, and provenance) as a DataLad dataset to the
OSF. Share the project’s OSF URL with colleagues and collaborators to give them easy access to your work with
a single datalad clone.

• Clone a friend’s dataset – from the OSF!

• Use the OSF as a special remote to store data in the annex of your dataset. With this, you can publish a dataset
to GitHub or similar Git repository hosting services, and have your data published to the OSF (via a publication
dependency). Your dataset will be exposed and available on GitHub, while data is stored on and retrieved from
the OSF.

• Take a version snapshot of all of your dataset’s files and export them to the OSF. This publishes one version of
your project in a human-readable fashion to the OSF to make it available to the outside world.

datalad-osf comes with a range of hidden convenience functions for OSF interactions. Importantly, you will not need
to create OSF projects via the OSF web interface – given appropriate credentials, datalad create-sibling-osf
will create new projects under your user account and report back the generated URL.

1.1.4 What can I not use this extension for?

• This tool does not work for data that is stored in a storage service other than the OSF, and within the OSF, only
OSF storage, no other third party storage, is supported. Please refer to the list of special remotes as hosted by the
git-annex website for other storage services and how to use them with DataLad.

• Also, be mindful that OSF storage imposes a maximum file size of 5GB. Individual files larger than 5GB can
not be published with this extension.

• Finally, the starting point for working with this extension is a (published) DataLad dataset, not a regular OSF
project. This extension will not transform normal OSF projects into datasets, but expose DataLad datasets as
OSF projects.

1.2 Quickstart

1.2.1 Requirements

DataLad and datalad-osf are available for all major operating systems (Linux, MacOS, Windows 101). The relevant
requirements are listed below.

An OSF account
You need an OSF account to be able to interact with it. If you don’t have an account yet, register here
– its free!

DataLad
If you don’t have DataLad and its underlying tools (git, git-annex) installed yet, please follow the
instructions from the datalad handbook.

[optional] An account on a Git repository hosting site
You should consider having an account on one or more repository hosting sites such as GitHub ,
GitLab, Bitbucket or similar.

1 While installable for Windows 10, the extension may not be able to perform all functionality documented here. Please get in touch if you are
familiar with Windows to help us fix bugs.

4 Chapter 1. Documentation overview

https://www.osf.io/
https://git-annex.branchable.com/special_remotes/
https://www.github.com/
https://www.osf.io/
https://git-annex.branchable.com/special_remotes/
https://www.osf.io/
https://osf.io/register
https://www.datalad.org
http://handbook.datalad.org/en/latest/intro/installation.html
https://github.com/join
https://gitlab.com/users/sign_up
https://bitbucket.org/account/signup/
https://github.com/datalad/datalad-osf/issues?q=is%3Aissue+is%3Aopen+windows

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

1.2.2 Installation

datalad-osf is a Python package available on pypi and installable via pip.

create and enter a new virtual environment (optional)
$ virtualenv --python=python3 ~/env/dl-osf
$. ~/env/dl-osf/bin/activate
install from PyPi
$ pip install datalad-osf.

1.2.3 Getting started

Here’s the gist of some of this extension’s functionality. Checkout the Tutorial for more detailed demonstrations.

First, provide your credentials:

provide your OSF credentials, ideally as a token:
$ datalad osf-credentials
You need to authenticate with 'https://osf.io' credentials. https://osf.io/settings/
→˓tokens provides information on how to gain access
token: <your token here>
You need to authenticate with 'https://osf.io' credentials. https://osf.io/settings/
→˓tokens provides information on how to gain access
token (repeat): <your token here>
osf_credentials(ok): [authenticated as <user> <e-mail>]

Next, create a sibling on the OSF for a DataLad dataset of your choice. Choose between different sibling modes to
adjust how much of your dataset can be published and how it will be displayed, adjust whether your project should be
private or public, attach additional meta data, or configure local sibling properties. The minimal example below will
create a new (private) project with minimal metadata on the OSF and apply the necessary configurations to publish
your complete dataset to it.

inside of a DataLad dataset
$ datalad create-sibling-osf --title best-study-ever -s osf
create-sibling-osf(ok): https://osf.io/czgpf/
[INFO] Configure additional publication dependency on "osf-storage"
configure-sibling(ok): /home/me/mydataset (sibling)

Afterwards, publish your dataset to the OSF sibling project to share it or collaborate with others:

$ datalad push --to osf

Finally, you or others can clone it using its project ID. All annexed data in this dataset will be available via datalad
get.

$ datalad clone osf://czgpf/

Curious to find out more? Read on in the Tutorial for more functionality and use cases.

HELP! I’m new to this!

If this is your reaction to reading the words DataLad dataset, sibling, or dataset publishing, please head over to the
DataLad Handbook for an introduction to DataLad.

1.2. Quickstart 5

https://pypi.org/project/datalad-osf/
https://pypi.org/project/pip/
http://handbook.datalad.org/en/latest/

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

1.3 Tutorial

1.3.1 Step 1: Authentication

datalad-osf needs to communicate with the OSF to create and modify projects under an associated user account.
To enable this, the associated user needs to be authenticated using the osf-credentials command. Therefore, as
the very first step, datalad osf-credentials needs to be ran to authenticate a user. Unless credentials expire or
change, this command needs to be ran only once per user and system.

Setting credentials

To set credentials, run datalad osf-credentials anywhere on your system. This command prompts for user cre-
dentials and stores them in your system’s secure credential store for OSF operations.

the default authentication method is token
$ datalad osf-credentials
You need to authenticate with 'https://osf.io' credentials. https://osf.io/settings/
→˓tokens provides information on how to gain access
token: <your token here>
You need to authenticate with 'https://osf.io' credentials. https://osf.io/settings/
→˓tokens provides information on how to gain access
token (repeat): <your token here>
osf_credentials(ok): [authenticated as <user> <e-mail>]

Two different methods of authentication are supported and can be set with the --method flag:

• token: A personal access token. This is the recommended authentication type and default. Generate a personal
access token under your user account at osf.io/settings/tokens. Make sure to create a full_write token to be
able to create OSF projects and upload data to OSF!

• userpassword: Your username and password combination from the OSF web interface.

authenticate with user name and password
$ datalad osf-credentials --method userpassword
You need to authenticate with 'https://osf.io' credentials. https://osf.io/settings/
→˓account provides information on how to gain access
user: <your e-mail address>

password: <your password here>
password (repeat): <your password here>
osf_credentials(ok): [authenticated as <user name>]

The credentials are stored within a system’s encrypted keyring and DataLad retrieves them automatically for all future
interactions with the OSF. Information on which user’s credentials are stored can be found by re-running datalad
osf-credentials.

$ datalad osf-credentials
osf_credentials(ok): [authenticated as <user name> <e-mail>]

6 Chapter 1. Documentation overview

https://osf.io/settings/tokens
https://www.osf.io/
https://en.wikipedia.org/wiki/GNOME_Keyring
https://www.datalad.org

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

Environment variables

Alternatively, credentials can be set via environment variables: OSF_TOKEN, or both OSF_USERNAME and
OSF_PASSWORD, as in

export OSF_TOKEN=YOUR_TOKEN_FROM_OSF

Resetting credentials

If credentials change they can be re-set using the --reset flag:

token method is used by default, use --method userpassword for user + password␣
→˓credentials
$ datalad osf-credentials --reset
You need to authenticate with 'https://osf.io' credentials. https://osf.io/settings/
→˓tokens provides information on how to gain access
token: <your token here>
You need to authenticate with 'https://osf.io' credentials. https://osf.io/settings/
→˓tokens provides information on how to gain access
token (repeat): <your token here>
osf_credentials(ok): [authenticated as <user name> <e-mail>]

Invalid credentials

If you supply invalid credentials such as a mismatching user name and password combination or a wrong token, you
will see the following error:

$ osf_credentials(error): None [Invalid credentials]

Please check for spelling mistakes, check your user name and password combination under your user account, or re-
generate a token, and reset your credentials to fix this.

1.3.2 Step 2: Create an OSF sibling

Once authenticated, DataLad can – if called from within a DataLad dataset – create and modify projects on the OSF and
publish annexed data, a single version view, or the complete dataset to it. The command that enables this is datalad
create-sibling-osf. It supports different modes, exposes a large number of features from the OSF web interface
and yields a custom dataset configuration for your use case at hand. This section introduces the command and its
functionality, and the upcoming use cases demonstrate several workflow types it can be used for.

1.3. Tutorial 7

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

What’s a sibling?

A sibling is a dataset clone that a given DataLad dataset knows about. In most cases, changes can be retrieved and
pushed between a dataset and its sibling. It is the equivalent of a remote in Git. The datalad create-sibling-osf
command can create a dataset clone under an authenticated user account on the OSF as a new project.

General command

When relying on default parameters, create-sibling-osf requires only a project name for the resulting OSF project
(--title) and a sibling name (-s/--name, which defaults to osf).

within a dataset mydataset
$ datalad create-sibling-osf --title <my-new-osf-project-title> -s <my-sibling-name>
create-sibling-osf(ok): https://osf.io/czgpf/
[INFO] Configure additional publication dependency on "<my-sibling-name>-storage"
configure-sibling(ok): <path/to/mydataset> (sibling)

In the default modes of operation and in most other modes, this command will create one project on the OSF (reported
under its URL in the command summary) and two dataset siblings: One sibling to publish Git history and files stored
in Git to, and a storage sibling to which annexed data will be published.

dataset publishing

Note that data still needs to be published to be available on the OSF after sibling creation. The relevant commands
for this are dependent of the sibling mode. If used in the default mode, both siblings will be automatically configured
such that a single datalad push is sufficient to publish the complete dataset. For general information on publishing
datasets, please refer to this Handbook chapter, and for more information on publishing depending on sibling mode,
please pay close attention to the paragraph Sibling modes and the upcoming use cases.

Sibling configuration

create-sibling-osf has a number of parameters that expose the underlying flexibility of DataLad, git-annex, and
the OSF. The most important one is the mode (--mode) parameter. Depending on the mode for your OSF sibling,
you will be able to publish different aspects of your dataset to the OSF, and each mode requires different commands
for publishing. Other important parameters include the --public flag (for access control), and --tag, --category
and --description for additional project meta data. For a complete overview of all parameters, see the command
documentation.

Sibling modes

create-sibling-osf supports several modes that determine the functionality and usage of the resulting sibling.

• annex (default): You can publish the complete dataset to the resulting OSF project. This includes all Git
history and annexed data. Afterwards, the OSF project URL can be cloned to retrieve the dataset, and datalad
get will be able retrieve all file contents, even older versions. This mode is the most convenient if you aim to
share complete datasets with all data and version history. Note that the dataset representation in the OSF project
is not as readable as in a local dataset (clone), but a non-human readable representation1 tuned to enable cloning.
Publishing the dataset requires only datalad push.

1 What exactly is a non-human readable representation? On the OSF, the Git history will be compressed to a text file and a zip file, while all
annexed data will appear under the hash it is stored in in the git-annex object tree, i.e., with an obscured file name. If you are interested in finding
out more about this, take a look at this section in the DataLad handbook. Once cloned from the OSF to a local file system, the dataset will have its
usual, human-readable format.

8 Chapter 1. Documentation overview

http://handbook.datalad.org/en/latest/basics/101-141-push.html
http://handbook.datalad.org/en/latest/basics/101-115-symlinks.html

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

• export: You can push the Git history of a dataset as well as one snapshot of its data to the resulting OSF
project. Afterwards, the OSF project URL can be cloned to retrieve the dataset and datalad get will be able
to retrieve all file contents in one version. Compared to the annex mode, the dataset representation on the OSF
is human-readable, but only one version of each file can be published. This mode is convenient if you want to
share a dataset and its history in a human-readable way but only make one version of it available. Publishing
Git history requires git push or datalad push, and exporting a single view of the data must be done via
git-annex export.

• gitonly: You can push the Git history of a dataset, but no annexed data to the resulting OSF project.
Afterwards, the OSF project URL can be cloned to retrieve the dataset, but datalad get will not be able to
retrieve file contents. This can be convenient if you want to use the OSF as an alternative to GitHub. Note that
the representation of the dataset is not human-readable, but tuned for cloning. Publishing Git history requires
git push or datalad push.

• exportonly: You can export the dataset in a human-readable way in one version. Note that this type of
sibling can not be cloned from the OSF. This option is the most convenient if you want to make one snapshot of
your dataset available via the OSF. Exporting needs to be done via git-annex export and your dataset will
only get a storage sibling.

In deciding which mode suits your use case you can consider the following questions:

1. Do you want collaborators to be able to datalad clone your project? If yes, go for annex, export, or gitonly

2. Do you want to share your data? If yes, go for annex, or – if you’re okay with sharing only a one version per file
– export and export only

3. Do you care how data looks like on the OSF? If not, go for annex, if yes, use one of the export modes. Find
out more about this in the tutorial on exporting data.

Access Management: Public or private projects

By default, any new project created with create-sibling-osf is a private OSF project that can only be accessed by
its creator and collaborators added via OSF’s interface. To make a project public, you can either transform it into a
public project via the web interface, or use the --public flag of create-sibling-osf to create it publicly from the
very start. This constitutes a convenient access management system for your dataset.

OSF project metadata

Meta data helps to make your project discoverable and understandable. The OSF provides several means of attaching
meta data to a project: Tags and Categories. By default, two tags are created upon project creation: “DataLad dataset”
and the unique ID of your dataset. Any amount of arbitrary additional tags can be specified with one or more --tag
options. Note that each tag needs to be specified with its own --tag parameter.

The category of a project determines the small icon displayed in a project and helps search organization. You can chose
one out of several categories (“analysis”, “communication”, “data”, “hypothesis”, “instrumentation”, “methods and
measures”, “procedure”, “project”, “software”, “other”) and specify it using the --category parameter. By default,
the category “data” is used.

1.3. Tutorial 9

https://www.github.com/
https://help.osf.io/hc/en-us/articles/360019737894-FAQs#what-if-i-don-t-want-to-make-anything-available-publicly-in-the-osf

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

1.3.3 Walk-Trough

The upcoming use cases are walk-throughs and meant as code-along tutorials. If you want, open a terminal and code
along to try out each method. If you have DataLad and datalad-osf installed, each tutorial will not take more than
5 minutes.

As a general preparation, build an example dataset and configure OSF credentials for reuse in all usecases. You can
execute all following examples in this dataset.

Create an Example Dataset

For the sake of this tutorial, let’s create a small example DataLad dataset.

collab_osf being the name of your new dataset
$ datalad create collab_osf

After dataset creation, populate it with some content (just like in the Datalad Handbook):

$ cd collab_osf
add a PDF file to git-annex
$ datalad download-url http://www.tldp.org/LDP/Bash-Beginners-Guide/Bash-Beginners-Guide.
→˓pdf \
--dataset . \
-m "add beginners guide on bash" \
-O books/bash_guide.pdf

download_url(ok): /tmp/collab_osf/books/bash_guide.pdf (file)
add(ok): /tmp/collab_osf/books/bash_guide.pdf (file)
save(ok): /tmp/collab_osf dataset)
action summary:
add (ok: 1)
download_url (ok: 1)
save (ok: 1)
add a text file to Git
$ mkdir code
$ echo "This is just an example file just to show the different ways of saving data in a␣
→˓DataLad dataset." > code/example.txt
$ datalad save --to-git -m "created an example.txt"
add(ok): /tmp/collab_osf/code/example.txt (file)
save(ok): /tmp/collab_osf(dataset)
action summary:
add (ok: 1)
save (ok: 1)

10 Chapter 1. Documentation overview

http://handbook.datalad.org/en/latest/

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

Authenticate

First, if you haven’t done so yet, configure either your OSF credentials (username and password) or an OSF access
token, either as environment variables, or using datalad osf-credentials. Below, we use an OSF access token:

$ datalad osf-credentials
You need to authenticate with 'https://osf.io' credentials. https://osf.io/settings/
→˓tokens provides information on how to gain access
token: <your token here>
You need to authenticate with 'https://osf.io' credentials. https://osf.io/settings/
→˓tokens provides information on how to gain access
token (repeat): <your token here>
osf_credentials(ok): [authenticated as <user> <e-mail>]

More information on authentication is detailed in the section Step 1: Authentication.

1.3.4 Use case 1: Publishing and cloning datasets

Problem statement

Imagine you have been creating a reproducible workflow using DataLad from the get go. Everything is finished now,
code, data, and paper are ready. Last thing to do: Publish your data, code, results, and workflows – ideally, all together,
easily accessible, and also fast.

The solution: Publish the complete dataset to the OSF and let others clone the project to get access to data, code,
version history, and workflows. Therefore, you decide on the annex sibling mode.

Creating the OSF sibling

Given OSF credentials are set, we can create a sibling in annexmode. We will also make the project public (--public),
and attach some meta data (--category, --tag) to it.

The code below will create a new public OSF project called best-study-ever, a dataset sibling called osf-annex,
and a readily configured storage sibling osf-annex-storage. The project on the OSF will have a description with
details on how to clone it and some meta data.

inside of the tutorial DataLad dataset
$ datalad create-sibling-osf --title best-study-ever \
-s osf-annex \
--category data \
--tag reproducibility \
--public

create-sibling-osf(ok): https://osf.io/<id>/
[INFO] Configure additional publication dependency on "osf-annex-storage"
configure-sibling(ok): /tmp/collab_osf (sibling)

1.3. Tutorial 11

https://www.datalad.org

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

Publishing the dataset

Afterwards, all that’s left to do is a datalad push to publish the dataset to the OSF.

$ datalad push --to osf-annex

The resulting dataset has all data and its Git history, but is not as human-readable as on a local computer:

12 Chapter 1. Documentation overview

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

Cloning the dataset

The dataset can be cloned with an osf://<id> URL, where ID is the project ID assigned at project creation:

$ datalad clone osf://n6bgd/ best-study-ever
install(ok): /tmp/best-study-ever (dataset)

All data can subsequently be obtained using datalad get.

1.3.5 Use case 2: Export a human-readable dataset to OSF

Problem statement

Imagine you have been collecting data and want to share it with others. All your colleagues have only sparse experience
with the command line, but are frequent OSF users. Therefore, you place all data in a dataset and export the latest version
of your data to the OSF in a human readable way, for others to view it conveniently in the web interface.

As you want a human-readable representation and decide to not share the version history, but only the most recent state
of the data, you pick the exportonly sibling mode.

Creating the OSF sibling

Given OSF credentials are set, we can create a sibling in export-only mode. We will also make the project public
(--public), and attach a custom description (--description) to it.

The code below will create a new public OSF project called best-data-ever, a dataset sibling called
osf-exportonly-storage. This sibling is a sole storage sibling – in technical terms, a git-annex special remote.
It will not contain version history, but all your dataset’s files.

inside of the tutorial DataLad dataset
$ datalad create-sibling-osf --title best-data-ever \
--mode exportonly \
-s osf-export \
--description "This carefully acquired data will bring science forward" \
--public

create-sibling-osf(ok): https://osf.io/<id>/
note that the sibling name as an appended "storage" suffix!
$ datalad siblings
.: here(+) [git]
.: osf-annex(-) [osf://n6bgd (git)]
.: osf-export-storage(+) [osf] # created in this example
.: osf-annex-storage(+) [osf]

1.3. Tutorial 13

https://git-annex.branchable.com/special_remotes/

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

Publishing the dataset

To publish the current state (the HEAD) of the dataset, simply run:

$ datalad push --to osf-export-storage
copy(ok): .datalad/.gitattributes
copy(ok): .datalad/config
copy(ok): .gitattributes
copy(ok): books/bash_guide.pdf
copy(ok): code/example.txt
action summary:

copy (ok: 5)

The resulting project has a human readable structure, and all its data can be viewed and downloaded via the OSF
interface. It is not possible to clone this dataset with DataLad, however potential users can still download it from the
standard OSF interface.

14 Chapter 1. Documentation overview

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

1.3.6 Use case 3: Using the OSF as a data store for a GitHub-based project

Problem statement

Imagine you are a PhD student and want to collaborate on a fun little side project with a student at another institute.
You agree that your code will be hosted on GitHub due to its easier accessibility and greater feature selection. But what
about the data you are collecting? The Dropbox is already full (DataLad third party providers). And Amazon services
don’t seem to be your best alternative. Suddenly you remember, that you got an OSF account recently: You decide to
publish your dataset to GitHub and your data to the OSF and link both via a publication dependency.

Therefore, you go with a sibling in annex mode. While others can clone it from the OSF, you mostly utilize it for data
access. Others clone the dataset from GitHub and are unaware where your data is stored.

Creating the OSF sibling

Given OSF credentials are set, we can create a sibling in annex mode.

As in use case 1, the code below will create a new public OSF project called our-study-data, a dataset sibling called
osf-annex2, and a readily configured storage sibling osf-annex2-storage.

inside of the tutorial DataLad dataset
$ datalad create-sibling-osf --title our-study-data \
-s osf-annex2 \
--category data \
--tag reproducibility \
--public

create-sibling-osf(ok): https://osf.io/<id>/
[INFO] Configure additional publication dependency on "osf-annex2-storage"
configure-sibling(ok): /tmp/collab_osf (sibling)

Creating a sibling on GitHub

As the goal is to use OSF for data storage and expose the dataset also via GitHub, we’re not done yet. We can set-up a
GitHub Remote with name github and include a publication dependency to the OSF storage sibling – that way, when
we publish our dataset to GitHub, the data files get automatically uploaded to OSF.

$ datalad create-sibling-github our-study-data \
-s github \
--github-login LOGIN \
--publish-depends osf-annex2-storage

You need to authenticate with '<login>@github' credentials. https://github.com/login␣
→˓provides information on how to gain access
password: <password>
You need to authenticate with '<login>@github' credentials. https://github.com/login␣
→˓provides information on how to gain access
password (repeat): <password>
[INFO] Configure additional publication dependency on "osf-annex2-storage"
.: github(-) [https://<login>@github.com/<login>/our-study-data.git (git)]
'https://<login>@github.com/<login>/our-study-data.git' configured as sibling 'github'␣
→˓for Dataset(/tmp/collab_osf)

1.3. Tutorial 15

https://www.github.com/
http://handbook.datalad.org/en/latest/basics/101-138-sharethirdparty.html
https://www.osf.io/
https://www.github.com/
https://www.osf.io/

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

Publish the dataset to GitHub and its data to OSF

Because a publication dependency to the OSF is set up, a datalad push to GitHub is sufficient.

$ datalad push --to github
Push to 'github': [...] | 1.00/4.00 [00:00<00:00, 25.9k Steps/s]
Password for 'https://adswa@github.com': <password>
copy(ok): /tmp/collab_osf/books/bash_guide.pdf (file) [to osf-annex2-storage...]
Push to 'github': [...] | 1.00/4.00 [00:33<01:41, 33.9s/ Steps]
Update availability for 'github': [...] | 3.00/4.00 [00:00<00:00, 60.5k Steps/s]
Password for 'https://adswa@github.com': <password>
publish(ok): /tmp/collab_osf (dataset) [refs/heads/master->github:refs/heads/master␣

→˓[new branch]]
Update availability for 'github': [...] | 3.00/4.00 [00:15<00:05, 5.27s/ Steps]
Publish(ok): /tmp/collab_osf (dataset) [refs/heads/git-annex->github:refs/heads/git-

→˓annex [new branch]]
Update availability for 'github': [...] | 3.00/4.00 [00:15<00:05, 5.27s/ Steps]

Afterwards, the dataset can be cloned from GitHub. For a user, the experience will feel similar to use case 1: After
cloning, the files in Git and all dataset history are available, all data stored in the annex is retrieved upon datalad get.
The file content, though, will be retrieved from the OSF, which now serves as a data store for the GitHub repository.

16 Chapter 1. Documentation overview

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

This way you can let OSF handle your data, but still use GitHub to expose your dataset.

1.3.7 Usecase 4: –mode export, The best of both worlds

By now, we’ve seen several different modes: The annex mode creates a clone-able dataset with version history on the
OSF, but it is not human readable. The exportonly mode creates a human-readable snapshot on the OSF, but it is not
clone-able and has no version history.

The best-of-both-worlds compromise between these modes is the export mode: It creates a human readable snapshot
on the OSF. This snapshot can be cloned, and it includes the datasets version history. However, only the latest version
of annexed data is available.

Creating the OSF sibling

Given OSF credentials are set, we can create a sibling in export mode. We will also make the project public (–public),
and attach category metadata.

$ datalad create-sibling-osf --title my-best-so-far \
-s osf-export \
--mode export \
--public \
--category data

Publishing the dataset

Next, we can push revision history and export a snapshot of all files.

$ datalad push --to osf-export
copy(ok): .datalad/.gitattributes (dataset)
copy(ok): .datalad/config (dataset)
copy(ok): .gitattributes (dataset)
copy(ok): books/bash_guide.pdf (dataset)
copy(ok): code/example.txt (dataset)
publish(ok): . (dataset) [refs/heads/master->osf-export:refs/heads/master [new␣

→˓branch]]
publish(ok): . (dataset) [refs/heads/git-annex->osf-export:refs/heads/git-annex␣

→˓[new branch]]
action summary:
copy (ok: 5)
publish (ok: 2)

And here is how nicely human readable this looks:

1.3. Tutorial 17

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

18 Chapter 1. Documentation overview

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

Cloning the dataset

This dataset can now be cloned in the familiar way, using the OSF ID:

$ datalad clone osf://pmgx2/ my-best-yet
install(ok): /tmp/my-best-yet

Its the best of both world!

1.4 Contributing

If you have any questions, comments, bug fixes or improvement suggestions, feel free to contact us via our Github page.
Before contributing, be sure to read the contributing guidelines.

1.5 Acknowledgments

DataLad development is being performed as part of a US-German collaboration in computational neuroscience (CR-
CNS) project “DataGit: converging catalogues, warehouses, and deployment logistics into a federated ‘data distribu-
tion’” (Halchenko/Hanke), co-funded by the US National Science Foundation (NSF 1912266) and the German Federal
Ministry of Education and Research (BMBF 01GQ1905). Additional support is provided by the German federal state of
Saxony-Anhalt and the European Regional Development Fund (ERDF), Project: Center for Behavioral Brain Sciences,
Imaging Platform.

DataLad is built atop the git-annex software that is being developed and maintained by Joey Hess.

The extension was created during the OHBM Hackathon 2020 and wouldn’t have been possible without a dedicated
team of volunteers.

1.6 Command line reference

datalad-osf has two main commands: datalad osf-credentials for OSF authentication management, and
datalad create-sibling-osf for interactions with the OSF. Find out more about each command below.

1.6.1 datalad create-sibling-osf

Synopsis

datalad create-sibling-osf [-h] [--title TITLE] [-s NAME] [--storage-name NAME] [-d␣
→˓DATASET] [--mode {annex|export|exportonly|gitonly}] [--existing MODE] [--trust-level␣
→˓TRUST-LEVEL] [--tag TAG] [--public] [--category
→˓{analysis|communication|data|hypothesis|instrumentation|methods and␣
→˓measures|procedure|project|software|other}] [--description TEXT] [--version]

1.4. Contributing 19

https://github.com/datalad/datalad-osf
https://github.com/datalad/datalad-osf/blob/master/CONTRIBUTING.md
http://haxbylab.dartmouth.edu/ppl/yarik.html
http://www.psychoinformatics.de
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1912266
http://cbbs.eu/en/
http://git-annex.branchable.com
https://joeyh.name
https://github.com/datalad/datalad-osf#contributors-
https://github.com/datalad/datalad-osf#contributors-

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

Description

Create a dataset representation at OSF.

This will create a node on OSF and initialize an osf special remote to point to it. There are two modes this can operate
in: ‘annex’ and ‘export’. The former uses the OSF node as a key-value store, that can be used by git-annex to copy data
to and retrieve data from (potentially by any clone of the original dataset). The latter allows to use ‘git annex export’
to publish a snapshot of a particular version of the dataset. Such an OSF node will - in opposition to the ‘annex’ - be
human-readable.

For authentication with OSF, you can define environment variables: Either ‘OSF_TOKEN’, or both
‘OSF_USERNAME’ and ‘OSF_PASSWORD’. If neither of these is defined, the tool will fall back to the data-
lad credential manager and inquire for credentials interactively.

Options

-h, -\-help, -\-help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-\-title TITLE

title of the to-be created OSF node that is displayed on the OSF website. Defaults to the basename of the root directory
of the local dataset. Constraints: value must be a string or value must be NONE

-s NAME, -\-name NAME

Name of the to-be initialized osf-special-remote. Constraints: value must be a string [Default: ‘osf’]

-\-storage-name NAME

Name of the storage sibling (git-annex special remote). Must not be identical to the sibling name. If not specified,
defaults to the sibling name plus ‘-storage’ suffix. Constraints: value must be a string or value must be NONE

-d DATASET, -\-dataset DATASET

Dataset to create a sibling for. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or
value must be NONE

-\-mode {annex|export|exportonly|gitonly}

[Default: ‘annex’]

20 Chapter 1. Documentation overview

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

-\-existing MODE

Action to perform, if a (storage) sibling is already configured under the given name and/or a target already exists. In
this case, a dataset can be skipped (‘skip’), or the command be instructed to fail (‘error’). Constraints: value must be
one of (‘skip’, ‘error’) or value must be NONE [Default: ‘error’]

-\-trust-level TRUST-LEVEL

specify a trust level for the storage sibling. If not specified, the default git-annex trust level is used. Constraints: value
must be one of (‘trust’, ‘semitrust’, ‘untrust’) or value must be NONE

-\-tag TAG

specific one or more tags for the to-be-create OSF node. A tag ‘DataLad dataset’ and the dataset ID (if there is any)
will be automatically added as additional tags. This option can be given more than once.

-\-public

make OSF node public.

-\-category {analysis|communication|data|hypothesis|instrumentation|methods and mea-
sures|procedure|project|software|other}

specific the OSF node category to be used for the node. The categorization determines what icon is displayed with the
node on the OSF, and helps with search organization. Constraints: value must be one of (‘analysis’, ‘communication’,
‘data’, ‘hypothesis’, ‘instrumentation’, ‘methods and measures’, ‘procedure’, ‘project’, ‘software’, ‘other’) [Default:
‘data’]

-\-description TEXT

Description of the OSF node that will be displayed on the associated project page. By default a description will be
generated based on the mode the sibling is put into. Constraints: value must be a string or value must be NONE

-\-version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

1.6. Command line reference 21

mailto:team@datalad.org

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

1.6.2 datalad osf-credentials

Synopsis

datalad osf-credentials [-h] [--method {token|userpassword}] [--reset] [--version]

Description

Gather OSF credentials for subsequent non-interactive use

This command enables (re-)entry of OSF credentials for storage in a credential manager. Once credentials are known,
they will be retrieved automatically on demand, and enable non-interactive use for the purpose of data transfer to and
from OSF.

Credentials will be verified to enable successful authentication before being stored.

Options

-h, -\-help, -\-help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-\-method {token|userpassword}

authentication method to use. ‘token’ authentication is strongly recommended. Constraints: value must be one of
(‘token’, ‘userpassword’) [Default: ‘token’]

-\-reset

reset existing credentials and force re-entry.

-\-version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

22 Chapter 1. Documentation overview

mailto:team@datalad.org

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

1.7 Python API

datalad-osf has two main commands that are exposed as functions via datalad.api and as methods of the Dataset
class: osf_credentials for OSF authentication management, and create_sibling_osf for interactions with the
OSF. Find out more about each command below.

osf_credentials([method, reset]) Gather OSF credentials for subsequent non-interactive
use

create_sibling_osf ([title, name, ...]) Create a dataset representation at OSF.

1.7.1 datalad.api.osf_credentials

datalad.api.osf_credentials(method='token', reset=False)
Gather OSF credentials for subsequent non-interactive use

This command enables (re-)entry of OSF credentials for storage in a credential manager. Once credentials are
known, they will be retrieved automatically on demand, and enable non-interactive use for the purpose of data
transfer to and from OSF.

Credentials will be verified to enable successful authentication before being stored.

Parameters

• method ({'token', 'userpassword'}, optional) – authentication method to use. ‘to-
ken’ authentication is strongly recommended. [Default: ‘token’]

• reset (bool, optional) – reset existing credentials and force re-entry. [Default: False]

• on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on
failure: ‘ignore’ any failure is reported, but does not cause an exception; ‘continue’ if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; ‘stop’: processing will stop on first failure and an exception is
raised. A failure is any result with status ‘impossible’ or ‘error’. Raised exception is an In-
completeResultsError that carries the result dictionaries of the failures in its failed attribute.
[Default: ‘continue’]

• result_filter (callable or None, optional) – if given, each to-be-returned status
dictionary is passed to this callable, and is only returned if the callable’s return value does not
evaluate to False or a ValueError exception is raised. If the given callable supports **kwargs
it will additionally be passed the keyword arguments of the original API call. [Default: None]

• result_renderer – select rendering mode command results. ‘tailored’ enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the ‘generic’ result ren-
derer; ‘generic’ renders each result in one line with key info like action, status, path, and
an optional message); ‘json’ a complete JSON line serialization of the full result record;
‘json_pp’ like ‘json’, but pretty-printed spanning multiple lines; ‘disabled’ turns off result
rendering entirely; ‘<template>’ reports any value(s) of any result properties in any for-
mat indicated by the template (e.g. ‘{path}’, compare with JSON output for all key-value
choices). The template syntax follows the Python “format() language”. It is possible to re-
port individual dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key contains a
colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’ in the template, like so: ‘{meta-
data[music#Genre]}’. [Default: ‘tailored’]

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) – if given, each to-be-returned result

1.7. Python API 23

https://docs.python.org/3/library/functions.html#bool

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

status dictionary is passed to this callable, and its return value becomes the result instead.
This is different from result_filter, as it can perform arbitrary transformation of the result
value. This is mostly useful for top- level command invocations that need to provide
the results in a particular format. Instead of a callable, a label for a pre-crafted result
transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) – return value be-
havior switch. If ‘item-or-list’ a single value is returned instead of a one-item return value
list, or a list in case of multiple return values. None is return in case of an empty list. [Default:
‘list’]

1.7.2 datalad.api.create_sibling_osf

datalad.api.create_sibling_osf(title=None, name='osf', storage_name=None, dataset=None,
mode='annex', existing='error', trust_level=None, tags=None,
public=False, category='data', description=None)

Create a dataset representation at OSF.

This will create a node on OSF and initialize an osf special remote to point to it. There are two modes this can
operate in: ‘annex’ and ‘export’. The former uses the OSF node as a key-value store, that can be used by git-
annex to copy data to and retrieve data from (potentially by any clone of the original dataset). The latter allows
to use ‘git annex export’ to publish a snapshot of a particular version of the dataset. Such an OSF node will - in
opposition to the ‘annex’ - be human-readable.

For authentication with OSF, you can define environment variables: Either ‘OSF_TOKEN’, or both
‘OSF_USERNAME’ and ‘OSF_PASSWORD’. If neither of these is defined, the tool will fall back to the datalad
credential manager and inquire for credentials interactively.

Parameters

• title (str or None, optional) – title of the to-be created OSF node that is displayed
on the OSF website. Defaults to the basename of the root directory of the local dataset.
[Default: None]

• name (str, optional) – Name of the to-be initialized osf-special-remote. [Default: ‘osf’]

• storage_name (str or None, optional) – Name of the storage sibling (git-annex spe-
cial remote). Must not be identical to the sibling name. If not specified, defaults to the sibling
name plus ‘-storage’ suffix. [Default: None]

• dataset (Dataset or None, optional) – Dataset to create a sibling for. [Default:
None]

• mode ({'annex', 'export', 'exportonly', 'gitonly'}, optional) – [Default: ‘an-
nex’]

• existing ({'skip', 'error'} or None, optional) – Action to perform, if a (storage)
sibling is already configured under the given name and/or a target already exists. In this case,
a dataset can be skipped (‘skip’), or the command be instructed to fail (‘error’). [Default:
‘error’]

• trust_level ({'trust', 'semitrust', 'untrust'} or None, optional) – specify a
trust level for the storage sibling. If not specified, the default git-annex trust level is used.
[Default: None]

• tags – specific one or more tags for the to-be-create OSF node. A tag ‘DataLad dataset’
and the dataset ID (if there is any) will be automatically added as additional tags. . [Default:
None]

24 Chapter 1. Documentation overview

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

• public (bool, optional) – make OSF node public. [Default: False]

• category ({'analysis', 'communication', 'data', 'hypothesis',
'instrumentation', 'methods and measures', 'procedure', 'project',
'software', 'other'}, optional) – specific the OSF node category to be used for
the node. The categorization determines what icon is displayed with the node on the OSF,
and helps with search organization. [Default: ‘data’]

• description (str or None, optional) – Description of the OSF node that will be dis-
played on the associated project page. By default a description will be generated based on
the mode the sibling is put into. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on
failure: ‘ignore’ any failure is reported, but does not cause an exception; ‘continue’ if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; ‘stop’: processing will stop on first failure and an exception is
raised. A failure is any result with status ‘impossible’ or ‘error’. Raised exception is an In-
completeResultsError that carries the result dictionaries of the failures in its failed attribute.
[Default: ‘continue’]

• result_filter (callable or None, optional) – if given, each to-be-returned status
dictionary is passed to this callable, and is only returned if the callable’s return value does not
evaluate to False or a ValueError exception is raised. If the given callable supports **kwargs
it will additionally be passed the keyword arguments of the original API call. [Default: None]

• result_renderer – select rendering mode command results. ‘tailored’ enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the ‘generic’ result ren-
derer; ‘generic’ renders each result in one line with key info like action, status, path, and
an optional message); ‘json’ a complete JSON line serialization of the full result record;
‘json_pp’ like ‘json’, but pretty-printed spanning multiple lines; ‘disabled’ turns off result
rendering entirely; ‘<template>’ reports any value(s) of any result properties in any for-
mat indicated by the template (e.g. ‘{path}’, compare with JSON output for all key-value
choices). The template syntax follows the Python “format() language”. It is possible to re-
port individual dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key contains a
colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’ in the template, like so: ‘{meta-
data[music#Genre]}’. [Default: ‘tailored’]

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) – if given, each to-be-returned result
status dictionary is passed to this callable, and its return value becomes the result instead.
This is different from result_filter, as it can perform arbitrary transformation of the result
value. This is mostly useful for top- level command invocations that need to provide
the results in a particular format. Instead of a callable, a label for a pre-crafted result
transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) – return value be-
havior switch. If ‘item-or-list’ a single value is returned instead of a one-item return value
list, or a list in case of multiple return values. None is return in case of an empty list. [Default:
‘list’]

1.7. Python API 25

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

1.8 git-annex utilities

datalad-osf comes with a git-annex special remote implementation for the OSF. Find out more by clicking on the
module name below.

annex_remote.OSFSpecialRemote(*args) git-annex special remote for the open science framework

1.8.1 datalad_osf.annex_remote.OSFSpecialRemote

class datalad_osf.annex_remote.OSFSpecialRemote(*args)
git-annex special remote for the open science framework

Any OSF node can be used as a remote, but the recommended setup is to create a subcomponent of your project
for archiving your data. Mark it with the Data category so you can find it quickly and take note of its URL. Each
component (or project) has a URL like https://osf.io/6zbyf/ which is needed to connect to it.

Todo: Write doc section on how to do that, and what URL should be used to configure the special remote.

Initialize the special remote:

git annex initremote osf type=external externaltype=osf \
encryption=none node=<your-component-id>

To upload files you need to supply credentials.

Todo: Outline how this can be done

OSF_USERNAME, OSF_PASSWORD - credentials, OR OSF_TOKEN # TODO: untested, possibly currently
broken in osfclient.

Because this is a special remote, the uploaded data do not retain the git folder structure.

The following parameters can be given to git-annex initremote, or git annex enableremote to (re-)configure a
special remote.

node
the OSF URL of the file store

path
a subpath with (default: /)

See also:

https://git-annex.branchable.com/special_remotes
Documentation on git-annex special remotes

https://osf.io
Open Science Framework, a science-focused filesharing and archiving site.

__init__(*args)

26 Chapter 1. Documentation overview

https://osf.io/6zbyf/
https://git-annex.branchable.com/special_remotes
https://osf.io

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

Methods

__init__(*args)

checkpresent(key) Report whether the OSF node has a particular key
checkpresentexport(key, remote_file) Return if the file remote_file is present in the remote
checkurl(url) Asks the remote to check if the url's content can cur-

rently be downloaded (without downloading it).
claimurl(url) Asks the remote if it wishes to claim responsibility

for downloading an url.
error(error_msg) Generic error. Can be sent at any time if things get

too messed up to continue. If the program receives
an error() from git-annex, it can exit with its own
error(). Eg.: self.annex.error("Error received. Ex-
iting.") raise SystemExit.

exportsupported()

getavailability() Asks the remote if it is locally or globally available.
getcost() Requests the remote to return a use cost.
initremote()

listconfigs()

prepare()

remove(key) Remove a key from the remote
removeexport(key, remote_file) Remove the file in remote_file from the remote
removeexportdirectory(remote_directory) Remove the directory remote_directory from the re-

mote
renameexport(key, filename, new_filename) Move the remote file in name to new_name
setup()

transfer_retrieve(key, filename) Get a key from OSF and store it to filename
transfer_store(key, filename)

transferexport_retrieve(key, local_file, ...) Get the file located at remote_file from the remote
transferexport_store(key, local_file, ...) Store the file located at local_file to remote_file on the

remote
whereis(key) Asks the remote to provide additional information

about ways to access the content of a key stored in
it, such as eg, public urls.

1.8. git-annex utilities 27

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

Attributes

files

28 Chapter 1. Documentation overview

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

29

Datalad-OSF, Release 0.3.0+15.g52545e3.dirty

30 Chapter 2. Indices and tables

INDEX

Symbols
__init__() (datalad_osf.annex_remote.OSFSpecialRemote

method), 26

C
create_sibling_osf() (in module datalad.api), 24

O
osf_credentials() (in module datalad.api), 23
OSFSpecialRemote (class in data-

lad_osf.annex_remote), 26

31

	Documentation overview
	Introduction
	The Open Science Framework
	Goal of the extension
	What can I use this extension for?
	What can I not use this extension for?

	Quickstart
	Requirements
	Installation
	Getting started

	Tutorial
	Step 1: Authentication
	Setting credentials
	Resetting credentials
	Invalid credentials

	Step 2: Create an OSF sibling
	What’s a sibling?
	General command
	Sibling configuration
	Sibling modes
	Access Management: Public or private projects
	OSF project metadata

	Walk-Trough
	Create an Example Dataset
	Authenticate

	Use case 1: Publishing and cloning datasets
	Creating the OSF sibling
	Publishing the dataset
	Cloning the dataset

	Use case 2: Export a human-readable dataset to OSF
	Creating the OSF sibling
	Publishing the dataset

	Use case 3: Using the OSF as a data store for a GitHub-based project
	Creating the OSF sibling
	Creating a sibling on GitHub
	Publish the dataset to GitHub and its data to OSF

	Usecase 4: –mode export, The best of both worlds
	Creating the OSF sibling
	Publishing the dataset
	Cloning the dataset

	Contributing
	Acknowledgments
	Command line reference
	datalad create-sibling-osf
	Synopsis
	Description
	Options
	-h, -\-help, -\-help-np
	-\-title TITLE
	-s NAME, -\-name NAME
	-\-storage-name NAME
	-d DATASET, -\-dataset DATASET
	-\-mode {annex|export|exportonly|gitonly}
	-\-existing MODE
	-\-trust-level TRUST-LEVEL
	-\-tag TAG
	-\-public
	-\-category {analysis|communication|data|hypothesis|instrumentation|methods and measures|procedure|project|software|other}
	-\-description TEXT
	-\-version

	Authors

	datalad osf-credentials
	Synopsis
	Description
	Options
	-h, -\-help, -\-help-np
	-\-method {token|userpassword}
	-\-reset
	-\-version

	Authors

	Python API
	datalad.api.osf_credentials
	datalad.api.create_sibling_osf

	git-annex utilities
	datalad_osf.annex_remote.OSFSpecialRemote

	Indices and tables
	Index

