
Datalad Next
Release 1.3.0+90.g9b9984e.dirty

DataLad team

May 14, 2024

CONTENTS

1 Installation and usage 3

2 Functionality provided by DataLad NEXT 5

3 Developing with DataLad NEXT 253

4 Contributor information 255

5 Indices and tables 259

Python Module Index 261

Index 263

i

ii

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

This DataLad extension can be thought of as a staging area for additional functionality, or for improved performance
and user experience. Unlike other topical or more experimental extensions, the focus here is on functionality with broad
applicability. This extension is a suitable dependency for other software packages that intend to build on this improved
set of functionality.

CONTENTS 1

http://datalad.org

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

2 CONTENTS

CHAPTER

ONE

INSTALLATION AND USAGE

Install from PyPi or Github like any other Python package:

create and enter a new virtual environment (optional)
$ virtualenv --python=python3 ~/env/dl-next
$. ~/env/dl-next/bin/activate
install from PyPi
$ python -m pip install datalad-next

Once installed, additional commands provided by this extension are immediately available. However, in order to fully
benefit from all improvements, the extension has to be enabled for auto-loading by executing:

git config --global --add datalad.extensions.load next

Doing so will enable the extension to also alter the behavior the core DataLad package and its commands.

3

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

4 Chapter 1. Installation and usage

CHAPTER

TWO

FUNCTIONALITY PROVIDED BY DATALAD NEXT

The following table of contents offers entry points to the main components provided by this extension. The project
README offers a more detailed summary in a different format.

2.1 High-level API commands

create_sibling_webdav(url, *[, dataset, ...]) Create a sibling(-tandem) on a WebDAV server
credentials([action, spec, name, prompt, ...]) Credential management and query
download(spec, *[, dataset, force, ...]) Download from URLs
ls_file_collection(type, collection, *[, hash]) Report information on files in a collection
next_status(*[, dataset, untracked, ...]) Report on the (modification) status of a dataset
tree([path, depth, recursive, ...]) Visualize directory and dataset hierarchies

2.1.1 datalad.api.create_sibling_webdav

datalad.api.create_sibling_webdav(url, *, dataset=None, name=None, storage_name=None, mode='annex',
credential=None, existing='error', recursive=False,
recursion_limit=None)

Create a sibling(-tandem) on a WebDAV server

WebDAV is a standard HTTP protocol extension for placing files on a server that is supported by a number
of commercial storage services (e.g. 4shared.com, box.com), but also instances of cloud-storage solutions like
Nextcloud or ownCloud. These software packages are also the basis for some institutional or public cloud storage
solutions, such as EUDAT B2DROP.

For basic usage, only the URL with the desired dataset location on a WebDAV server needs to be specified for
creating a sibling. However, the sibling setup can be flexibly customized (no storage sibling, or only a storage
sibling, multi-version storage, or human-browsable single-version storage).

This command does not check for conflicting content on the WebDAV server!

When creating siblings recursively for a dataset hierarchy, subdataset exports are placed at their corresponding
relative paths underneath the root location on the WebDAV server.

Collaboration on WebDAV siblings

The primary use case for WebDAV siblings is dataset deposition, where only one site is uploading dataset and
file content updates. For collaborative workflows with multiple contributors, please make sure to consult the
documentation on the underlying datalad-annex:: Git remote helper for advice on appropriate setups: http:
//docs.datalad.org/projects/next/

5

https://github.com/datalad/datalad-next/blob/main/README.md#summary-of-functionality-provided-by-this-extension
https://github.com/datalad/datalad-next/blob/main/README.md#summary-of-functionality-provided-by-this-extension
http://docs.datalad.org/projects/next/
http://docs.datalad.org/projects/next/

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Git-annex implementation details

Storage siblings are presently configured to NOT be enabled automatically on cloning a dataset. Due to a limita-
tion of git-annex, this would initially fail (missing credentials). Instead, an explicit datalad siblings enable
--name <storage-sibling-name> command must be executed after cloning. If necessary, it will prompt for
credentials.

This command does not (and likely will not) support embedding credentials in the repository (see embedcreds
option of the git-annex webdav special remote; https://git-annex.branchable.com/special_remotes/webdav), be-
cause such credential copies would need to be updated, whenever they change or expire. Instead, credentials are
retrieved from DataLad's credential system. In many cases, credentials are determined automatically, based on
the HTTP authentication realm identified by a WebDAV server.

This command does not support setting up encrypted remotes (yet). Neither for the storage sibling, nor for the
regular Git-remote. However, adding support for it is primarily a matter of extending the API of this command,
and passing the respective options on to the underlying git-annex setup.

This command does not support setting up chunking for webdav storage siblings (https://git-annex.branchable.
com/chunking).

Examples

Create a WebDAV sibling tandem for storage of a dataset's file content and revision history. A user will be
prompted for any required credentials, if they are not yet known.:

> create_sibling_webdav(url='https://webdav.example.com/myds')

Such a dataset can be cloned by DataLad via a specially crafted URL. Again, credentials are automatically
determined, or a user is prompted to enter them:

> clone('datalad-annex::?type=webdav&encryption=none&url=https://webdav.example.com/
→˓myds')

A sibling can also be created with a human-readable file tree, suitable for data exchange with non-DataLad users,
but only able to host a single version of each file:

> create_sibling_webdav(url='https://example.com/browseable', mode='filetree')

Cloning such dataset siblings is possible via a convenience URL:

> clone('webdavs://example.com/browseable')

In all cases, the storage sibling needs to explicitly enabled prior to file content retrieval:

> siblings('enable', name='example.com-storage')

Parameters

• url -- URL identifying the sibling root on the target WebDAV server.

• dataset -- specify the dataset to process. If no dataset is given, an attempt is made to
identify the dataset based on the current working directory. [Default: None]

• name -- name of the sibling. If none is given, the hostname-part of the WebDAV URL will
be used. With recursive, the same name will be used to label all the subdatasets' siblings.
[Default: None]

6 Chapter 2. Functionality provided by DataLad NEXT

https://git-annex.branchable.com/special_remotes/webdav
https://git-annex.branchable.com/chunking
https://git-annex.branchable.com/chunking

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• storage_name -- name of the storage sibling (git-annex special remote). Must not be iden-
tical to the sibling name. If not specified, defaults to the sibling name plus '-storage' suffix.
If only a storage sibling is created, this setting is ignored, and the primary sibling name is
used. [Default: None]

• mode -- Siblings can be created in various modes: full-featured sibling tandem, one for a
dataset's Git history and one storage sibling to host any number of file versions ('annex'). A
single sibling for the Git history only ('git-only'). A single annex sibling for multi- version
file storage only ('annex-only'). As an alternative to the standard (annex) storage sibling
setup that is capable of storing any number of historical file versions using a content hash
layout ('annex'|'annex-only'), the 'filetree' mode can used. This mode offers a human-readable
data organization on the WebDAV remote that matches the file tree of a dataset (branch).
However, it can, consequently, only store a single version of each file in the file tree. This
mode is useful for depositing a single dataset snapshot for consumption without DataLad.
The 'filetree' mode nevertheless allows for cloning such a single-version dataset, because the
full dataset history can still be pushed to the WebDAV server. Git history hosting can also be
turned off for this setup ('filetree- only'). When both a storage sibling and a regular sibling
are created together, a publication dependency on the storage sibling is configured for the
regular sibling in the local dataset clone. [Default: 'annex']

• credential -- name of the credential providing a user/password credential to
be used for authorization. The credential can be supplied via configuration
setting 'datalad.credential.<name>.user|secret', or environment variable DATA-
LAD_CREDENTIAL_<NAME>_USER|SECRET, or will be queried from the active
credential store using the provided name. If none is provided, the last-used credential
for the authentication realm associated with the WebDAV URL will be used. Only if a
credential name was given, it will be encoded in the URL of the created WebDAV Git
remote, credential auto-discovery will be performed on each remote access. [Default: None]

• existing -- action to perform, if a (storage) sibling is already configured under the given
name. In this case, sibling creation can be skipped ('skip') or the sibling (re-)configured
('reconfigure') in the dataset, or the command be instructed to fail ('error'). [Default: 'error']

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default: False]

• recursion_limit (int or None, optional) -- limit recursion into subdatasets to the
given number of levels. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception is
raised. A failure is any result with status 'impossible' or 'error'. Raised exception is an In-
completeResultsError that carries the result dictionaries of the failures in its failed attribute.
[Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned status
dictionary is passed to this callable, and is only returned if the callable's return value does not
evaluate to False or a ValueError exception is raised. If the given callable supports **kwargs
it will additionally be passed the keyword arguments of the original API call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an optional
message); 'json' a complete JSON line serialization of the full result record; 'json_pp' like
'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering entirely;
'<template>' reports any value(s) of any result properties in any format indicated by the tem-

2.1. High-level API commands 7

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

plate (e.g. '{path}', compare with JSON output for all key-value choices). The template
syntax follows the Python "format() language". It is possible to report individual dictionary
values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'music:Genre',
':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'. [Default:
'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned result
status dictionary is passed to this callable, and its return value becomes the result instead.
This is different from result_filter, as it can perform arbitrary transformation of the result
value. This is mostly useful for top- level command invocations that need to provide
the results in a particular format. Instead of a callable, a label for a pre-crafted result
transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return value
list, or a list in case of multiple return values. None is return in case of an empty list. [Default:
'list']

2.1.2 datalad.api.credentials

datalad.api.credentials(action='query', spec=None, *, name=None, prompt=None, dataset=None)
Credential management and query

This command enables inspection and manipulation of credentials used throughout DataLad.

The command provides four basic actions:

QUERY

When executed without any property specification, all known credentials with all their properties will be yielded.
Please note that this may not include credentials that only comprise of a secret and no other properties, or legacy
credentials for which no trace in the configuration can be found. Therefore, the query results are not guaranteed
to contain all credentials ever configured by DataLad.

When additional property/value pairs are specified, only credentials that have matching values for all given prop-
erties will be reported. This can be used, for example, to discover all suitable credentials for a specific "realm",
if credentials were annotated with such information.

SET

This is the companion to 'get', and can be used to store properties and secret of a credential. Importantly, and in
contrast to a 'get' operation, given properties with no values indicate a removal request. Any matching properties
on record will be removed. If a credential is to be stored for which no secret is on record yet, an interactive
session will prompt a user for a manual secret entry.

Only changed properties will be contained in the result record.

The appearance of the interactive secret entry can be configured with the two settings datalad.credentials.repeat-
secret-entry and datalad.credentials.hidden-secret-entry.

REMOVE

This action will remove any secret and properties associated with a credential identified by its name.

GET (plumbing operation)

This is a read-only action that will never store (updates of) credential properties or secrets. Given properties will
amend/overwrite those already on record. When properties with no value are given, and also no value for the

8 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

respective properties is on record yet, their value will be requested interactively, if a prompt text was provided
too. This can be used to ensure a complete credential record, comprising any number of properties.

Details on credentials

A credential comprises any number of properties, plus exactly one secret. There are no constraints on the format
or property values or the secret, as long as they are encoded as a string.

Credential properties are normally stored as configuration settings in a user's configuration ('global' scope) using
the naming scheme:

datalad.credential.<name>.<property>

Therefore both credential name and credential property name must be syntax-compliant with Git configuration
items. For property names this means only alphanumeric characters and dashes. For credential names virtually no
naming restrictions exist (only null-byte and newline are forbidden). However, when naming credentials it is rec-
ommended to use simple names in order to enable convenient one-off credential overrides by specifying DataLad
configuration items via their environment variable counterparts (see the documentation of the configuration
command for details. In short, avoid underscores and special characters other than '.' and '-'.

While there are no constraints on the number and nature of credential properties, a few particular properties are
recognized on used for particular purposes:

• 'secret': always refers to the single secret of a credential

• 'type': identifies the type of a credential. With each standard type, a list of mandatory properties is associ-
ated (see below)

• 'last-used': is an ISO 8601 format time stamp that indicated the last (successful) usage of a credential

Standard credential types and properties

The following standard credential types are recognized, and their mandatory field with their standard names will
be automatically included in a 'get' report.

• 'user_password': with properties 'user', and the password as secret

• 'token': only comprising the token as secret

• 'aws-s3': with properties 'key-id', 'session', 'expiration', and the secret_id as the credential secret

Legacy support

DataLad credentials not configured via this command may not be fully discoverable (i.e., including all their
properties). Discovery of such legacy credentials can be assisted by specifying a dedicated 'type' property.

Examples

Report all discoverable credentials:

> credentials()

Set a new credential mycred & input its secret interactively:

> credentials('set', name='mycred')

Remove a credential's type property:

> credentials('set', name='mycred', spec={'type': None})

Get all information on a specific credential in a structured record:

2.1. High-level API commands 9

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

> credentials('get', name='mycred')

Upgrade a legacy credential by annotating it with a 'type' property:

> credentials('set', name='legacycred', spec={'type': 'user_password')

Set a new credential of type user_password, with a given user property, and input its secret interactively:

> credentials('set', name='mycred', spec={'type': 'user_password', 'user': '
→˓<username>'})

Obtain a (possibly yet undefined) credential with a minimum set of properties. All missing properties and se-
cret will be prompted for, no information will be stored! This is mostly useful for ensuring availability of an
appropriate credential in an application context:

> credentials('get', prompt='Can I haz info plz?', name='newcred', spec={
→˓'newproperty': None})

Parameters

• action -- which action to perform. [Default: 'query']

• spec -- specification of credential properties. Properties are given as name/value pairs. Prop-
erties with a None value indicate a property to be deleted (action 'set'), or a property to be
entered interactively, when no value is set yet, and a prompt text is given (action 'get'). All
property names are case-insensitive, must start with a letter or a digit, and may only con-
tain '-' apart from these characters. Property specifications should be given a as dictionary,
e.g., spec={'type': 'user_password'}. However, a CLI-like list of string arguments is also
supported, e.g., spec=['type=user_password']. [Default: None]

• name -- name of a credential to set, get, or remove. [Default: None]

• prompt -- message to display when entry of missing credential properties is required for
action 'get'. This can be used to present information on the nature of a credential and for
instructions on how to obtain a credential. [Default: None]

• dataset -- specify a dataset whose configuration to inspect rather than the global (user)
settings. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception is
raised. A failure is any result with status 'impossible' or 'error'. Raised exception is an In-
completeResultsError that carries the result dictionaries of the failures in its failed attribute.
[Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned status
dictionary is passed to this callable, and is only returned if the callable's return value does not
evaluate to False or a ValueError exception is raised. If the given callable supports **kwargs
it will additionally be passed the keyword arguments of the original API call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an optional
message); 'json' a complete JSON line serialization of the full result record; 'json_pp' like

10 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering entirely;
'<template>' reports any value(s) of any result properties in any format indicated by the tem-
plate (e.g. '{path}', compare with JSON output for all key-value choices). The template
syntax follows the Python "format() language". It is possible to report individual dictionary
values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'music:Genre',
':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'. [Default:
'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned result
status dictionary is passed to this callable, and its return value becomes the result instead.
This is different from result_filter, as it can perform arbitrary transformation of the result
value. This is mostly useful for top- level command invocations that need to provide
the results in a particular format. Instead of a callable, a label for a pre-crafted result
transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return value
list, or a list in case of multiple return values. None is return in case of an empty list. [Default:
'list']

2.1.3 datalad.api.download

datalad.api.download(spec, *, dataset=None, force=None, credential=None, hash=None)
Download from URLs

This command is the front-end to an extensible framework for performing downloads from a variety of URL
schemes. Built-in support for the schemes 'http', 'https', 'file', and 'ssh' is provided. Extension packages may add
additional support.

In contrast to other downloader tools, this command integrates with the DataLad credential management and is
able to auto-discover credentials. If no credential is available, it automatically prompts for them, and offers to
store them for reuse after a successful authentication.

Simultaneous hashing (checksumming) of downloaded content is supported with user-specified algorithms.

The command can process any number of downloads (serially). it can read download specifications from (com-
mand line) arguments, files, or STDIN. It can deposit downloads to individual files, or stream to STDOUT.

Implementation and extensibility

Each URL scheme is processed by a dedicated handler. Additional schemes can be supported by sub-classing
datalad_next.url_operations.UrlOperations and implementing the download() method. Extension packages can
register new handlers, by patching them into the datalad_next.download._urlscheme_handlers registry dict.

Examples

Download webpage to "myfile.txt":

> download({"http://example.com": "myfile.txt"})

Read download specification from STDIN (e.g. JSON-lines):

> download("-")

Simultaneously hash download, hexdigest reported in result record:

2.1. High-level API commands 11

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

> download("http://example.com/data.xml", hash=["sha256"])

Download from SSH server:

> download("ssh://example.com/home/user/data.xml")

Parameters

• spec -- Download sources and targets can be given in a variety of formats: as a URL, or as
a URL-path-pair that is mapping a source URL to a dedicated download target path. Any
number of URLs or URL-path-pairs can be provided, either as an argument list, or read from
a file (one item per line). Such a specification input file can be given as a path to an existing
file (as a single value, not as part of a URL- path-pair). When the special path identifier '-'
is used, the download is written to STDOUT. A specification can also be read in JSON-lines
encoding (each line being a string with a URL or an object mapping a URL-string to a path-
string). In addition, specifications can also be given as a list or URLs, or as a list of dicts
with a URL to path mapping. Paths are supported in string form, or as Path objects.

• dataset -- Dataset to be used as a configuration source. Beyond reading configuration items,
this command does not interact with the dataset. [Default: None]

• force -- By default, a target path for a download must not exist yet. 'force- overwrite' disabled
this check. [Default: None]

• credential -- name of a credential to be used for authorization. If no credential is identified,
the last-used credential for the authentication realm associated with the download target will
be used. If there is no credential available yet, it will be prompted for. Once used successfully,
a prompt for entering to save such a new credential will be presented. [Default: None]

• hash -- Name of a hashing algorithm supported by the Python 'hashlib' module, e.g. 'md5'
or 'sha256'. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception is
raised. A failure is any result with status 'impossible' or 'error'. Raised exception is an In-
completeResultsError that carries the result dictionaries of the failures in its failed attribute.
[Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned status
dictionary is passed to this callable, and is only returned if the callable's return value does not
evaluate to False or a ValueError exception is raised. If the given callable supports **kwargs
it will additionally be passed the keyword arguments of the original API call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an optional
message); 'json' a complete JSON line serialization of the full result record; 'json_pp' like
'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering entirely;
'<template>' reports any value(s) of any result properties in any format indicated by the tem-
plate (e.g. '{path}', compare with JSON output for all key-value choices). The template
syntax follows the Python "format() language". It is possible to report individual dictionary
values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'music:Genre',
':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'. [Default:
'tailored']

12 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned result
status dictionary is passed to this callable, and its return value becomes the result instead.
This is different from result_filter, as it can perform arbitrary transformation of the result
value. This is mostly useful for top- level command invocations that need to provide
the results in a particular format. Instead of a callable, a label for a pre-crafted result
transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return value
list, or a list in case of multiple return values. None is return in case of an empty list. [Default:
'list']

2.1.4 datalad.api.ls_file_collection

datalad.api.ls_file_collection(type: str, collection: CollectionSpec, *, hash: str | List[str] | None = None)
Report information on files in a collection

This is a utility that can be used to query information on files in different file collections. The type of information
reported varies across collection types. However, each result at minimum contains some kind of identifier for
the collection ('collection' property), and an identifier for the respective collection item ('item' property). Each
result also contains a type property that indicates particular type of file that is being reported on. In most cases
this will be file, but other categories like symlink or directory are recognized too.

If a collection type provides file-access, this command can compute one or more hashes (checksums) for any file
in a collection.

Supported file collection types are:

directory
Reports on the content of a given directory (non-recursively). The collection identifier is the path of the
directory. Item identifiers are the names of items within that directory. Standard properties like size,
mtime, or link_target are included in the report. When hashes are computed, an fp property with a
file-like is provided. Reading file data from it requires a seek(0) in most cases. This file handle is only
open when items are yielded directly by this command (return_type='generator) and only until the
next result is yielded.

gittree
Reports on the content of a Git "tree-ish". The collection identifier is that tree-ish. The command must be
executed inside a Git repository. If the working directory for the command is not the repository root (in
case of a non-bare repository), the report is constrained to items underneath the working directory. Item
identifiers are the relative paths of items within that working directory. Reported properties include gitsha
and gittype; note that the gitsha is not equivalent to a SHA1 hash of a file's content, but is the SHA-type
blob identifier as reported and used by Git. Reporting of content hashes beyond the gitsha is presently
not supported.

gitworktree
Reports on all tracked and untracked content of a Git repository's work tree. The collection identifier is
a path of a directory in a Git repository (which can, but needs not be, its root). Item identifiers are the
relative paths of items within that directory. Reported properties include gitsha and gittype; note that
the gitsha is not equivalent to a SHA1 hash of a file's content, but is the SHA-type blob identifier as
reported and used by Git. When hashes are computed, an fp property with a file-like is provided. Reading
file data from it requires a seek(0) in most cases. This file handle is only open when items are yielded
directly by this command (return_type='generator) and only until the next result is yielded.

annexworktree
Like gitworktree, but amends the reported items with git-annex information, such as annexkey,

2.1. High-level API commands 13

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

annexsize, and annnexobjpath.

tarfile
Reports on members of a TAR archive. The collection identifier is the path of the TAR file. Item identi-
fiers are the relative paths of archive members within the archive. Reported properties are similar to the
directory collection type. When hashes are computed, an fp property with a file-like is provided. Read-
ing file data from it requires a seek(0) in most cases. This file handle is only open when items are yielded
directly by this command (return_type='generator) and only until the next result is yielded.

zipfile
Like tarfile for reporting on ZIP archives.

Examples

Report on the content of a directory:

> records = ls_file_collection("directory", "/tmp")

Report on the content of a TAR archive with MD5 and SHA1 file hashes:

> records = ls_file_collection("tarfile", "myarchive.tar.gz", hash=["md5", "sha1"])

List annex keys of all files in the working tree of a dataset:

> [r['annexkey'] \
for r in ls_file_collection('annexworktree', '.') \
if 'annexkey' in r]

Parameters

• type -- Name of the type of file collection to report on.

• collection -- identifier or location of the file collection to report on. Depending on the type
of collection to process, the specific nature of this parameter can be different. A common
identifier for a file collection is a path (to a directory, to an archive), but might also be a URL.
See the documentation for details on supported collection types.

• hash -- One or more names of algorithms to be used for reporting file hashes. They must
be supported by the Python 'hashlib' module, e.g. 'md5' or 'sha256'. Reporting file hashes
typically implies retrieving/reading file content. This processing may also enable reporting
of additional properties that may otherwise not be readily available. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception is
raised. A failure is any result with status 'impossible' or 'error'. Raised exception is an In-
completeResultsError that carries the result dictionaries of the failures in its failed attribute.
[Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned status
dictionary is passed to this callable, and is only returned if the callable's return value does not
evaluate to False or a ValueError exception is raised. If the given callable supports **kwargs
it will additionally be passed the keyword arguments of the original API call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there

14 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an optional
message); 'json' a complete JSON line serialization of the full result record; 'json_pp' like
'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering entirely;
'<template>' reports any value(s) of any result properties in any format indicated by the tem-
plate (e.g. '{path}', compare with JSON output for all key-value choices). The template
syntax follows the Python "format() language". It is possible to report individual dictionary
values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'music:Genre',
':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'. [Default:
'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned result
status dictionary is passed to this callable, and its return value becomes the result instead.
This is different from result_filter, as it can perform arbitrary transformation of the result
value. This is mostly useful for top- level command invocations that need to provide
the results in a particular format. Instead of a callable, a label for a pre-crafted result
transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return value
list, or a list in case of multiple return values. None is return in case of an empty list. [Default:
'list']

2.1.5 datalad.api.next_status

datalad.api.next_status(*, dataset=None, untracked='normal', recursive='repository',
eval_subdataset_state='full')→ Generator[StatusResult, None, None] |
list[StatusResult]

Report on the (modification) status of a dataset

Note: This is a preview of an command implementation aiming to replace the DataLad status command.

For now, expect anything here to change again.

This command provides a report that is roughly identical to that of git status. Running with default param-
eters yields a report that should look familiar to Git and DataLad users alike, and contain the same information
as offered by git status.

The main difference to git status are:

• Support for recursion into submodule. git status does that too, but the report is limited to the global state
of an entire submodule, whereas this command can issue detailed reports in changes inside a submodule
(any nesting depth).

• Support for directory-constrained reporting. Much like git status limits its report to a single repository,
this command can optionally limit its report to a single directory and its direct children. In this report
subdirectories are considered containers (much like) submodules, and a change summary is provided for
them.

• Support for a "mono" (monolithic repository) report. Unlike a standard recursion into submodules, and
checking each of them for changes with respect to the HEAD commit of the worktree, this report compares
a submodule with respect to the state recorded in its parent repository. This provides an equally compre-
hensive status report from the point of view of a queried repository, but does not include a dedicated item

2.1. High-level API commands 15

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

on the global state of a submodule. This makes nested hierarchy of repositories appear like a single (mono)
repository.

• Support for "adjusted mode" git-annex repositories. These utilize a managed branch that is repeatedly
rewritten, hence is not suitable for tracking within a parent repository. Instead, the underlying "correspond-
ing branch" is used, which contains the equivalent content in an un-adjusted form, persistently. This com-
mand detects this condition and automatically check a repositories state against the corresponding branch
state.

Presently missing/planned features

• There is no support for specifying paths (or pathspecs) for constraining the operation to specific dataset
parts. This will be added in the future.

• There is no reporting of git-annex properties, such as tracked file size. It is undetermined whether this will
be added in the future. However, even without a dedicated switch, this command has support for datasets
(and their submodules) in git-annex's "adjusted mode".

Differences to the ``status`` command implementation prior DataLad v2

• Like git status this implementation reports on dataset modification, whereas the previous status also
provided a listing of unchanged dataset content. This is no longer done. Equivalent functionality for listing
dataset content is provided by the ls_file_collection command.

• The implementation is substantially faster. Depending on the context the speed-up is typically somewhere
between 2x and 100x.

• The implementation does not suffer from the limitation re type change detection.

• Python and CLI API of the command use uniform parameter validation.

Parameters

• dataset -- Dataset to be used as a configuration source. Beyond reading configuration items,
this command does not interact with the dataset. [Default: None]

• untracked -- Determine how untracked content is considered and reported when comparing
a revision to the state of the working tree. 'no': no untracked content is considered as a change;
'normal': untracked files and entire untracked directories are reported as such; 'all': report
individual files even in fully untracked directories. In addition to these git-status modes,
'whole-dir' (like normal, but include empty directories), and 'no-empty-dir' (alias for 'normal')
are understood. [Default: 'normal']

• recursive -- Mode of recursion for status reporting. With 'no' the report is restricted to a
single directory and its direct children. With 'repository', the report comprises all repository
content underneath current working directory or root of a given dataset, but is limited to items
directly contained in that repository. With 'datasets', the report also comprises any content
in any subdatasets. Each subdataset is evaluated against its respective HEAD commit. With
'mono', a report similar to 'datasets' is generated, but any subdataset is evaluate with respect
to the state recorded in its parent repository. In contrast to the 'datasets' mode, no report
items on a joint submodule are generated. [Default: 'repository']

• eval_subdataset_state -- Evaluation of subdataset state (modified or untracked content)
can be expensive for deep dataset hierarchies as subdataset have to be tested recursively for
uncommitted modifications. Setting this option to 'no' or 'commit' can substantially boost
performance by limiting what is being tested. With 'no' no state is evaluated and subdataset
are not investigated for modifications. With 'commit' only a discrepancy of the HEAD com-
mit gitsha of a subdataset and the gitsha recorded in the superdataset's record is evaluated.
With 'full' any other modifications are considered too. [Default: 'full']

16 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception is
raised. A failure is any result with status 'impossible' or 'error'. Raised exception is an In-
completeResultsError that carries the result dictionaries of the failures in its failed attribute.
[Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned status
dictionary is passed to this callable, and is only returned if the callable's return value does not
evaluate to False or a ValueError exception is raised. If the given callable supports **kwargs
it will additionally be passed the keyword arguments of the original API call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an optional
message); 'json' a complete JSON line serialization of the full result record; 'json_pp' like
'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering entirely;
'<template>' reports any value(s) of any result properties in any format indicated by the tem-
plate (e.g. '{path}', compare with JSON output for all key-value choices). The template
syntax follows the Python "format() language". It is possible to report individual dictionary
values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'music:Genre',
':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'. [Default:
'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned result
status dictionary is passed to this callable, and its return value becomes the result instead.
This is different from result_filter, as it can perform arbitrary transformation of the result
value. This is mostly useful for top- level command invocations that need to provide
the results in a particular format. Instead of a callable, a label for a pre-crafted result
transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return value
list, or a list in case of multiple return values. None is return in case of an empty list. [Default:
'list']

2.1.6 datalad.api.tree

datalad.api.tree(path='.', *, depth=None, recursive=False, recursion_limit=None, include_files=False,
include_hidden=False)

Visualize directory and dataset hierarchies

This command mimics the UNIX/MS-DOS 'tree' utility to generate and display a directory tree, with DataLad-
specific enhancements.

It can serve the following purposes:

1. Glorified 'tree' command

2. Dataset discovery

3. Programmatic directory traversal

Glorified 'tree' command

2.1. High-level API commands 17

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

The rendered command output uses 'tree'-style visualization:

/tmp/mydir
[DS~0] ds_A/

[DS~1] subds_A/
[DS~0] ds_B/

dir_B/
file.txt
subdir_B/
[DS~1] subds_B0/

[DS~1] (not installed) subds_B1/

5 datasets, 2 directories, 1 file

Dataset paths are prefixed by a marker indicating subdataset hierarchy level, like [DS~1]. This is the absolute
subdataset level, meaning it may also take into account superdatasets located above the tree root and thus not
included in the output. If a subdataset is registered but not installed (such as after a non-recursive datalad
clone), it will be prefixed by (not installed). Only DataLad datasets are considered, not pure git/git-annex
repositories.

The 'report line' at the bottom of the output shows the count of displayed datasets, in addition to the count of
directories and files. In this context, datasets and directories are mutually exclusive categories.

By default, only directories (no files) are included in the tree, and hidden directories are skipped. Both behaviours
can be changed using command options.

Symbolic links are always followed. This means that a symlink pointing to a directory is traversed and counted
as a directory (unless it potentially creates a loop in the tree).

Dataset discovery

Using the recursive or recursion_limit option, this command generates the layout of dataset hierarchies
based on subdataset nesting level, regardless of their location in the filesystem.

In this case, tree depth is determined by subdataset depth. This mode is thus suited for discovering available
datasets when their location is not known in advance.

By default, only datasets are listed, without their contents. If depth is specified additionally, the contents of each
dataset will be included up to depth directory levels (excluding subdirectories that are themselves datasets).

Tree filtering options such as include_hidden only affect which directories are reported as dataset contents,
not which directories are traversed to find datasets.

Performance note: since no assumption is made on the location of datasets, running this command with the
recursive or recursion_limit option does a full scan of the whole directory tree. As such, it can be signif-
icantly slower than a call with an equivalent output that uses depth to limit the tree instead.

Programmatic directory traversal

The command yields a result record for each tree node (dataset, directory or file). The following properties are
reported, where available:

"path"
Absolute path of the tree node

"type"
Type of tree node: "dataset", "directory" or "file"

"depth"
Directory depth of node relative to the tree root

18 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

"exhausted_levels"
Depth levels for which no nodes are left to be generated (the respective subtrees have been 'exhausted')

"count"
Dict with cumulative counts of datasets, directories and files in the tree up until the current node. File count
is only included if the command is run with the include_files option.

"dataset_depth"
Subdataset depth level relative to the tree root. Only included for node type "dataset".

"dataset_abs_depth"
Absolute subdataset depth level. Only included for node type "dataset".

"dataset_is_installed"
Whether the registered subdataset is installed. Only included for node type "dataset".

"symlink_target"
If the tree node is a symlink, the path to the link target

"is_broken_symlink"
If the tree node is a symlink, whether it is a broken symlink

Examples

Show up to 3 levels of subdirectories below the current directory, including files and hidden contents:

> tree(depth=3, include_files=True, include_hidden=True)

Find all top-level datasets located anywhere under /tmp:

> tree('/tmp', recursion_limit=0)

Report all subdatasets recursively and their directory contents, up to 1 subdirectory deep within each dataset:

> tree(recursive=True, depth=1)

Parameters

• path -- path to directory from which to generate the tree. Defaults to the current directory.
[Default: '.']

• depth -- limit the tree to maximum level of subdirectories. If not specified, will generate the
full tree with no depth constraint. If paired with recursive or recursion_limit, refers
to the maximum directory level to output below each dataset. [Default: None]

• recursive (bool, optional) -- produce a dataset tree of the full hierarchy of nested sub-
datasets. Note: may have slow performance on large directory trees. [Default: False]

• recursion_limit -- limit the dataset tree to maximum level of nested subdatasets. 0 means
include only top-level datasets, 1 means top-level datasets and their immediate subdatasets,
etc. Note: may have slow performance on large directory trees. [Default: None]

• include_files (bool, optional) -- include files in the tree. [Default: False]

• include_hidden (bool, optional) -- include hidden files/directories in the tree. This
option does not affect which directories will be searched for datasets when specifying
recursive or recursion_limit. For example, datasets located underneath the hidden
folder .datalad will be reported even if include_hidden is omitted. [Default: False]

2.1. High-level API commands 19

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception is
raised. A failure is any result with status 'impossible' or 'error'. Raised exception is an In-
completeResultsError that carries the result dictionaries of the failures in its failed attribute.
[Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned status
dictionary is passed to this callable, and is only returned if the callable's return value does not
evaluate to False or a ValueError exception is raised. If the given callable supports **kwargs
it will additionally be passed the keyword arguments of the original API call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an optional
message); 'json' a complete JSON line serialization of the full result record; 'json_pp' like
'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering entirely;
'<template>' reports any value(s) of any result properties in any format indicated by the tem-
plate (e.g. '{path}', compare with JSON output for all key-value choices). The template
syntax follows the Python "format() language". It is possible to report individual dictionary
values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'music:Genre',
':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'. [Default:
'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned result
status dictionary is passed to this callable, and its return value becomes the result instead.
This is different from result_filter, as it can perform arbitrary transformation of the result
value. This is mostly useful for top- level command invocations that need to provide
the results in a particular format. Instead of a callable, a label for a pre-crafted result
transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return value
list, or a list in case of multiple return values. None is return in case of an empty list. [Default:
'list']

2.2 Command line reference

2.2.1 datalad create-sibling-webdav

Synopsis

datalad create-sibling-webdav [-h] [-d DATASET] [-s NAME] [--storage-name NAME] [--mode␣
→˓MODE] [--credential NAME] [--existing EXISTING] [-r] [-R LEVELS] [--version] URL

20 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Description

Create a sibling(-tandem) on a WebDAV server

WebDAV is a standard HTTP protocol extension for placing files on a server that is supported by a number of com-
mercial storage services (e.g. 4shared.com, box.com), but also instances of cloud-storage solutions like Nextcloud or
ownCloud. These software packages are also the basis for some institutional or public cloud storage solutions, such as
EUDAT B2DROP.

For basic usage, only the URL with the desired dataset location on a WebDAV server needs to be specified for creating
a sibling. However, the sibling setup can be flexibly customized (no storage sibling, or only a storage sibling, multi-
version storage, or human-browsable single-version storage).

This command does not check for conflicting content on the WebDAV server!

When creating siblings recursively for a dataset hierarchy, subdataset exports are placed at their corresponding relative
paths underneath the root location on the WebDAV server.

Collaboration on WebDAV siblings

The primary use case for WebDAV siblings is dataset deposition, where only one site is uploading dataset and file
content updates. For collaborative workflows with multiple contributors, please make sure to consult the documentation
on the underlying datalad-annex:: Git remote helper for advice on appropriate setups: http://docs.datalad.org/
projects/next/

Git-annex implementation details

Storage siblings are presently configured to NOT be enabled automatically on cloning a dataset. Due to a limitation
of git-annex, this would initially fail (missing credentials). Instead, an explicit datalad siblings enable --name
<storage-sibling-name> command must be executed after cloning. If necessary, it will prompt for credentials.

This command does not (and likely will not) support embedding credentials in the repository (see embedcreds op-
tion of the git-annex webdav special remote; https://git-annex.branchable.com/special_remotes/webdav), because such
credential copies would need to be updated, whenever they change or expire. Instead, credentials are retrieved from
DataLad's credential system. In many cases, credentials are determined automatically, based on the HTTP authentica-
tion realm identified by a WebDAV server.

This command does not support setting up encrypted remotes (yet). Neither for the storage sibling, nor for the regular
Git-remote. However, adding support for it is primarily a matter of extending the API of this command, and passing
the respective options on to the underlying git-annex setup.

This command does not support setting up chunking for webdav storage siblings (https://git-annex.branchable.com/
chunking).

Examples

Create a WebDAV sibling tandem for storage of a dataset's file content and revision history. A user will be prompted
for any required credentials, if they are not yet known.:

% datalad create-sibling-webdav "https://webdav.example.com/myds"

Such a dataset can be cloned by DataLad via a specially crafted URL. Again, credentials are automatically determined,
or a user is prompted to enter them:

% datalad clone "datalad-annex::?type=webdav&encryption=none&url=https://webdav.example.
→˓com/myds"

A sibling can also be created with a human-readable file tree, suitable for data exchange with non-DataLad users, but
only able to host a single version of each file:

2.2. Command line reference 21

http://docs.datalad.org/projects/next/
http://docs.datalad.org/projects/next/
https://git-annex.branchable.com/special_remotes/webdav
https://git-annex.branchable.com/chunking
https://git-annex.branchable.com/chunking

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

% datalad create-sibling-webdav --mode filetree "https://example.com/browsable"

Cloning such dataset siblings is possible via a convenience URL:

% datalad clone "webdavs://example.com/browsable"

In all cases, the storage sibling needs to explicitly enabled prior to file content retrieval:

% datalad siblings enable --name example.com-storage

Options

URL

URL identifying the sibling root on the target WebDAV server.

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

specify the dataset to process. If no dataset is given, an attempt is made to identify the dataset based on the current
working directory.

-s NAME, --name NAME

name of the sibling. If none is given, the hostname-part of the WebDAV URL will be used. With RECURSIVE, the
same name will be used to label all the subdatasets' siblings.

--storage-name NAME

name of the storage sibling (git-annex special remote). Must not be identical to the sibling name. If not specified,
defaults to the sibling name plus '-storage' suffix. If only a storage sibling is created, this setting is ignored, and the
primary sibling name is used.

--mode MODE

Siblings can be created in various modes: full-featured sibling tandem, one for a dataset's Git history and one storage
sibling to host any number of file versions ('annex'). A single sibling for the Git history only ('git-only'). A single annex
sibling for multi-version file storage only ('annex-only'). As an alternative to the standard (annex) storage sibling setup
that is capable of storing any number of historical file versions using a content hash layout ('annex'|'annex-only'), the
'filetree' mode can used. This mode offers a human- readable data organization on the WebDAV remote that matches
the file tree of a dataset (branch). However, it can, consequently, only store a single version of each file in the file tree.
This mode is useful for depositing a single dataset snapshot for consumption without DataLad. The 'filetree' mode
nevertheless allows for cloning such a single-version dataset, because the full dataset history can still be pushed to the
WebDAV server. Git history hosting can also be turned off for this setup ('filetree-only'). When both a storage sibling

22 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

and a regular sibling are created together, a publication dependency on the storage sibling is configured for the regular
sibling in the local dataset clone. [Default: 'annex']

--credential NAME

name of the credential providing a user/password credential to be used for authorization. The credential
can be supplied via configuration setting 'datalad.credential.<name>.user|secret', or environment variable DATA-
LAD_CREDENTIAL_<NAME>_USER|SECRET, or will be queried from the active credential store using the pro-
vided name. If none is provided, the last-used credential for the authentication realm associated with the WebDAV
URL will be used. Only if a credential name was given, it will be encoded in the URL of the created WebDAV Git
remote, credential auto-discovery will be performed on each remote access.

--existing EXISTING

action to perform, if a (storage) sibling is already configured under the given name. In this case, sibling creation can be
skipped ('skip') or the sibling (re-)configured ('reconfigure') in the dataset, or the command be instructed to fail ('error').
[Default: 'error']

-r, --recursive

if set, recurse into potential subdatasets.

-R LEVELS, --recursion-limit LEVELS

limit recursion into subdatasets to the given number of levels. Constraints: value must be convertible to type 'int' or
value must be NONE

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

2.2.2 datalad credentials

Synopsis

datalad credentials [-h] [--prompt PROMPT] [-d DATASET] [--version] [action] [[name]␣
→˓[:]property[=value] ...]

2.2. Command line reference 23

mailto:team@datalad.org

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Description

Credential management and query

This command enables inspection and manipulation of credentials used throughout DataLad.

The command provides four basic actions:

QUERY

When executed without any property specification, all known credentials with all their properties will be yielded. Please
note that this may not include credentials that only comprise of a secret and no other properties, or legacy credentials
for which no trace in the configuration can be found. Therefore, the query results are not guaranteed to contain all
credentials ever configured by DataLad.

When additional property/value pairs are specified, only credentials that have matching values for all given properties
will be reported. This can be used, for example, to discover all suitable credentials for a specific "realm", if credentials
were annotated with such information.

SET

This is the companion to 'get', and can be used to store properties and secret of a credential. Importantly, and in contrast
to a 'get' operation, given properties with no values indicate a removal request. Any matching properties on record will
be removed. If a credential is to be stored for which no secret is on record yet, an interactive session will prompt a user
for a manual secret entry.

Only changed properties will be contained in the result record.

The appearance of the interactive secret entry can be configured with the two settings datalad.credentials.repeat-secret-
entry and datalad.credentials.hidden-secret-entry.

REMOVE

This action will remove any secret and properties associated with a credential identified by its name.

GET (plumbing operation)

This is a read-only action that will never store (updates of) credential properties or secrets. Given properties will
amend/overwrite those already on record. When properties with no value are given, and also no value for the respective
properties is on record yet, their value will be requested interactively, if a --prompt text was provided too. This can
be used to ensure a complete credential record, comprising any number of properties.

Details on credentials

A credential comprises any number of properties, plus exactly one secret. There are no constraints on the format or
property values or the secret, as long as they are encoded as a string.

Credential properties are normally stored as configuration settings in a user's configuration ('global' scope) using the
naming scheme:

datalad.credential.<name>.<property>

Therefore both credential name and credential property name must be syntax-compliant with Git configuration items.
For property names this means only alphanumeric characters and dashes. For credential names virtually no naming
restrictions exist (only null-byte and newline are forbidden). However, when naming credentials it is recommended to
use simple names in order to enable convenient one-off credential overrides by specifying DataLad configuration items
via their environment variable counterparts (see the documentation of the configuration command for details. In
short, avoid underscores and special characters other than '.' and '-'.

While there are no constraints on the number and nature of credential properties, a few particular properties are recog-
nized on used for particular purposes:

• 'secret': always refers to the single secret of a credential

24 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• 'type': identifies the type of a credential. With each standard type, a list of mandatory properties is associated
(see below)

• 'last-used': is an ISO 8601 format time stamp that indicated the last (successful) usage of a credential

Standard credential types and properties

The following standard credential types are recognized, and their mandatory field with their standard names will be
automatically included in a 'get' report.

• 'user_password': with properties 'user', and the password as secret

• 'token': only comprising the token as secret

• 'aws-s3': with properties 'key-id', 'session', 'expiration', and the secret_id as the credential secret

Legacy support

DataLad credentials not configured via this command may not be fully discoverable (i.e., including all their properties).
Discovery of such legacy credentials can be assisted by specifying a dedicated 'type' property.

Examples

Report all discoverable credentials:

% datalad credentials

Set a new credential mycred & input its secret interactively:

% datalad credentials set mycred

Remove a credential's type property:

% datalad credentials set mycred :type

Get all information on a specific credential in a structured record:

% datalad -f json credentials get mycred

Upgrade a legacy credential by annotating it with a 'type' property:

% datalad credentials set legacycred type=user_password

Set a new credential of type user_password, with a given user property, and input its secret interactively:

% datalad credentials set mycred type=user_password user=<username>

Obtain a (possibly yet undefined) credential with a minimum set of properties. All missing properties and secret will be
prompted for, no information will be stored! This is mostly useful for ensuring availability of an appropriate credential
in an application context:

% datalad credentials --prompt 'can I haz info plz?' get newcred :newproperty

2.2. Command line reference 25

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Options

action

which action to perform. [Default: 'query']

[name] [:]property[=value]

specification ofa credential name and credential properties. Properties are either given as name/value pairs or as a
property name prefixed by a colon. Properties prefixed with a colon indicate a property to be deleted (action 'set'), or
a property to be entered interactively, when no value is set yet, and a prompt text is given (action 'get'). All property
names are case-insensitive, must start with a letter or a digit, and may only contain '-' apart from these characters.

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

--prompt PROMPT

message to display when entry of missing credential properties is required for action 'get'. This can be used to present
information on the nature of a credential and for instructions on how to obtain a credential.

-d DATASET, --dataset DATASET

specify a dataset whose configuration to inspect rather than the global (user) settings.

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

2.2.3 datalad download

Synopsis

datalad download [-h] [-d DATASET] [--force {overwrite-existing}] [--credential NAME] [--
→˓hash ALGORITHM] [--version] <path>|<url>|<url-path-pair> [<path>|<url>|<url-path-pair>␣
→˓...]

26 Chapter 2. Functionality provided by DataLad NEXT

mailto:team@datalad.org

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Description

Download from URLs

This command is the front-end to an extensible framework for performing downloads from a variety of URL schemes.
Built-in support for the schemes 'http', 'https', 'file', and 'ssh' is provided. Extension packages may add additional
support.

In contrast to other downloader tools, this command integrates with the DataLad credential management and is able to
auto-discover credentials. If no credential is available, it automatically prompts for them, and offers to store them for
reuse after a successful authentication.

Simultaneous hashing (checksumming) of downloaded content is supported with user-specified algorithms.

The command can process any number of downloads (serially). it can read download specifications from (command
line) arguments, files, or STDIN. It can deposit downloads to individual files, or stream to STDOUT.

Implementation and extensibility

Each URL scheme is processed by a dedicated handler. Additional schemes can be supported by sub-classing data-
lad_next.url_operations.UrlOperations and implementing the download() method. Extension packages can register new
handlers, by patching them into the datalad_next.download._urlscheme_handlers registry dict.

Examples

Download webpage to "myfile.txt":

% datalad download "http://example.com myfile.txt"

Read download specification from STDIN (e.g. JSON-lines):

% datalad download -

Simultaneously hash download, hexdigest reported in result record:

% datalad download --hash sha256 http://example.com/data.xml"

Download from SSH server:

% datalad download "ssh://example.com/home/user/data.xml"

Stream a download to STDOUT:

% datalad -f disabled download "http://example.com -"

Options

<path>|<url>|<url-path-pair>

Download sources and targets can be given in a variety of formats: as a URL, or as a URL-path-pair that is mapping
a source URL to a dedicated download target path. Any number of URLs or URL-path-pairs can be provided, either
as an argument list, or read from a file (one item per line). Such a specification input file can be given as a path to an
existing file (as a single value, not as part of a URL-path-pair). When the special path identifier '-' is used, the download
is written to STDOUT. A specification can also be read in JSON-lines encoding (each line being a string with a URL
or an object mapping a URL-string to a path-string).

2.2. Command line reference 27

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

Dataset to be used as a configuration source. Beyond reading configuration items, this command does not interact with
the dataset.

--force {overwrite-existing}

By default, a target path for a download must not exist yet. 'force-overwrite' disabled this check.

--credential NAME

name of a credential to be used for authorization. If no credential is identified, the last-used credential for the authenti-
cation realm associated with the download target will be used. If there is no credential available yet, it will be prompted
for. Once used successfully, a prompt for entering to save such a new credential will be presented.

--hash ALGORITHM

Name of a hashing algorithm supported by the Python 'hashlib' module, e.g. 'md5' or 'sha256'. This option can be given
more than once.

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

2.2.4 datalad ls-file-collection

Synopsis

datalad ls-file-collection [-h] [--hash ALGORITHM] [--version] {directory,tarfile,
→˓zipfile,gittree,gitworktree,annexworktree} ID/LOCATION

28 Chapter 2. Functionality provided by DataLad NEXT

mailto:team@datalad.org

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Description

Report information on files in a collection

This is a utility that can be used to query information on files in different file collections. The type of information
reported varies across collection types. However, each result at minimum contains some kind of identifier for the
collection ('collection' property), and an identifier for the respective collection item ('item' property). Each result also
contains a type property that indicates particular type of file that is being reported on. In most cases this will be file,
but other categories like symlink or directory are recognized too.

If a collection type provides file-access, this command can compute one or more hashes (checksums) for any file in a
collection.

Supported file collection types are:

directory
Reports on the content of a given directory (non-recursively). The collection identifier is the path of the direc-
tory. Item identifiers are the names of items within that directory. Standard properties like size, mtime, or
link_target are included in the report.

gittree
Reports on the content of a Git "tree-ish". The collection identifier is that tree-ish. The command must be
executed inside a Git repository. If the working directory for the command is not the repository root (in case
of a non-bare repository), the report is constrained to items underneath the working directory. Item identifiers
are the relative paths of items within that working directory. Reported properties include gitsha and gittype;
note that the gitsha is not equivalent to a SHA1 hash of a file's content, but is the SHA-type blob identifier as
reported and used by Git. Reporting of content hashes beyond the gitsha is presently not supported.

gitworktree
Reports on all tracked and untracked content of a Git repository's work tree. The collection identifier is a path
of a directory in a Git repository (which can, but needs not be, its root). Item identifiers are the relative paths
of items within that directory. Reported properties include gitsha and gittype; note that the gitsha is not
equivalent to a SHA1 hash of a file's content, but is the SHA-type blob identifier as reported and used by Git.

annexworktree
Like gitworktree, but amends the reported items with git-annex information, such as annexkey, annexsize,
and annnexobjpath.

tarfile
Reports on members of a TAR archive. The collection identifier is the path of the TAR file. Item identifiers
are the relative paths of archive members within the archive. Reported properties are similar to the directory
collection type.

zipfile
Like tarfile for reporting on ZIP archives.

Examples

Report on the content of a directory:

% datalad -f json ls-file-collection directory /tmp

Report on the content of a TAR archive with MD5 and SHA1 file hashes:

% datalad -f json ls-file-collection --hash md5 --hash sha1 tarfile myarchive.tar.gz

Register URLs for files in a directory that is also reachable via HTTP. This uses ls-file-collection for listing files
and computing MD5 hashes, then using jq to filter and transform the output (just file records, and in a JSON array),
and passes them to addurls, which generates annex keys/files and assigns URLs. When the command finishes, the
dataset contains no data, but can retrieve the files after confirming their availability (i.e., via git annex fsck):

2.2. Command line reference 29

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

% datalad -f json ls-file-collection directory wwwdir --hash md5 \
| jq '. | select(.type == "file")' \
| jq --slurp . \
| datalad addurls --key 'et:MD5-s{size}--{hash-md5}' - 'https://example.com/{item}'

List annex keys of all files in the working tree of a dataset:

% datalad -f json ls-file-collection annexworktree . \
| jq '. | select(.annexkey) | .annexkey'

Options

{directory,tarfile,zipfile,gittree,gitworktree,annexworktree}

Name of the type of file collection to report on.

ID/LOCATION

identifier or location of the file collection to report on. Depending on the type of collection to process, the specific
nature of this parameter can be different. A common identifier for a file collection is a path (to a directory, to an
archive), but might also be a URL. See the documentation for details on supported collection types.

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

--hash ALGORITHM

One or more names of algorithms to be used for reporting file hashes. They must be supported by the Python 'hashlib'
module, e.g. 'md5' or 'sha256'. Reporting file hashes typically implies retrieving/reading file content. This processing
may also enable reporting of additional properties that may otherwise not be readily available. This option can be given
more than once.

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

30 Chapter 2. Functionality provided by DataLad NEXT

mailto:team@datalad.org

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

2.2.5 datalad next-status

Synopsis

datalad next-status [-h] [-d DATASET] [--untracked {no,whole-dir,no-empty-dir,normal,all}
→˓] [-r [{no,repository,datasets,mono}]] [-e {no,commit,full}] [--version]

Description

Report on the (modification) status of a dataset

NOTE

This is a preview of an command implementation aiming to replace the DataLad status command.

For now, expect anything here to change again.

This command provides a report that is roughly identical to that of git status. Running with default parameters
yields a report that should look familiar to Git and DataLad users alike, and contain the same information as offered
by git status.

The main difference to git status are:

• Support for recursion into submodule. git status does that too, but the report is limited to the global state
of an entire submodule, whereas this command can issue detailed reports in changes inside a submodule (any
nesting depth).

• Support for directory-constrained reporting. Much like git status limits its report to a single repository, this
command can optionally limit its report to a single directory and its direct children. In this report subdirectories
are considered containers (much like) submodules, and a change summary is provided for them.

• Support for a "mono" (monolithic repository) report. Unlike a standard recursion into submodules, and checking
each of them for changes with respect to the HEAD commit of the worktree, this report compares a submodule
with respect to the state recorded in its parent repository. This provides an equally comprehensive status report
from the point of view of a queried repository, but does not include a dedicated item on the global state of a
submodule. This makes nested hierarchy of repositories appear like a single (mono) repository.

• Support for "adjusted mode" git-annex repositories. These utilize a managed branch that is repeatedly rewritten,
hence is not suitable for tracking within a parent repository. Instead, the underlying "corresponding branch"
is used, which contains the equivalent content in an un-adjusted form, persistently. This command detects this
condition and automatically check a repositories state against the corresponding branch state.

Presently missing/planned features

• There is no support for specifying paths (or pathspecs) for constraining the operation to specific dataset parts.
This will be added in the future.

• There is no reporting of git-annex properties, such as tracked file size. It is undetermined whether this will be
added in the future. However, even without a dedicated switch, this command has support for datasets (and their
submodules) in git-annex's "adjusted mode".

Differences to the ``status`` command implementation prior DataLad v2

• Like git status this implementation reports on dataset modification, whereas the previous status also pro-
vided a listing of unchanged dataset content. This is no longer done. Equivalent functionality for listing dataset
content is provided by the ls_file_collection command.

• The implementation is substantially faster. Depending on the context the speed-up is typically somewhere be-
tween 2x and 100x.

2.2. Command line reference 31

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• The implementation does not suffer from the limitation re type change detection.

• Python and CLI API of the command use uniform parameter validation.

Examples

Options

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

Dataset to be used as a configuration source. Beyond reading configuration items, this command does not interact with
the dataset.

--untracked {no,whole-dir,no-empty-dir,normal,all}

Determine how untracked content is considered and reported when comparing a revision to the state of the working
tree. 'no': no untracked content is considered as a change; 'normal': untracked files and entire untracked directories are
reported as such; 'all': report individual files even in fully untracked directories. In addition to these git-status modes,
'whole-dir' (like normal, but include empty directories), and 'no-empty-dir' (alias for 'normal') are understood. [Default:
'normal']

-r [{no,repository,datasets,mono}], --recursive [{no,repository,datasets,mono}]

Mode of recursion for status reporting. With 'no' the report is restricted to a single directory and its direct children.
With 'repository', the report comprises all repository content underneath current working directory or root of a given
dataset, but is limited to items directly contained in that repository. With 'datasets', the report also comprises any
content in any subdatasets. Each subdataset is evaluated against its respective HEAD commit. With 'mono', a report
similar to 'datasets' is generated, but any subdataset is evaluate with respect to the state recorded in its parent repository.
In contrast to the 'datasets' mode, no report items on a joint submodule are generated. If no particular value is given
with this option the 'datasets' mode is selected. [Default: 'repository']

-e {no,commit,full}, --eval-subdataset-state {no,commit,full}

Evaluation of subdataset state (modified or untracked content) can be expensive for deep dataset hierarchies as sub-
dataset have to be tested recursively for uncommitted modifications. Setting this option to 'no' or 'commit' can sub-
stantially boost performance by limiting what is being tested. With 'no' no state is evaluated and subdataset are not
investigated for modifications. With 'commit' only a discrepancy of the HEAD commit gitsha of a subdataset and
the gitsha recorded in the superdataset's record is evaluated. With 'full' any other modifications are considered too.
[Default: 'full']

32 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

2.2.6 datalad tree

Synopsis

datalad tree [-h] [-L DEPTH] [-r] [-R LEVELS] [--include-files] [--include-hidden] [--
→˓version] [path]

Description

Visualize directory and dataset hierarchies

This command mimics the UNIX/MS-DOS 'tree' utility to generate and display a directory tree, with DataLad-specific
enhancements.

It can serve the following purposes:

1. Glorified 'tree' command

2. Dataset discovery

3. Programmatic directory traversal

Glorified 'tree' command

The rendered command output uses 'tree'-style visualization:

/tmp/mydir
[DS~0] ds_A/

[DS~1] subds_A/
[DS~0] ds_B/

dir_B/
file.txt
subdir_B/
[DS~1] subds_B0/

[DS~1] (not installed) subds_B1/

5 datasets, 2 directories, 1 file

Dataset paths are prefixed by a marker indicating subdataset hierarchy level, like [DS~1]. This is the absolute subdataset
level, meaning it may also take into account superdatasets located above the tree root and thus not included in the output.
If a subdataset is registered but not installed (such as after a non-recursive datalad clone), it will be prefixed by (not
installed). Only DataLad datasets are considered, not pure git/git-annex repositories.

The 'report line' at the bottom of the output shows the count of displayed datasets, in addition to the count of directories
and files. In this context, datasets and directories are mutually exclusive categories.

2.2. Command line reference 33

mailto:team@datalad.org

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

By default, only directories (no files) are included in the tree, and hidden directories are skipped. Both behaviours can
be changed using command options.

Symbolic links are always followed. This means that a symlink pointing to a directory is traversed and counted as a
directory (unless it potentially creates a loop in the tree).

Dataset discovery

Using the --recursive or --recursion-limit option, this command generates the layout of dataset hierarchies
based on subdataset nesting level, regardless of their location in the filesystem.

In this case, tree depth is determined by subdataset depth. This mode is thus suited for discovering available datasets
when their location is not known in advance.

By default, only datasets are listed, without their contents. If --depth is specified additionally, the contents of each
dataset will be included up to --depth directory levels (excluding subdirectories that are themselves datasets).

Tree filtering options such as --include-hidden only affect which directories are reported as dataset contents, not
which directories are traversed to find datasets.

Performance note: since no assumption is made on the location of datasets, running this command with the
--recursive or --recursion-limit option does a full scan of the whole directory tree. As such, it can be sig-
nificantly slower than a call with an equivalent output that uses --depth to limit the tree instead.

Programmatic directory traversal

The command yields a result record for each tree node (dataset, directory or file). The following properties are reported,
where available:

"path"
Absolute path of the tree node

"type"
Type of tree node: "dataset", "directory" or "file"

"depth"
Directory depth of node relative to the tree root

"exhausted_levels"
Depth levels for which no nodes are left to be generated (the respective subtrees have been 'exhausted')

"count"
Dict with cumulative counts of datasets, directories and files in the tree up until the current node. File count is
only included if the command is run with the --include-files option.

"dataset_depth"
Subdataset depth level relative to the tree root. Only included for node type "dataset".

"dataset_abs_depth"
Absolute subdataset depth level. Only included for node type "dataset".

"dataset_is_installed"
Whether the registered subdataset is installed. Only included for node type "dataset".

"symlink_target"
If the tree node is a symlink, the path to the link target

"is_broken_symlink"
If the tree node is a symlink, whether it is a broken symlink

Examples

Show up to 3 levels of subdirectories below the current directory, including files and hidden contents:

34 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

% datalad tree -L 3 --include-files --include-hidden

Find all top-level datasets located anywhere under /tmp:

% datalad tree /tmp -R 0

Report all subdatasets recursively and their directory contents, up to 1 subdirectory deep within each dataset:

% datalad tree -r -L 1

Options

path

path to directory from which to generate the tree. Defaults to the current directory. [Default: '.']

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

-L DEPTH, --depth DEPTH

limit the tree to maximum level of subdirectories. If not specified, will generate the full tree with no depth constraint.
If paired with --recursive or --recursion-limit, refers to the maximum directory level to output below each
dataset.

-r, --recursive

produce a dataset tree of the full hierarchy of nested subdatasets. Note: may have slow performance on large directory
trees.

-R LEVELS, --recursion-limit LEVELS

limit the dataset tree to maximum level of nested subdatasets. 0 means include only top-level datasets, 1 means top-level
datasets and their immediate subdatasets, etc. Note: may have slow performance on large directory trees.

--include-files

include files in the tree.

2.2. Command line reference 35

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

--include-hidden

include hidden files/directories in the tree. This option does not affect which directories will be searched for datasets
when specifying --recursive or --recursion-limit. For example, datasets located underneath the hidden folder
.datalad will be reported even if --include-hidden is omitted.

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

2.3 Python tooling

datalad-next comprises a number of more-or-less self-contained mini-packages providing particular functionality.
These implementations are candidates for a migration into the DataLad core package, and are provided here for imme-
diate use. If and when components are migrated, transition modules will be kept to prevent API breakage in dependent
packages.

archive_operations Handler for operations on various archive types
commands Essential tooling for implementing DataLad commands
config Configuration query and manipulation
constraints Data validation, coercion, and parameter documentation
consts Common constants
credman Credential management
datasets Representations of DataLad datasets built on git/git-

annex repositories
exceptions Special purpose exceptions
iterable_subprocess Context manager to communicate with a subprocess us-

ing iterables
itertools Various iterators, e.g., for subprocess pipelining and out-

put processing
iter_collections Iterators for particular types of collections
repo_utils Common repository operations
runners Execution of subprocesses
shell A persistent shell connection
tests Tooling for test implementations
tests.fixtures Collection of fixtures for facilitation test implementa-

tions
types Custom types and dataclasses
uis UI abstractions for user communication
url_operations Handlers for operations on various URL types and pro-

tocols
utils Assorted utility functions

36 Chapter 2. Functionality provided by DataLad NEXT

mailto:team@datalad.org

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

2.3.1 datalad_next.archive_operations

Handler for operations on various archive types

All handlers implement the API defined by ArchiveOperations.

Available handlers:

TarArchiveOperations(location, *[, cfg]) Handler for a TAR archive on a local file system
ZipArchiveOperations(location, *[, cfg]) Handler for a ZIP archive on a local file system

datalad_next.archive_operations.TarArchiveOperations

class datalad_next.archive_operations.TarArchiveOperations(location: Path, *, cfg: ConfigManager |
None = None)

Bases: ArchiveOperations

Handler for a TAR archive on a local file system

Any methods that take an archive item/member name as an argument accept a POSIX path string, or any PurePath
instance.

close()→ None
Closes any opened TAR file handler

open(item: str | PurePosixPath)→ Generator[IO | None]
Get a file-like for a TAR archive item

The file-like object allows to read from the archive-item specified by item.

Parameters
item (str | PurePath) -- The identifier must be a POSIX path string, or a PurePath in-
stance.

Returns
A file-like object to read bytes from the item, if the item is a regular file, else None. (This is
returned by the context manager that is created via the decorator @contextmanager.)

Return type
IO | None

Raises
KeyError -- If no item with the name item can be found in the tar-archive

property tarfile: TarFile

Returns TarFile instance, after creating it on-demand

The instance is cached, and needs to be released by calling .close() if called outside a context manager.

2.3. Python tooling 37

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.archive_operations.ZipArchiveOperations

class datalad_next.archive_operations.ZipArchiveOperations(location: Path, *, cfg: ConfigManager |
None = None, **kwargs)

Bases: ArchiveOperations

Handler for a ZIP archive on a local file system

close()→ None
Calls .close() on the underlying zipfile.ZipFile instance

open(item: str | PurePosixPath | ZipInfo, **kwargs)→ Generator[IO | None, None, None]
Context manager, returning an open file for a member of the archive.

The file-like object will be closed when the context-handler exits.

This method can be used in conjunction with __iter__ to read any file from an archive:

with ZipArchiveOperations(archive_path) as zf:
for item in zf:

if item.type != FileSystemItemType.file:
continue

with zf.open(item.name) as fp:
...

Parameters

• item (str | PurePosixPath | zipfile.ZipInfo) -- Name, path, or ZipInfo-
instance that identifies an item in the zipfile

• kwargs (dict) -- Keyword arguments that will be used for ZipFile.open()

Returns
A file-like object to read bytes from the item or to write bytes to the item.

Return type
IO

property zipfile: ZipFile

Access to the wrapped ZIP archive as a zipfile.ZipFile

2.3.2 datalad_next.commands

Essential tooling for implementing DataLad commands

This module provides the advanced command base class ValidatedInterface, for implementing commands with
uniform argument validation and structured error reporting.

Beyond that, any further components necessary to implement command are imported in this module to offer a one-
stop-shop experience. This includes build_doc, datasetmethod, and eval_results, among others.

CommandResult(action, status, path[, ...]) Base data class for result records emitted by DataLad
commands.

CommandResultStatus(value) Enumeration of possible statuses of command results
status.StatusResult(action, status, path[, ...])

38 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.commands.CommandResult

class datalad_next.commands.CommandResult(action: str, status: CommandResultStatus, path: str | Path,
message: str | tuple | None = None, exception:
CapturedException | None = None, error_message: str | tuple
| None = None, type: str | None = None, logger:
logging.Logger | None = None, refds: str | Path | Dataset =
None)

Bases: object

Base data class for result records emitted by DataLad commands.

Historically, such results records have taken the form of a Python dict. This class provides some API for its
instances to be compatible with legacy code that expects a dict.

See also:

https://docs.datalad.org/design/result_records.html

action: str

A string label identifying which type of operation a result is associated with. Labels must not contain white
space. They should be compact, and lower-cases, and use _ (underscore) to separate words in compound
labels.

error_message: str | tuple | None = None

exception: CapturedException | None = None

get(key, default=None)

items()

logger: logging.Logger | None = None

message: str | tuple | None = None

path: str | Path

An absolute path describing the local entity a result is associated with (the subject of the result record).
Paths must be platform-specific (e.g., Windows paths on Windows, and POSIX paths on other operating
systems). When a result is about an entity that has no meaningful relation to the local file system (e.g., a
URL to be downloaded), the path value should be determined with respect to the potential impact of the
result on any local entity (e.g., a URL downloaded to a local file path, a local dataset modified based on
remote information).

pop(key, default=None)

refds: str | Path | Dataset = None

status: CommandResultStatus

This field indicates the nature of a result in terms of four categories, identified by a CommandResultStatus
value. The result status is used by user communication, but also for decision making on the overall success
or failure of a command operation.

type: str | None = None

2.3. Python tooling 39

https://docs.datalad.org/design/result_records.html

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.commands.CommandResultStatus

class datalad_next.commands.CommandResultStatus(value)
Bases: Enum

Enumeration of possible statuses of command results

error = 'error'

impossible = 'impossible'

notneeded = 'notneeded'

ok = 'ok'

datalad_next.commands.status.StatusResult

class datalad_next.commands.status.StatusResult(action: 'str', status: 'CommandResultStatus', path:
'str | Path', message: 'str | tuple | None' = None,
exception: 'CapturedException | None' = None,
error_message: 'str | tuple | None' = None, type: 'str |
None' = None, logger: 'logging.Logger | None' =
None, refds: 'str | Path | Dataset' = None, diff_state:
'GitDiffStatus | None' = None, gittype:
'GitTreeItemType | None' = None, prev_gittype:
'GitTreeItemType | None' = None, modification_types:
'tuple[GitContainerModificationType] | None' =
None)

Bases: CommandResult

diff_state: GitDiffStatus | None = None

The status of the underlying GitDiffItem. It is named "_state" to emphasize the conceptual similarity
with the legacy property 'state'

gittype: GitTreeItemType | None = None

The gittype of the underlying GitDiffItem.

modification_types: tuple[GitContainerModificationType] | None = None

Qualifiers for modification types of container-type items (directories, submodules).

prev_gittype: GitTreeItemType | None = None

The prev_gittype of the underlying GitDiffItem.

property prev_type: str

property state: StatusState

A (more or less legacy) simplified representation of the subject state. For a more accurate classification use
the diff_status property.

property type: str | None

property type_src: str | None

Backward-compatibility adaptor

40 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

class datalad_next.commands.ValidatedInterface

Bases: Interface

Alternative base class for commands with uniform parameter validation

Note: This interface is a draft. Usage is encouraged, but future changes are to be expected.

Commands derived from the traditional Interface class have no built-in input parameter validation beyond
CLI input validation of individual parameters. Consequently, each command must perform custom parameter
validation, which often leads to complex boilerplate code that is largely unrelated to the purpose of a particular
command.

This class is part of a framework for uniform parameter validation, regardless of the target API (Python, CLI,
GUI). The implementation of a command's __call__ method can focus on the core purpose of the command,
while validation and error handling can be delegated elsewhere.

A validator for all individual parameters and the joint-set of all parameters can be provided through the
get_parameter_validator() method.

To transition a command from Interface to ValidatedInterface, replace the base class declaration and
declare a _validator_ class member. Any constraints= declaration for Parameter instances should either
be removed, or moved to the corresponding entry in _validator_.

classmethod get_parameter_validator()→ EnsureCommandParameterization | None
Returns a validator for the entire parameter set of a command

If parameter validation shall be performed, this method must return an instance of
EnsureCommandParameterization. All parameters will be passed through this validator, and
only the its output will be passed to the underlying command's __call__ method.

Consequently, the core implementation of a command only needs to support the output values of the val-
idators declared by itself.

Factoring out input validation, normalization, type coercion etc. into a dedicated component also makes it
accessible for upfront validation and improved error reporting via the different DataLad APIs.

If a command does not implement parameter validation in this fashion, this method must return None.

The default implementation returns the _validator_ class member.

2.3.3 datalad_next.config

Configuration query and manipulation

This modules provides the central ConfigManager class.

ConfigManager([dataset, overrides, source]) Thin wrapper around git-config with support for a dataset
configuration.

2.3. Python tooling 41

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.config.ConfigManager

class datalad_next.config.ConfigManager(dataset=None, overrides=None, source='any')
Bases: object

Thin wrapper around git-config with support for a dataset configuration.

The general idea is to have an object that is primarily used to read/query configuration option. Upon creation,
current configuration is read via one (or max two, in the case of the presence of dataset-specific configuration)
calls to git config. If this class is initialized with a Dataset instance, it supports reading and writing configuration
from .datalad/config inside a dataset too. This file is committed to Git and hence useful to ship certain
configuration items with a dataset.

The API aims to provide the most significant read-access API of a dictionary, the Python ConfigParser, and
GitPython's config parser implementations.

This class is presently not capable of efficiently writing multiple configurations items at once. Instead, each
modification results in a dedicated call to git config. This author thinks this is OK, as he cannot think of a
situation where a large number of items need to be written during normal operation.

Each instance carries a public overrides attribute. This dictionary contains variables that override any setting
read from a file. The overrides are persistent across reloads.

Any DATALAD_* environment variable is also presented as a configuration item. Settings read from environ-
ment variables are not stored in any of the configuration files, but are read dynamically from the environment at
each reload() call. Their values take precedence over any specification in configuration files, and even overrides.

Parameters

• dataset (Dataset, optional) -- If provided, all git config calls are executed in this
dataset's directory. Moreover, any modifications are, by default, directed to this dataset's
configuration file (which will be created on demand)

• overrides (dict, optional) -- Variable overrides, see general class documentation for
details.

• source ({'any', 'local', 'branch', 'branch-local'}, optional) -- Which sources
of configuration setting to consider. If 'branch', configuration items are only read from
a dataset's persistent configuration file in current branch, if any is present (the one in .
datalad/config, not .git/config); if 'local', any non-committed source is considered
(local and global configuration in Git config's terminology); if 'branch-local', persistent con-
figuration in current dataset branch and local, but not global or system configuration are
considered; if 'any' all possible sources of configuration are considered. Note: 'dataset' and
'dataset-local' are deprecated in favor of 'branch' and 'branch-local'.

add(var, value, scope='branch', reload=True)
Add a configuration variable and value

Parameters

• var (str) -- Variable name including any section like git config expects them, e.g.
'core.editor'

• value (str) -- Variable value

• scope ({'branch', 'local', 'global', 'override'}, optional) -- Indicator which
configuration file to modify. 'branch' indicates the persistent configuration in .data-
lad/config of a dataset; 'local' the configuration of a dataset's Git repository in .git/config;
'global' refers to the general configuration that is not specific to a single repository (usu-
ally in $USER/.gitconfig); 'override' limits the modification to the ConfigManager instance,

42 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

and the assigned value overrides any setting from any other source. Note: 'dataset' is being
DEPRECATED in favor of 'branch'.

• where ({'branch', 'local', 'global', 'override'}, optional) -- DEPRECATED,
use 'scope'.

• reload (bool) -- Flag whether to reload the configuration from file(s) after modification.
This can be disable to make multiple sequential modifications slightly more efficient.

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

Parameters

• default (optional) -- Value to return when key is not present. None by default.

• get_all (bool, optional) -- If True, return all values of multiple identical configura-
tion keys. By default only the last specified value is returned.

get_from_source(source, key, default=None)
Like get(), but a source can be specific.

If source is 'branch', only the committed configuration is queried, overrides are applied. In the case of
'local', the committed configuration is ignored, but overrides and configuration from environment variables
are applied as usual.

get_value(section, option, default=None)
Like get(), but with an optional default value

If the default is not None, the given default value will be returned in case the option did not exist. This
behavior imitates GitPython's config parser.

getbool(section, option, default=None)
A convenience method which coerces the option value to a bool

Values "on", "yes", "true" and any int!=0 are considered True Values which evaluate to bool False, "off",
"no", "false" are considered False TypeError is raised for other values.

getfloat(section, option)
A convenience method which coerces the option value to a float

getint(section, option)
A convenience method which coerces the option value to an integer

has_option(section, option)
If the given section exists, and contains the given option

has_section(section)
Indicates whether a section is present in the configuration

items(section=None)
Return a list of (name, value) pairs for each option

Optionally limited to a given section.

keys()

Returns list of configuration item names

obtain(var, default=None, dialog_type=None, valtype=None, store=False, scope=None, reload=True,
**kwargs)

Convenience method to obtain settings interactively, if needed

2.3. Python tooling 43

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

A UI will be used to ask for user input in interactive sessions. Questions to ask, and additional explanations
can be passed directly as arguments, or retrieved from a list of pre-configured items.

Additionally, this method allows for type conversion and storage of obtained settings. Both aspects can also
be pre-configured.

Parameters

• var (str) -- Variable name including any section like git config expects them, e.g.
'core.editor'

• default (any type) -- In interactive sessions and if store is True, this default value will
be presented to the user for confirmation (or modification). In all other cases, this value
will be silently assigned unless there is an existing configuration setting.

• dialog_type ({'question', 'yesno', None}) -- Which dialog type to use in interactive
sessions. If None, pre-configured UI options are used.

• store (bool) -- Whether to store the obtained value (or default)

• scope ({'branch', 'local', 'global', 'override'}, optional) -- Indicator which
configuration file to modify. 'branch' indicates the persistent configuration in .data-
lad/config of a dataset; 'local' the configuration of a dataset's Git repository in .git/config;
'global' refers to the general configuration that is not specific to a single repository (usu-
ally in $USER/.gitconfig); 'override' limits the modification to the ConfigManager instance,
and the assigned value overrides any setting from any other source. Note: 'dataset' is being
DEPRECATED in favor of 'branch'.

• where ({'branch', 'local', 'global', 'override'}, optional) -- DEPRECATED,
use 'scope'.

• reload (bool) -- Flag whether to reload the configuration from file(s) after modification.
This can be disable to make multiple sequential modifications slightly more efficient.

• **kwargs -- Additional arguments for the UI function call, such as a question text.

options(section)
Returns a list of options available in the specified section.

reload(force=False)
Reload all configuration items from the configured sources

If force is False, all files configuration was previously read from are checked for differences in the modifi-
cation times. If no difference is found for any file no reload is performed. This mechanism will not detect
newly created global configuration files, use force in this case.

remove_section(sec, scope='branch', reload=True)
Rename a configuration section

Parameters

• sec (str) -- Name of the section to remove.

• scope ({'branch', 'local', 'global', 'override'}, optional) -- Indicator which
configuration file to modify. 'branch' indicates the persistent configuration in .data-
lad/config of a dataset; 'local' the configuration of a dataset's Git repository in .git/config;
'global' refers to the general configuration that is not specific to a single repository (usu-
ally in $USER/.gitconfig); 'override' limits the modification to the ConfigManager instance,
and the assigned value overrides any setting from any other source. Note: 'dataset' is being
DEPRECATED in favor of 'branch'.

44 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• where ({'branch', 'local', 'global', 'override'}, optional) -- DEPRECATED,
use 'scope'.

• reload (bool) -- Flag whether to reload the configuration from file(s) after modification.
This can be disable to make multiple sequential modifications slightly more efficient.

rename_section(old, new, scope='branch', reload=True)
Rename a configuration section

Parameters

• old (str) -- Name of the section to rename.

• new (str) -- Name of the section to rename to.

• scope ({'branch', 'local', 'global', 'override'}, optional) -- Indicator which
configuration file to modify. 'branch' indicates the persistent configuration in .data-
lad/config of a dataset; 'local' the configuration of a dataset's Git repository in .git/config;
'global' refers to the general configuration that is not specific to a single repository (usu-
ally in $USER/.gitconfig); 'override' limits the modification to the ConfigManager instance,
and the assigned value overrides any setting from any other source. Note: 'dataset' is being
DEPRECATED in favor of 'branch'.

• where ({'branch', 'local', 'global', 'override'}, optional) -- DEPRECATED,
use 'scope'.

• reload (bool) -- Flag whether to reload the configuration from file(s) after modification.
This can be disable to make multiple sequential modifications slightly more efficient.

rewrite_url(url)
Any matching 'url.<base>.insteadOf' configuration is applied

Any URL that starts with such a configuration will be rewritten to start, instead, with <base>. When more
than one insteadOf strings match a given URL, the longest match is used.

Parameters

• cfg (ConfigManager or dict) -- dict-like with configuration variable name/value-
pairs.

• url (str) -- URL to be rewritten, if matching configuration is found.

Returns
Rewritten or unmodified URL.

Return type
str

sections()

Returns a list of the sections available

set(var, value, scope='branch', reload=True, force=False)
Set a variable to a value.

In opposition to add, this replaces the value of var if there is one already.

Parameters

• var (str) -- Variable name including any section like git config expects them, e.g.
'core.editor'

• value (str) -- Variable value

2.3. Python tooling 45

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• force (bool) -- if set, replaces all occurrences of var by a single one with the given value.
Otherwise raise if multiple entries for var exist already

• scope ({'branch', 'local', 'global', 'override'}, optional) -- Indicator which
configuration file to modify. 'branch' indicates the persistent configuration in .data-
lad/config of a dataset; 'local' the configuration of a dataset's Git repository in .git/config;
'global' refers to the general configuration that is not specific to a single repository (usu-
ally in $USER/.gitconfig); 'override' limits the modification to the ConfigManager instance,
and the assigned value overrides any setting from any other source. Note: 'dataset' is being
DEPRECATED in favor of 'branch'.

• where ({'branch', 'local', 'global', 'override'}, optional) -- DEPRECATED,
use 'scope'.

• reload (bool) -- Flag whether to reload the configuration from file(s) after modification.
This can be disable to make multiple sequential modifications slightly more efficient.

unset(var, scope='branch', reload=True)
Remove all occurrences of a variable

Parameters

• var (str) -- Name of the variable to remove

• scope ({'branch', 'local', 'global', 'override'}, optional) -- Indicator which
configuration file to modify. 'branch' indicates the persistent configuration in .data-
lad/config of a dataset; 'local' the configuration of a dataset's Git repository in .git/config;
'global' refers to the general configuration that is not specific to a single repository (usu-
ally in $USER/.gitconfig); 'override' limits the modification to the ConfigManager instance,
and the assigned value overrides any setting from any other source. Note: 'dataset' is being
DEPRECATED in favor of 'branch'.

• where ({'branch', 'local', 'global', 'override'}, optional) -- DEPRECATED,
use 'scope'.

• reload (bool) -- Flag whether to reload the configuration from file(s) after modification.
This can be disable to make multiple sequential modifications slightly more efficient.

2.3.4 datalad_next.constraints

Data validation, coercion, and parameter documentation

This module provides a set of uniform classes to validate and document particular aspects of inputs. In a nutshell, each
of these Constraint class:

• focuses on a specific aspect, such as data type coercion, or checking particular input properties

• is instantiated with a set of parameters to customize such an instance for a particular task

• performs its task by receiving an input via its __call__() method

• provides default auto-documentation that can be customized by wrapping an instance in WithDescription

Individual Constraint instances can be combined with logical AND (AllOf) and OR (AnyOf) operations to form
arbitrarily complex constructs.

On (validation/coercion) error, instances raise ConstraintError) via their raise_for() method. This approach to
error reporting helps to communicate standard (yet customizable) error messages, aids structured error reporting, and
is capable of communication the underlying causes of an error in full detail without the need to generate long textual
descriptions.

46 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

EnsureCommandParameterization is a particular variant of a Constraint that is capable of validating a com-
plete parameterization of a command (or function), for each parameter individually, and for arbitrary combinations of
parameters. It puts a particular emphasis on structured error reporting.

Constraint() Base class for value coercion/validation.
AllOf (*constraints) Logical AND for constraints.
AnyOf (*constraints) Logical OR for constraints.
NoConstraint() A constraint that represents no constraints
WithDescription(constraint, *[, ...]) Constraint that wraps another constraint and replaces its

description
ConstraintError(constraint, value, msg[, ctx]) Exception type raised by constraints when their condi-

tions are violated
CommandParametrizationError(exceptions) Exception type raised on violating any command param-

eter constraints
ParameterConstraintContext(parameters[, ...]) Representation of a parameter constraint context
EnsureDataset([installed, purpose, require_id]) Ensure an absent/present Dataset from any path or

Dataset instance
DatasetParameter(original, ds) Utility class to report an original and resolve dataset pa-

rameter value
EnsureBool() Ensure that an input is a bool.
EnsureCallable() Ensure an input is a callable object
EnsureChoice(*values) Ensure an input is element of a set of possible values
EnsureFloat() Ensure that an input (or several inputs) are of a data type

'float'.
EnsureHashAlgorithm() Ensure an input matches a name of a hashlib algorithm
EnsureDType(dtype) Ensure that an input (or several inputs) are of a particular

data type.
EnsureInt() Ensure that an input (or several inputs) are of a data type

'int'.
EnsureKeyChoice(key, values) Ensure value under a key in an input is in a set of possible

values
EnsureNone() Ensure an input is of value None
EnsurePath (*, path_type, is_format, lexists, ...) Ensures input is convertible to a (platform) path and re-

turns a Path
EnsureStr([min_len, match]) Ensure an input is a string of some min.
EnsureStrPrefix(prefix) Ensure an input is a string that starts with a given prefix.
EnsureRange([min, max]) Ensure an input is within a particular range
EnsureValue(value) Ensure an input is a particular value
EnsureIterableOf (iter_type, item_constraint) Ensure that an input is a list of a particular data type
EnsureListOf (item_constraint[, min_len, max_len])

EnsureTupleOf (item_constraint[, min_len, ...])

EnsureMapping(key, value[, delimiter, ...]) Ensure a mapping of a key to a value of a specific nature
EnsureGeneratorFromFileLike(item_constraint) Ensure a constraint for each item read from a file-like.
EnsureJSON() Ensures that string is JSON formatted and can be dese-

rialized.
EnsureURL([required, forbidden, match]) Ensures that a string is a valid URL with a select set of

components
EnsureParsedURL([required, forbidden, match]) Like EnsureURL, but returns a parsed URL
EnsureGitRefName([allow_onelevel, ...]) Ensures that a reference name is well formed
EnsureRemoteName([known, dsarg]) Ensures a valid remote name, and optionally if such a

remote is known
continues on next page

2.3. Python tooling 47

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Table 1 – continued from previous page
EnsureSiblingName([known, dsarg]) Identical to EnsureRemoteName, but used the term "sib-

ling"
EnsureCommandParameterization(...[, ...]) Base class for ValidatedInterface parameter validators

datalad_next.constraints.Constraint

class datalad_next.constraints.Constraint

Bases: object

Base class for value coercion/validation.

These classes are also meant to be able to generate appropriate documentation on an appropriate parameter value.

__repr__()

Rudimentary repr to avoid default scary to the user Python repr

__str__()

Rudimentary self-description

for_dataset(dataset: DatasetParameter)→ Constraint
Return a constraint-variant for a specific dataset context

The default implementation returns the unmodified, identical constraint. However, subclasses can imple-
ment different behaviors.

property input_description: str

Returns full description of valid input for a constraint

Like input_synopsis this information is user-facing. In contrast, to the synopsis there is length/line limit.
Nevertheless, the information should be presented in a compact fashion that avoids needless verbosity. If
possible, a single paragraph is a good format. If multiple paragraphs are necessary, they should be separated
by a single, empty line.

Rendering code may indent, or rewrap the text, so no line-by-line formatting will be preserved.

If possible, the synopsis should be written in a UI/API-agnostic fashion. However, if this is impossible or
leads to imprecisions or confusion, it should focus on use within Python code and with Python data types.
Tailored documentation can be provided via the WithDescription wrapper.

property input_synopsis: str

Returns brief, single line summary of valid input for a constraint

This information is user-facing, and to be used in any place where space is limited (tooltips, usage sum-
maries, etc).

If possible, the synopsis should be written in a UI/API-agnostic fashion. However, if this is impossible or
leads to imprecisions or confusion, it should focus on use within Python code and with Python data types.
Tailored documentation can be provided via the WithDescription wrapper.

long_description()

This method is deprecated. Use input_description instead

raise_for(value, msg, **ctx)→ None
Convenience method for raising a ConstraintError

The parameters are identical to those of ConstraintError. This method merely passes the Constraint
instance as self to the constructor.

48 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

short_description()

This method is deprecated. Use input_synopsis instead

datalad_next.constraints.AllOf

class datalad_next.constraints.AllOf(*constraints)
Bases: _MultiConstraint

Logical AND for constraints.

An arbitrary number of constraints can be given. They are evaluated in the order in which they were specified.
The return value of each constraint is passed an input into the next. The return value of the last constraint is the
global return value. No intermediate exceptions are caught.

Documentation is aggregated for all constraints.

long_description()

This method is deprecated. Use input_description instead

short_description()

This method is deprecated. Use input_synopsis instead

datalad_next.constraints.AnyOf

class datalad_next.constraints.AnyOf(*constraints)
Bases: _MultiConstraint

Logical OR for constraints.

An arbitrary number of constraints can be given. They are evaluated in the order in which they were specified.
The value returned by the first constraint that does not raise an exception is the global return value.

Documentation is aggregated for all alternative constraints.

long_description()

This method is deprecated. Use input_description instead

short_description()

This method is deprecated. Use input_synopsis instead

datalad_next.constraints.NoConstraint

class datalad_next.constraints.NoConstraint

Bases: Constraint

A constraint that represents no constraints

short_description()

This method is deprecated. Use input_synopsis instead

2.3. Python tooling 49

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.constraints.WithDescription

class datalad_next.constraints.WithDescription(constraint: Constraint, *, input_synopsis: str | None =
None, input_description: str | None = None,
error_message: str | None = None,
input_synopsis_for_ds: str | None = None,
input_description_for_ds: str | None = None,
error_message_for_ds: str | None = None)

Bases: Constraint

Constraint that wraps another constraint and replaces its description

Whenever a constraint's self-description does not fit an application context, it can be wrapped with this class.
The given synopsis and description of valid inputs replaces those of the wrapped constraint.

property constraint: Constraint

Returns the wrapped constraint instance

for_dataset(dataset: DatasetParameter)→ Constraint
Wrap the wrapped constraint again after tailoring it for the dataset

property input_description

Returns full description of valid input for a constraint

Like input_synopsis this information is user-facing. In contrast, to the synopsis there is length/line limit.
Nevertheless, the information should be presented in a compact fashion that avoids needless verbosity. If
possible, a single paragraph is a good format. If multiple paragraphs are necessary, they should be separated
by a single, empty line.

Rendering code may indent, or rewrap the text, so no line-by-line formatting will be preserved.

If possible, the synopsis should be written in a UI/API-agnostic fashion. However, if this is impossible or
leads to imprecisions or confusion, it should focus on use within Python code and with Python data types.
Tailored documentation can be provided via the WithDescription wrapper.

property input_synopsis

Returns brief, single line summary of valid input for a constraint

This information is user-facing, and to be used in any place where space is limited (tooltips, usage sum-
maries, etc).

If possible, the synopsis should be written in a UI/API-agnostic fashion. However, if this is impossible or
leads to imprecisions or confusion, it should focus on use within Python code and with Python data types.
Tailored documentation can be provided via the WithDescription wrapper.

long_description()→ str
This method is deprecated. Use input_description instead

short_description()→ str
This method is deprecated. Use input_synopsis instead

50 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.constraints.ConstraintError

exception datalad_next.constraints.ConstraintError(constraint, value: Any, msg: str, ctx: Dict[str,
Any] | None = None)

Exception type raised by constraints when their conditions are violated

A primary purpose of this class is to provide uniform means for communicating information on violated con-
straints.

datalad_next.constraints.CommandParametrizationError

exception datalad_next.constraints.CommandParametrizationError(exceptions: Dict[str,
ConstraintError] |
Dict[ParameterConstraintContext,
ConstraintError])

Exception type raised on violating any command parameter constraints

See also:

EnsureCommandParameterization

datalad_next.constraints.ParameterConstraintContext

class datalad_next.constraints.ParameterConstraintContext(parameters: Tuple[str], description: str |
None = None)

Bases: object

Representation of a parameter constraint context

This type is used for the keys in the error map of. ParametrizationErrors. Its purpose is to clearly identify
which parameter combination (and its nature) led to a ConstraintError.

An error context comprises to components: 1) the names of the parameters that were considered, and 2) a de-
scription of how the parameters were linked or combined. In the simple case of an error occurring in the context
of a single parameter, the second component is superfluous. Otherwise, it can be thought of as an operation label,
describing what aspect of the set of parameters is being relevant in a particular context.

Example:

A command has two parameters p1 and p2. The may also have respective individual constraints, but impor-
tantly they 1) must not have identical values, and 2) their sum must be larger than 3. If the command is called
with cmd(p1=1, p2=1), both conditions are violated. The reporting may be implemented using the following
ParameterConstraintContext and ConstraintError instances:

ParameterConstraintContext(('p1', 'p2'), 'inequality):
ConstraintError(EnsureValue(True), False, <EnsureValue error>)

ParameterConstraintContext(('p1', 'p2'), 'sum):
ConstraintError(EnsureRange(min=3), False, <EnsureRange error>)

where the ConstraintError instances are generated by standard Constraint implementation. For the second
error, this could look like:

EnsureRange(min=3)(params['p1'] + params['p2'])

2.3. Python tooling 51

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

description: str | None = None

get_label_with_parameter_values(values: dict)→ str
Like .label but each parameter will also state a value

property label: str

A concise summary of the context

This label will be a compact as possible.

parameters: Tuple[str]

datalad_next.constraints.EnsureDataset

class datalad_next.constraints.EnsureDataset(installed: bool | None = None, purpose: str | None =
None, require_id: bool | None = None)

Bases: Constraint

Ensure an absent/present Dataset from any path or Dataset instance

Regardless of the nature of the input (Dataset instance or local path) a resulting instance (if it can be created) is
optionally tested for absence or presence on the local file system.

Due to the particular nature of the Dataset class (the same instance is used for a unique path), this constraint
returns a DatasetParameter rather than a Dataset directly. Consuming commands can discover the original
parameter value via its original property, and access a Dataset instance via its ds property.

In addition to any value representing an explicit path, this constraint also recognizes the special value None.
This instructs the implementation to find a dataset that contains the process working directory (PWD). Such a
dataset need not have its root at PWD, but could be located in any parent directory too. If no such dataset can
be found, PWD is used directly. Tests for installed are performed in the same way as with an explicit dataset
location argument. If None is given and installed=True, but no dataset is found, an exception is raised (this
is the behavior of the required_dataset() function in the DataLad core package). With installed=False
no exception is raised and a dataset instances matching PWD is returned.

short_description()→ str
This method is deprecated. Use input_synopsis instead

datalad_next.constraints.DatasetParameter

class datalad_next.constraints.DatasetParameter(original, ds)
Bases: object

Utility class to report an original and resolve dataset parameter value

This is used by EnsureDataset to be able to report the original argument semantics of a dataset parameter to a
receiving command. It is consumed by any Constraint.for_dataset().

The original argument is provided via the original property. A corresponding Dataset instance is provided via
the ds property.

52 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.constraints.EnsureBool

class datalad_next.constraints.EnsureBool

Bases: Constraint

Ensure that an input is a bool.

A couple of literal labels are supported, such as: False: '0', 'no', 'off', 'disable', 'false' True: '1', 'yes', 'on', 'enable',
'true'

long_description()

This method is deprecated. Use input_description instead

short_description()

This method is deprecated. Use input_synopsis instead

datalad_next.constraints.EnsureCallable

class datalad_next.constraints.EnsureCallable

Bases: Constraint

Ensure an input is a callable object

long_description()

This method is deprecated. Use input_description instead

short_description()

This method is deprecated. Use input_synopsis instead

datalad_next.constraints.EnsureChoice

class datalad_next.constraints.EnsureChoice(*values)
Bases: Constraint

Ensure an input is element of a set of possible values

long_description()

This method is deprecated. Use input_description instead

short_description()

This method is deprecated. Use input_synopsis instead

datalad_next.constraints.EnsureFloat

class datalad_next.constraints.EnsureFloat

Bases: EnsureDType

Ensure that an input (or several inputs) are of a data type 'float'.

2.3. Python tooling 53

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.constraints.EnsureHashAlgorithm

class datalad_next.constraints.EnsureHashAlgorithm

Bases: EnsureChoice

Ensure an input matches a name of a hashlib algorithm

Specifically the item must be in the algorithms_guaranteed collection.

datalad_next.constraints.EnsureDType

class datalad_next.constraints.EnsureDType(dtype)
Bases: Constraint

Ensure that an input (or several inputs) are of a particular data type. .. rubric:: Examples

>>> c = EnsureDType(float)
>>> type(c(8))
float
>>> import numpy as np
>>> c = EnsureDType(np.float64)
>>> type(c(8))
numpy.float64

long_description()

This method is deprecated. Use input_description instead

short_description()

This method is deprecated. Use input_synopsis instead

datalad_next.constraints.EnsureInt

class datalad_next.constraints.EnsureInt

Bases: EnsureDType

Ensure that an input (or several inputs) are of a data type 'int'.

datalad_next.constraints.EnsureKeyChoice

class datalad_next.constraints.EnsureKeyChoice(key, values)
Bases: EnsureChoice

Ensure value under a key in an input is in a set of possible values

long_description()

This method is deprecated. Use input_description instead

short_description()

This method is deprecated. Use input_synopsis instead

54 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.constraints.EnsureNone

class datalad_next.constraints.EnsureNone

Bases: EnsureValue

Ensure an input is of value None

datalad_next.constraints.EnsurePath

class datalad_next.constraints.EnsurePath(*, path_type: type = <class 'pathlib.Path'>, is_format: str |
None = None, lexists: bool | None = None, is_mode: Callable
| None = None, ref: Path | None = None, ref_is: str =
'parent-or-same-as', dsarg: DatasetParameter | None =
None)

Bases: Constraint

Ensures input is convertible to a (platform) path and returns a Path

Optionally, the path can be tested for existence and whether it is absolute or relative.

for_dataset(dataset: DatasetParameter)→ Constraint
Return an similarly parametrized variant that resolves paths against a given dataset (argument)

short_description()

This method is deprecated. Use input_synopsis instead

datalad_next.constraints.EnsureStr

class datalad_next.constraints.EnsureStr(min_len: int = 0, match: str | None = None)
Bases: Constraint

Ensure an input is a string of some min. length and matching a pattern

Pattern matching is optional and minimum length is zero (empty string is OK).

No type conversion is performed.

long_description()

This method is deprecated. Use input_description instead

short_description()

This method is deprecated. Use input_synopsis instead

datalad_next.constraints.EnsureStrPrefix

class datalad_next.constraints.EnsureStrPrefix(prefix)
Bases: EnsureStr

Ensure an input is a string that starts with a given prefix.

long_description()

This method is deprecated. Use input_description instead

short_description()

This method is deprecated. Use input_synopsis instead

2.3. Python tooling 55

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.constraints.EnsureRange

class datalad_next.constraints.EnsureRange(min=None, max=None)
Bases: Constraint

Ensure an input is within a particular range

No type checks are performed.

long_description()

This method is deprecated. Use input_description instead

short_description()

This method is deprecated. Use input_synopsis instead

datalad_next.constraints.EnsureValue

class datalad_next.constraints.EnsureValue(value)
Bases: Constraint

Ensure an input is a particular value

long_description()

This method is deprecated. Use input_description instead

short_description()

This method is deprecated. Use input_synopsis instead

datalad_next.constraints.EnsureIterableOf

class datalad_next.constraints.EnsureIterableOf(iter_type: type, item_constraint: Callable, min_len:
int | None = None, max_len: int | None = None)

Bases: Constraint

Ensure that an input is a list of a particular data type

property item_constraint

short_description()

This method is deprecated. Use input_synopsis instead

datalad_next.constraints.EnsureListOf

class datalad_next.constraints.EnsureListOf(item_constraint: Callable, min_len: int | None = None,
max_len: int | None = None)

Bases: EnsureIterableOf

short_description()

This method is deprecated. Use input_synopsis instead

56 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.constraints.EnsureTupleOf

class datalad_next.constraints.EnsureTupleOf(item_constraint: Callable, min_len: int | None = None,
max_len: int | None = None)

Bases: EnsureIterableOf

short_description()

This method is deprecated. Use input_synopsis instead

datalad_next.constraints.EnsureMapping

class datalad_next.constraints.EnsureMapping(key: Constraint, value: Constraint, delimiter: str = ':',
allow_length2_sequence: bool = True)

Bases: Constraint

Ensure a mapping of a key to a value of a specific nature

for_dataset(dataset: DatasetParameter)→ Constraint
Return a constraint-variant for a specific dataset context

The default implementation returns the unmodified, identical constraint. However, subclasses can imple-
ment different behaviors.

short_description()

This method is deprecated. Use input_synopsis instead

datalad_next.constraints.EnsureGeneratorFromFileLike

class datalad_next.constraints.EnsureGeneratorFromFileLike(item_constraint: Callable, exc_mode:
str = 'raise')

Bases: Constraint

Ensure a constraint for each item read from a file-like.

A given value can either be a file-like (the outcome of open(), or StringIO), or - as an alias of STDIN, or a path
to an existing file to be read from.

short_description()

This method is deprecated. Use input_synopsis instead

datalad_next.constraints.EnsureJSON

class datalad_next.constraints.EnsureJSON

Bases: Constraint

Ensures that string is JSON formatted and can be deserialized.

short_description()

This method is deprecated. Use input_synopsis instead

2.3. Python tooling 57

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.constraints.EnsureURL

class datalad_next.constraints.EnsureURL(required: list | None = None, forbidden: list | None = None,
match: str | None = None)

Bases: Constraint

Ensures that a string is a valid URL with a select set of components

and/or:

• does not contain certain components

• matches a particular regular expression

Given that a large variety of strings are also a valid URL, a typical use of this constraint would involve using a
required=['scheme'] setting.

All URL attribute names supported by urllib.parse.urlparse() are also supported here: scheme, netloc, path,
params, query, fragment, username, password, hostname, port.

See also:

https://docs.python.org/3/library/urllib.parse.html#urllib.parse.urlparse

short_description()

This method is deprecated. Use input_synopsis instead

datalad_next.constraints.EnsureParsedURL

class datalad_next.constraints.EnsureParsedURL(required: list | None = None, forbidden: list | None =
None, match: str | None = None)

Bases: EnsureURL

Like EnsureURL, but returns a parsed URL

datalad_next.constraints.EnsureGitRefName

class datalad_next.constraints.EnsureGitRefName(allow_onelevel: bool = True, normalize: bool = True,
refspec_pattern: bool = False)

Bases: Constraint

Ensures that a reference name is well formed

Validation is performed by calling git check-ref-format.

short_description()

This method is deprecated. Use input_synopsis instead

58 Chapter 2. Functionality provided by DataLad NEXT

https://docs.python.org/3/library/urllib.parse.html#urllib.parse.urlparse

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.constraints.EnsureRemoteName

class datalad_next.constraints.EnsureRemoteName(known: bool | None = None, dsarg: DatasetParameter
| None = None)

Bases: Constraint

Ensures a valid remote name, and optionally if such a remote is known

for_dataset(dataset: DatasetParameter)→ Constraint
Return an similarly parametrized variant that checks remote names against a given dataset (argument)

short_description()

This method is deprecated. Use input_synopsis instead

datalad_next.constraints.EnsureSiblingName

class datalad_next.constraints.EnsureSiblingName(known: bool | None = None, dsarg:
DatasetParameter | None = None)

Bases: EnsureRemoteName

Identical to EnsureRemoteName, but used the term "sibling"

Only error messages and documentation differ, with "remote" being replaced with "sibling".

datalad_next.constraints.EnsureCommandParameterization

class datalad_next.constraints.EnsureCommandParameterization(param_constraints: Dict[str,
Constraint], *, validate_defaults:
Container[str] | None = None,
joint_constraints:
Dict[ParameterConstraintContext,
Callable] | None = None,
tailor_for_dataset: Dict[str, str] |
None = None)

Bases: Constraint

Base class for ValidatedInterface parameter validators

This class can be used as-is, by declaring individual constraints in the constructor, or it can be subclassed to
consolidate all custom validation-related code for a command in a single place.

Commonly this constraint is used by declaring particular value constraints for individual parameters as a map-
ping. Declaring that the path parameter should receive something that is or can be coerced to a valid Path
object looks like this:

EnsureCommandParameterization({'path': EnsurePath()})

This class differs from a standard Constraint implementation, because its __call__() method support addi-
tional arguments that are used by the internal Interface handling code to control how parameters are validated.

During validation, when no validator for a particular parameter is declared, any input value is passed on as-is,
and otherwise an input is passed through the validator.

There is one exception to this rule: When a parameter value is identical to its default value (as declared in the
command signature, and communicated via the at_default argument of __call__()), this default value is

2.3. Python tooling 59

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

also passed as-is, unless the respective parameter name is included in the validate_defaults constructor
argument.

An important consequence of this behavior is that validators need not cover a default value. For example, a
parameter constraint for path=None, where None is a special value used to indicate an optional and unset value,
but actually only paths are acceptable input values. can simply use EnsurePath() and it is not necessary to do
something like EnsurePath() | EnsureNone().

However, EnsureCommandParameterization can also be specifically instructed to perform validation of defaults
for individual parameters, as described above. A common use case is the auto-discovery of datasets, where often
None is the default value of a dataset parameter (to make it optional), and an EnsureDataset constraint is used.
This constraint can perform the auto-discovery (with the None value indicating that), but validation of defaults
must be turned on for the dataset parameter in order to do that.

A second difference to a common Constraint implementation is the ability to perform an "exhaustive valida-
tion" on request (via __call__(on_error=...)). In this case, validation is not stopped at the first discovered
violation, but all violations are collected and communicated by raising a CommandParametrizationError
exception, which can be inspected by a caller for details on number and nature of all discovered violations.

Exhaustive validation and joint reporting are only supported for individual constraint implementations that raise
ConstraintError exceptions. For legacy constraints, any raised exception of another type are not caught and
reraised immediately.

__call__(kwargs, at_default=None, required=None, on_error='raise-early')→ Dict

Parameters

• kwargs (dict) -- Parameter name (str)) to value (any) mapping of the parameter set.

• at_default (set or None) -- Set of parameter names where the respective values in
kwargs match their respective defaults. This is used for deciding whether or not to pro-
cess them with an associated value constraint (see the validate_defaults constructor
argument).

• required (set or None) -- Set of parameter names that are known to be required.

• on_error ({'raise-early', 'raise-at-end'}) -- Flag how to handle constraint viola-
tion. By default, validation is stopped at the first error and an exception is raised. When
an exhaustive validation is performed, an eventual exception contains information on all
constraint violations. Regardless of this mode more than one error can be reported (in case
(future) implementation perform independent validations in parallel).

Raises
CommandParametrizationError -- Raised whenever one (or more) ConstraintError
exceptions are caught during validation. Other exception types are not caught and pass
through.

joint_validation(params: Dict, on_error: str)→ Dict
Higher-order validation considering multiple parameters at a time

This method is called with all, individually validated, command parameters in keyword-argument form in
the params dict argument.

Arbitrary additional validation steps can be performed on the full set of parameters that may involve raising
exceptions on validation errors, but also value transformation or replacements of individual parameters
based on the setting of others.

The parameter values returned by the method are passed on to the respective command implementation.

The default implementation iterates over the joint_validators specification given to the constructor,
in order to perform any number of validations. This is a mapping of a ParameterConstraintContext
instance to a callable implementing a validation for a particular parameter set.

60 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Example:

_joint_validators_ = {
ParameterConstraintContext(('p1', 'p2'), 'sum'):

MyValidator._check_sum,
}

def _checksum(self, p1, p2):
if (p1 + p2) < 3:

self.raise_for(
dict(p1=p1, p2=p2),
'parameter sum is too large',

)

The callable will be passed the arguments named in the ParameterConstraintContext as keyword
arguments, using the same names as originally given to EnsureCommandParameterization.

Any raised ConstraintError is caught and reported together with the respective
ParameterConstraintContext. The violating value reported in such a ConstraintError must
be a mapping of parameter name to value, comprising the full parameter set (i.e., keys matching the
ParameterConstraintContext). The use of self.raise_for() is encouraged.

If the callable anyhow modifies the passed arguments, it must return them as a kwargs-like mapping. If
nothing is modified, it is OK to return None.

Returns

• dict -- The returned dict must have a value for each item passed in via params.

• on_error ({'raise-early', 'raise-at-end'}) -- Flag how to handle constraint violation. By
default, validation is stopped at the first error and an exception is raised. When an exhaus-
tive validation is performed, an eventual exception contains information on all constraint
violations.

Raises
ConstraintErrors -- With on_error='raise-at-end' an implementation can choose to col-
lect more than one higher-order violation and raise them as a ConstraintErrors exception.

2.3.5 datalad_next.consts

Common constants

COPY_BUFSIZE
shutil buffer size default, with Windows platform default changes backported from Python 3.10.

PRE_INIT_COMMIT_SHA
SHA value for git hash-object -t tree /dev/null, i.e. for nothing. This corresponds to the state of a
Git repository before the first commit is made.

on_linux
True if executed on the Linux platform.

on_windows
True if executed on the Windows platform.

2.3. Python tooling 61

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

2.3.6 datalad_next.credman

Credential management

CredentialManager([cfg]) Facility to get, set, remove and query credentials.
verify_property_names(names) Check credential property names for syntax-compliance.

datalad_next.credman.CredentialManager

class datalad_next.credman.CredentialManager(cfg: ConfigManager | None = None)
Bases: object

Facility to get, set, remove and query credentials.

A credential in this context is a set of properties (key-value pairs) associated with exactly one secret.

At present, the only backend for secret storage is the Python keyring package, as interfaced via a custom DataLad
wrapper. Store for credential properties is implemented using DataLad's (i.e. Git's) configuration system. All
properties are stored in the global (i.e., user) scope under configuration items following the pattern:

datalad.credential.<name>.<property>

where <name> is a credential name/identifier, and <property> is an arbitrarily named credential property, whose
name must follow the git-config syntax for variable names (case-insensitive, only alphanumeric characters and
-, and must start with an alphabetic character).

Create a CredentialManager instance is fast, virtually no initialization needs to be performed. All internal
properties are lazily evaluated. This facilitates usage in code where it is difficult to incorporate a long-lived
central instance.

API

With one exception, all parameter names of methods in the core API outside **kwargs must have a _ prefix that
distinguishes credential properties from method parameters. The one exception is the name parameter, which is
used as a primary identifier (albeit being optional for some operations).

The obtain()method is provided as an additional convenience, and implements a standard workflow for obtain-
ing a credential in a wide variety of scenarios (credential name, credential properties, secret either respectively
already known or yet unknown).

get(name=None, *, _prompt=None, _type_hint=None, **kwargs)
Get properties and secret of a credential.

This is a read-only method that never modifies information stored on a credential in any backend.

Credential property lookup is supported via a number approaches. When providing name, all existing
corresponding configuration items are found and reported, and an existing secret is retrieved from name-
based secret backends (presently keyring). When providing a type property or a _type_hint the lookup
of additional properties in the keyring-backend is enabled, using predefined property name lists for a number
of known credential types.

For all given property keys that have no value assigned after the initial lookup, manual/interactive entry
is attempted, whenever a custom _prompt was provided. This include requesting a secret. If manually
entered information is contained in the return credential record, the record contains an additional _edited
property with a value of True.

If no secret is known after lookup and a potential manual data entry, a plain None is returned instead of a
full credential record.

62 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Parameters

• name (str, optional) -- Name of the credential to be retrieved

• _prompt (str or None) -- Instructions for credential entry to be displayed when missing
properties are encountered. If None, manual entry is disabled.

• _type_hint (str or None) -- In case no type property is included in kwargs, this pa-
rameter is used to determine a credential type, to possibly enable further lookup/entry of
additional properties for a known credential type

• **kwargs -- Credential property name/value pairs to overwrite/amend potentially existing
properties. For any property with a value of None, manual data entry will be performed,
unless a value could be retrieved on lookup, or prompting was not enabled.

Returns
Return None, if no secret for the credential was found or entered. Otherwise returns the
complete credential record, comprising all properties and the secret. An additional _edited
key with a value of True is added whenever the returned record contains manually entered
information.

Return type
dict or None

Raises
ValueError -- When the method is called without any information that could be used to
identify a credential

obtain(name: str | None = None, *, prompt: str | None = None, type_hint: str | None = None, query_props:
Dict | None = None, expected_props: List | Tuple | None = None)

Obtain a credential by query or prompt (if needed)

This convenience method implements a standard workflow to obtain a credential. It supports credential
selection by credential name/identifier, and falls back onto querying for a credential matching a set of
specified properties (as key-value mappings). If no suitable credential is known, a user is prompted to enter
one interactively (if possible in the current session).

If a credential was entered manually, any given type_hint will be included as a type property of the
returned credential, and the returned credential has an _edited=True property. Likewise, any realm
property included in the query_props is included in the returned credential in this case.

If desired, a credential workflow can be completed, after a credential was found to be valid/working, by
storing or updating it in the credential store:

cm = CredentialManager()
cname, cprops = cm.obtain(...)
verify credential is working
...
set/update
cm.set(cname, _lastused=True, **cprops)

In the code sketch above, if cname is None (as it will be for a newly entered credential, set() will prompt
for a name to store the credential under, and will offer a user the choice to skip storing a credential. For
any previously known credential, the last-used property will be updated to enable preferred selection in
future credential discovery attempts via obtain().

2.3. Python tooling 63

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Examples

Minimal call to get a credential entered (manually):

credman.obtain(type_hint='token', prompt='Credential please!')

Without a prompt text no interaction is attempted, and without a type hint it is unknown what (and how
much) to enter.

Minimal call to retrieve a credential by its identifier:

credman.obtain('my-github-token')

Minimal call to retrieve the last-used credential for a particular authentication "realm". In this case "realm"
is a property that was previously set to match a particular service/location, and is now used to match cre-
dentials against:

credman.obtain(query_props={'realm': 'mysecretlair'})

Parameters

• name (str, optional) -- Name of the credential to be retrieved

• prompt (str, optional) -- Passed to CredentialManager.get() if a credential name
was provided, or no suitable credential could be found by querying.

• type_hint (str, optional) -- In case no type property is included in query_props,
this parameter is passed to CredentialManager.get().

• query_props (dict, optional) -- Credential property to be used for querying for a
suitable credential. When multiple credentials match a query, the last-used credential is
selected.

• expected_props (list or tuple, optional) -- When specified, a credential will be
inspected to contain properties matching all listed property names, or a ValueError will
be raised.

Returns
Credential name (possibly different from the input, when a credential was discovered based
on properties), and credential properties.

Return type
(str, dict)

Raises
ValueError -- Raised when no matching credential could be found and none was entered.
Also raised, when a credential selected from a query result or a manually entered one is
missing any of the properties with a name given in expected_props.

query(*, _sortby=None, _reverse=True, **kwargs)
Query for all (matching) credentials, sorted by a property

This method is a companion of query_(), and the same limitations regarding credential discovery apply.

In contrast to query_(), this method return a list instead of yielding credentials one by one. This returned
list is optionally sorted.

Parameters

64 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• _sortby (str, optional) -- Name of a credential property to provide a value to sort
by. Credentials that do not carry the specified property always sort last, regardless of sort
order.

• _reverse (bool, optional) -- Flag whether to sort ascending or descending when sort-
ing. By default credentials are return in descending property value order. This flag does
not impact the fact that credentials without the property to sort by always sort last.

• **kwargs -- Pass on as-is to query_()

Returns
Each item is a 2-tuple. The first element in each tuple is the credential name, the second
element is the credential record as returned by get() for any matching credential.

Return type
list(str, dict)

query_(**kwargs)
Query for all (matching) credentials.

Credentials are yielded in no particular order.

This method cannot find credentials for which only a secret was deposited in the keyring.

This method does support lookup of credentials defined in DataLad's "provider" configurations.

Parameters
**kwargs -- If not given, any found credential is yielded. Otherwise, any credential must
match all property name/value pairs

Yields
tuple(str, dict) -- The first element in the tuple is the credential name, the second element is
the credential record as returned by get() for any matching credential.

remove(name, *, type_hint=None)
Remove a credential, including all properties and secret

Presently, all supported backends require the specification of a credential name for lookup. This may change
in the future, when support for alternative backends is added, at which point the name parameter would
become optional, and additional parameters would be added.

Returns
True if a credential was removed, and False if not (because no respective credential was
found).

Return type
bool

Raises
RuntimeError -- This exception is raised whenever a property cannot be removed success-
fully. Likely cause is that it is defined in a configuration scope or backend for which write-
access is not supported.

secret_names = {'user_password': 'password'}

set(name, *, _lastused=False, _suggested_name=None, _context=None, **kwargs)
Set credential properties and secret

Presently, all supported backends require the specification of a credential name for storage. This may change
in the future, when support for alternative backends is added, at which point the name parameter would
become optional.

2.3. Python tooling 65

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

All properties provided as kwargs with keys not starting with _ and with values that are not None will be
stored. If kwargs do not contain a secret specification, manual entry will be attempted. The associated
prompt with be either the name of the secret field of a known credential (as identified via a type property),
or the label 'secret'.

All properties with an associated value of None will be removed (unset).

Parameters

• name (str or None) -- Credential name. If None, the name will be prompted for and
setting the credential is skipped if no name is provided.

• _lastused (bool, optional) -- If set, automatically add an additional credential prop-
erty 'last-used' with the current timestamp in ISO 8601 format.

• _suggested_name (str, optional) -- If name is None, this name (if given) is presented
as a default suggestion that can be accepted without having to enter it manually. If this
name suggestion conflicts with an existing credential, it is ignored and not presented as a
suggestion.

• _context (str, optional) -- If given, will be included in the prompt for a missing
credential name to provide context for a user. It should be written to fit into a parenthical
statement after "Enter a name to save the credential (...)", e.g. "for download from <URL>".

• **kwargs -- Any number of credential property key/value pairs to set (update), or remove.
With one exception, values of None indicate removal of a property from a credential. How-
ever, secret=None does not lead to the removal of a credential's secret, because it would
result in an incomplete credential. Instead, it will cause a credential's effective secret
property to be written to the secret store. The effective secret might come from other
sources, such as particular configuration scopes or environment variables (i.e., matching
the datalad.credential.<name>.secret configuration item. Properties whose names
start with an underscore are automatically removed prior storage.

Returns
key/values of all modified credential properties with respect to their previously recorded val-
ues. None is returned in case a user did not enter a missing credential name. If a user entered
a credential name, it is included in the returned dictionary under the 'name' key.

Return type
dict or None

Raises

• RuntimeError -- This exception is raised whenever a property cannot be removed suc-
cessfully. Likely cause is that it is defined in a configuration scope or backend for which
write-access is not supported.

• ValueError -- When property names in kwargs are not syntax-compliant.

valid_property_names_regex = re.compile('[a-z0-9]+[a-z0-9-]*$')

66 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.credman.verify_property_names

datalad_next.credman.verify_property_names(names)
Check credential property names for syntax-compliance.

Parameters
names (iterable)

Raises
ValueError -- When any non-compliant property names were found

2.3.7 datalad_next.datasets

Representations of DataLad datasets built on git/git-annex repositories

Two sets of repository abstractions are available LeanGitRepo and LeanAnnexRepo vs. LegacyGitRepo and
LegacyAnnexRepo.

LeanGitRepo and LeanAnnexRepo provide a more modern, small-ish interface and represent the present standard API
for low-level repository operations. They are geared towards interacting with Git and git-annex more directly, and are
more suitable for generator-like implementations, promoting low response latencies, and a leaner processing footprint.

The Legacy*Repo classes provide a, now legacy, low-level API to repository operations. This functionality stems
from the earliest days of DataLad and implements paradigms and behaviors that are no longer common to the rest of
the DataLad API. LegacyGitRepo and LegacyAnnexRepo should no longer be used in new developments, and are
not documented here.

Dataset(*args, **kwargs) Representation of a DataLad dataset/repository
LeanGitRepo alias of GitRepo
LeanAnnexRepo(*args, **kwargs) git-annex repository representation with a minimized

API
LegacyGitRepo alias of GitRepo
LegacyAnnexRepo alias of AnnexRepo

datalad_next.datasets.Dataset

class datalad_next.datasets.Dataset(*args, **kwargs)
Bases: object

Representation of a DataLad dataset/repository

This is the core data type of DataLad: a representation of a dataset. At its core, datasets are (git-annex enabled)
Git repositories. This class provides all operations that can be performed on a dataset.

Creating a dataset instance is cheap, all actual operations are delayed until they are actually needed. Creating
multiple Dataset class instances for the same Dataset location will automatically yield references to the same
object.

A dataset instance comprises of two major components: a repo attribute, and a config attribute. The former
offers access to low-level functionality of the Git or git-annex repository. The latter gives access to a dataset's
configuration manager.

Most functionality is available via methods of this class, but also as stand-alone functions with the same name
in datalad.api.

2.3. Python tooling 67

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

add_archive_content(*, dataset=None, annex=None, add_archive_leading_dir=False,
strip_leading_dirs=False, leading_dirs_depth=None, leading_dirs_consider=None,
use_current_dir=False, delete=False, key=False, exclude=None, rename=None,
existing='fail', annex_options=None, copy=False, commit=True, allow_dirty=False,
stats=None, drop_after=False, delete_after=False)

Add content of an archive under git annex control.

Given an already annex'ed archive, extract and add its files to the dataset, and reference the original archive
as a custom special remote.

Examples

Add files from the archive 'big_tarball.tar.gz', but keep big_tarball.tar.gz in the index:

> add_archive_content(path='big_tarball.tar.gz')

Add files from the archive 'tarball.tar.gz', and remove big_tarball.tar.gz from the index:

> add_archive_content(path='big_tarball.tar.gz', delete=True)

Add files from the archive 's3.zip' but remove the leading directory:

> add_archive_content(path='s3.zip', strip_leading_dirs=True)

Parameters

• archive (str) -- archive file or a key (if key=True specified).

• dataset (Dataset or None, optional) -- "specify the dataset to save. [Default:
None]

• annex -- DEPRECATED. Use the 'dataset' parameter instead. [Default: None]

• add_archive_leading_dir (bool, optional) -- place extracted content under a di-
rectory which would correspond to the archive name with all suffixes stripped. E.g. the
content of archive.tar.gz will be extracted under archive/. [Default: False]

• strip_leading_dirs (bool, optional) -- remove one or more leading directories
from the archive layout on extraction. [Default: False]

• leading_dirs_depth -- maximum depth of leading directories to strip. If not specified
(None), no limit. [Default: None]

• leading_dirs_consider (list of str or None, optional) -- regular expres-
sion(s) for directories to consider to strip away. [Default: None]

• use_current_dir (bool, optional) -- extract the archive under the current directory,
not the directory where the archive is located. This parameter is applied automatically if
key=True was used. [Default: False]

• delete (bool, optional) -- delete original archive from the filesystem/Git in current
tree. Note that it will be of no effect if key=True is given. [Default: False]

• key (bool, optional) -- signal if provided archive is not actually a filename on its own
but an annex key. The archive will be extracted in the current directory. [Default: False]

• exclude (list of str or None, optional) -- regular expressions for filenames
which to exclude from being added to annex. Applied after --rename if that one is specified.
For exact matching, use anchoring. [Default: None]

68 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• rename (list of str or None, optional) -- regular expressions to rename files be-
fore added them under to Git. The first defines how to split provided string into two parts:
Python regular expression (with groups), and replacement string. [Default: None]

• existing -- what operation to perform if a file from an archive tries to overwrite an existing
file with the same name. 'fail' (default) leads to an error result, 'overwrite' silently replaces
existing file, 'archive-suffix' instructs to add a suffix (prefixed with a '-') matching archive
name from which file gets extracted, and if that one is present as well, 'numeric-suffix' is
in effect in addition, when incremental numeric suffix (prefixed with a '.') is added until no
name collision is longer detected. [Default: 'fail']

• annex_options (str or None, optional) -- additional options to pass to git-annex.
[Default: None]

• copy (bool, optional) -- copy the content of the archive instead of moving. [Default:
False]

• commit (bool, optional) -- don't commit upon completion. [Default: True]

• allow_dirty (bool, optional) -- flag that operating on a dirty repository (uncommit-
ted or untracked content) is ok. [Default: False]

• stats -- ActivityStats instance for global tracking. [Default: None]

• drop_after (bool, optional) -- drop extracted files after adding to annex. [Default:
False]

• delete_after (bool, optional) -- extract under a temporary directory, git-annex add,
and delete afterwards. To be used to "index" files within annex without actually creating
corresponding files under git. Note that annex dropunused would later remove that load.
[Default: False]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

2.3. Python tooling 69

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

add_readme(*, dataset=None, existing='skip')
Add basic information about DataLad datasets to a README file

The README file is added to the dataset and the addition is saved in the dataset. Note: Make sure that no
unsaved modifications to your dataset's .gitattributes file exist.

Parameters

• filename (str, optional) -- Path of the README file within the dataset. [Default:
'README.md']

• dataset (Dataset or None, optional) -- Dataset to add information to. If no dataset
is given, an attempt is made to identify the dataset based on the current working directory.
[Default: None]

• existing ({'skip', 'append', 'replace'}, optional) -- How to react if a file with the
target name already exists: 'skip': do nothing; 'append': append information to the existing
file; 'replace': replace the existing file with new content. [Default: 'skip']

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

70 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

addurls(urlformat, filenameformat, *, dataset=None, input_type='ext', exclude_autometa=None,
meta=None, key=None, message=None, dry_run=False, fast=False, ifexists=None,
missing_value=None, save=True, version_urls=False, cfg_proc=None, jobs=None,
drop_after=False, on_collision='error')

Create and update a dataset from a list of URLs.

Format specification

Several arguments take format strings. These are similar to normal Python format strings where the names
from URL-FILE (column names for a comma- or tab-separated file or properties for JSON) are available
as placeholders. If URL-FILE is a CSV or TSV file, a positional index can also be used (i.e., "{0}" for the
first column). Note that a placeholder cannot contain a ':' or '!'.

In addition, the FILENAME-FORMAT arguments has a few special placeholders.

• _repindex

The constructed file names must be unique across all fields rows. To avoid collisions, the special
placeholder "_repindex" can be added to the formatter. Its value will start at 0 and increment every
time a file name repeats.

• _url_hostname, _urlN, _url_basename*

Various parts of the formatted URL are available. Take "http://datalad.org/asciicast/seamless_nested_
repos.sh" as an example.

"datalad.org" is stored as "_url_hostname". Components of the URL's path can be referenced as
"_urlN". "_url0" and "_url1" would map to "asciicast" and "seamless_nested_repos.sh", respectively.
The final part of the path is also available as "_url_basename".

This name is broken down further. "_url_basename_root" and "_url_basename_ext" provide access
to the root name and extension. These values are similar to the result of os.path.splitext, but, in the
case of multiple periods, the extension is identified using the same length heuristic that git-annex
uses. As a result, the extension of "file.tar.gz" would be ".tar.gz", not ".gz". In addition, the fields
"_url_basename_root_py" and "_url_basename_ext_py" provide access to the result of os.path.splitext.

• _url_filename*

These are similar to _url_basename* fields, but they are obtained with a server request. This is useful
if the file name is set in the Content-Disposition header.

Examples

Consider a file "avatars.csv" that contains:

who,ext,link
neurodebian,png,https://avatars3.githubusercontent.com/u/260793
datalad,png,https://avatars1.githubusercontent.com/u/8927200

2.3. Python tooling 71

http://datalad.org/asciicast/seamless_nested_repos.sh
http://datalad.org/asciicast/seamless_nested_repos.sh

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

To download each link into a file name composed of the 'who' and 'ext' fields, we could run:

$ datalad addurls -d avatar_ds avatars.csv '{link}' '{who}.{ext}'

The -d avatar_ds is used to create a new dataset in "$PWD/avatar_ds".

If we were already in a dataset and wanted to create a new subdataset in an "avatars" subdirectory, we could
use "//" in the FILENAME-FORMAT argument:

$ datalad addurls avatars.csv '{link}' 'avatars//{who}.{ext}'

If the information is represented as JSON lines instead of comma separated values or a JSON array, you
can use a utility like jq to transform the JSON lines into an array that addurls accepts:

$... | jq --slurp . | datalad addurls - '{link}' '{who}.{ext}'

Note: For users familiar with 'git annex addurl': A large part of this plugin's functionality can be viewed
as transforming data from URL-FILE into a "url filename" format that fed to 'git annex addurl --batch
--with-files'.

Parameters

• urlfile -- A file that contains URLs or information that can be used to construct URLs.
Depending on the value of --input-type, this should be a comma- or tab-separated file (with
a header as the first row) or a JSON file (structured as a list of objects with string values). If
'-', read from standard input, taking the content as JSON when --input-type is at its default
value of 'ext'. Alternatively, an iterable of dicts can be given.

• urlformat -- A format string that specifies the URL for each entry. See the 'Format Spec-
ification' section above.

• filenameformat -- Like URL-FORMAT, but this format string specifies the file to which
the URL's content will be downloaded. The name should be a relative path and will be
taken as relative to the top-level dataset, regardless of whether it is specified via dataset
or inferred. The file name may contain directories. The separator "//" can be used to in-
dicate that the left-side directory should be created as a new subdataset. See the 'Format
Specification' section above.

• dataset (Dataset or None, optional) -- Add the URLs to this dataset (or possibly
subdatasets of this dataset). An empty or non-existent directory is passed to create a new
dataset. New subdatasets can be specified with FILENAME- FORMAT. [Default: None]

• input_type ({'ext', 'csv', 'tsv', 'json'}, optional) -- Whether URL-FILE
should be considered a CSV file, TSV file, or JSON file. The default value, "ext", means
to consider URL-FILE as a JSON file if it ends with ".json" or a TSV file if it ends with
".tsv". Otherwise, treat it as a CSV file. [Default: 'ext']

• exclude_autometa -- By default, metadata field=value pairs are constructed with each
column in URL-FILE, excluding any single column that is specified via URL-FORMAT.
This argument can be used to exclude columns that match a regular expression. If set to '*'
or an empty string, automatic metadata extraction is disabled completely. This argument
does not affect metadata set explicitly with --meta. [Default: None]

• meta -- A format string that specifies metadata. It should be structured as
"<field>=<value>". As an example, "location={3}" would mean that the value for the
"location" metadata field should be set the value of the fourth column. This option can be
given multiple times. [Default: None]

72 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• key -- A format string that specifies an annex key for the file content. In this case, the file
is not downloaded; instead the key is used to create the file without content. The value
should be structured as "[et:]<input backend>[-s<bytes>]--<hash>". The optional "et:"
prefix, which requires git-annex 8.20201116 or later, signals to toggle extension state of
the input backend (i.e., MD5 vs MD5E). As an example, "et:MD5-s{size}--{md5sum}"
would use the 'md5sum' and 'size' columns to construct the key, migrating the key from
MD5 to MD5E, with an extension based on the file name. Note: If the input backend itself
is an annex extension backend (i.e., a backend with a trailing "E"), the key's extension will
not be updated to match the extension of the corresponding file name. Thus, unless the
input keys and file names are generated from git-annex, it is recommended to avoid using
extension backends as input. If an extension is desired, use the plain variant as input and
prepend "et:" so that git-annex will migrate from the plain backend to the extension variant.
[Default: None]

• message (None or str, optional) -- Use this message when committing the URL
additions. [Default: None]

• dry_run (bool, optional) -- Report which URLs would be downloaded to which files
and then exit. [Default: False]

• fast (bool, optional) -- If True, add the URLs, but don't download their con-
tent. WARNING: ONLY USE THIS OPTION IF YOU UNDERSTAND THE CONSE-
QUENCES. If the content of the URLs is not downloaded, then datalad will refuse to
retrieve the contents with datalad get <file> by default because the content of the URLs
is not verified. Add annex.security.allow-unverified-downloads = ACKTHPPT to your git
config to bypass the safety check. Underneath, this passes the --fast flag to git annex addurl.
[Default: False]

• ifexists ({None, 'overwrite', 'skip'}, optional) -- What to do if a constructed
file name already exists. The default behavior is to proceed with the git annex addurl,
which will fail if the file size has changed. If set to 'overwrite', remove the old file before
adding the new one. If set to 'skip', do not add the new file. [Default: None]

• missing_value (None or str, optional) -- When an empty string is encountered,
use this value instead. [Default: None]

• save (bool, optional) -- by default all modifications to a dataset are immediately saved.
Giving this option will disable this behavior. [Default: True]

• version_urls (bool, optional) -- Try to add a version ID to the URL. This currently
only has an effect on HTTP URLs for AWS S3 buckets. s3:// URL versioning is not yet
supported, but any URL that already contains a "versionId=" parameter will be used as is.
[Default: False]

• cfg_proc -- Pass this cfg_proc value when calling create to make datasets. [Default:
None]

• jobs (int or None or {'auto'}, optional) -- how many parallel jobs (where possi-
ble) to use. "auto" corresponds to the number defined by 'datalad.runtime.max-annex-jobs'
configuration item NOTE: This option can only parallelize input retrieval (get) and output
recording (save). DataLad does NOT parallelize your scripts for you. [Default: None]

• drop_after (bool, optional) -- drop files after adding to annex. [Default: False]

• on_collision ({'error', 'error-if-different', 'take-first', 'take-last'},
optional) -- What to do when more than one row produces the same file name. By default
an error is triggered. "error-if-different" suppresses that error if rows for a given file name
collision have the same URL and metadata. "take-first" or "take-last" indicate to instead
take the first row or last row from each set of colliding rows. [Default: 'error']

2.3. Python tooling 73

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

clean(*, what=None, dry_run=False, recursive=False, recursion_limit=None)
Clean up after DataLad (possible temporary files etc.)

Removes temporary files and directories left behind by DataLad and git-annex in a dataset.

Examples

Clean all known temporary locations of a dataset:

> clean()

Report on all existing temporary locations of a dataset:

> clean(dry_run=True)

Clean all known temporary locations of a dataset and all its subdatasets:

74 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

> clean(recursive=True)

Clean only the archive extraction caches of a dataset and all its subdatasets:

> clean(what='cached-archives', recursive=True)

Report on existing annex transfer files of a dataset and all its subdatasets:

> clean(what='annex-transfer', recursive=True, dry_run=True)

Parameters

• dataset (Dataset or None, optional) -- specify the dataset to perform the clean op-
eration on. If no dataset is given, an attempt is made to identify the dataset in current
working directory. [Default: None]

• what (sequence of {'cached-archives', 'annex-tmp', 'annex-transfer',
'search-index'} or None, optional) -- What to clean. If none specified -- all known
targets are considered. [Default: None]

• dry_run (bool, optional) -- Report on cleanable locations - not actually cleaning up
anything. [Default: False]

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default:
False]

• recursion_limit (int or None, optional) -- limit recursion into subdatasets to the
given number of levels. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned

2.3. Python tooling 75

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

clone(path=None, git_clone_opts=None, *, dataset=None, description=None, reckless=None)
Obtain a dataset (copy) from a URL or local directory

The purpose of this command is to obtain a new clone (copy) of a dataset and place it into a not-yet-
existing or empty directory. As such clone provides a strict subset of the functionality offered by install.
Only a single dataset can be obtained, and immediate recursive installation of subdatasets is not supported.
However, once a (super)dataset is installed via clone, any content, including subdatasets can be obtained
by a subsequent get command.

Primary differences over a direct git clone call are 1) the automatic initialization of a dataset annex (pure Git
repositories are equally supported); 2) automatic registration of the newly obtained dataset as a subdataset
(submodule), if a parent dataset is specified; 3) support for additional resource identifiers (DataLad resource
identifiers as used on datasets.datalad.org, and RIA store URLs as used for store.datalad.org - optionally in
specific versions as identified by a branch or a tag; see examples); and 4) automatic configurable generation
of alternative access URL for common cases (such as appending '.git' to the URL in case the accessing the
base URL failed).

In case the clone is registered as a subdataset, the original URL passed to clone is recorded in .gitmodules
of the parent dataset in addition to the resolved URL used internally for git-clone. This allows to preserve
datalad specific URLs like ria+ssh://... for subsequent calls to get if the subdataset was locally removed
later on.

By default, the command returns a single Dataset instance for an installed dataset, regardless of whether it
was newly installed ('ok' result), or found already installed from the specified source ('notneeded' result).

URL mapping configuration

'clone' supports the transformation of URLs via (multi-part) substitution specifications. A substitution spec-
ification is defined as a configuration setting 'datalad.clone.url-substition.<seriesID>' with a string contain-
ing a match and substitution expression, each following Python's regular expression syntax. Both expres-
sions are concatenated to a single string with an arbitrary delimiter character. The delimiter is defined by
prefixing the string with the delimiter. Prefix and delimiter are stripped from the expressions (Example:
",^http://(.*)$,https://1"). This setting can be defined multiple times, using the same '<seriesID>'. Substi-
tutions in a series will be applied incrementally, in order of their definition. The first substitution in such a
series must match, otherwise no further substitutions in a series will be considered. However, following the
first match all further substitutions in a series are processed, regardless whether intermediate expressions
match or not. Substitution series themselves have no particular order, each matching series will result in
a candidate clone URL. Consequently, the initial match specification in a series should be as precise as
possible to prevent inflation of candidate URLs.

See also:

handbook:3-001 (http://handbook.datalad.org/symbols)
More information on Remote Indexed Archive (RIA) stores

76 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Examples

Install a dataset from GitHub into the current directory:

> clone(source='https://github.com/datalad-datasets/longnow-podcasts.git')

Install a dataset into a specific directory:

> clone(source='https://github.com/datalad-datasets/longnow-podcasts.git',
path='myfavpodcasts')

Install a dataset as a subdataset into the current dataset:

> clone(dataset='.',
source='https://github.com/datalad-datasets/longnow-podcasts.git')

Install the main superdataset from datasets.datalad.org:

> clone(source='///')

Install a dataset identified by a literal alias from store.datalad.org:

> clone(source='ria+http://store.datalad.org#~hcp-openaccess')

Install a dataset in a specific version as identified by a branch or tag name from store.datalad.org:

> clone(source='ria+http://store.datalad.org#76b6ca66-36b1-11ea-a2e6-
→˓f0d5bf7b5561@myidentifier')

Install a dataset with group-write access permissions:

> clone(source='http://example.com/dataset', reckless='shared-group')

Parameters

• source (str) -- URL, DataLad resource identifier, local path or instance of dataset to be
cloned.

• path -- path to clone into. If no path is provided a destination path will be derived from a
source URL similar to git clone. [Default: None]

• git_clone_opts -- A list of command line arguments to pass to git clone. Note that not
all options will lead to viable results. For example '--single- branch' will not result in a
functional annex repository because both a regular branch and the git-annex branch are
required. Note that a version in a RIA URL takes precedence over '--branch'. [Default:
None]

• dataset (Dataset or None, optional) -- (parent) dataset to clone into. If given, the
newly cloned dataset is registered as a subdataset of the parent. Also, if given, relative
paths are interpreted as being relative to the parent dataset, and not relative to the working
directory. [Default: None]

• description (str or None, optional) -- short description to use for a dataset loca-
tion. Its primary purpose is to help humans to identify a dataset copy (e.g., "mike's dataset
on lab server"). Note that when a dataset is published, this information becomes available
on the remote side. [Default: None]

2.3. Python tooling 77

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• reckless ({None, True, False, 'auto', 'ephemeral'} or shared-...,
optional) -- Obtain a dataset or subdatset and set it up in a potentially unsafe way
for performance, or access reasons. Use with care, any dataset is marked as 'untrusted'.
The reckless mode is stored in a dataset's local configuration under 'datalad.clone.reckless',
and will be inherited to any of its subdatasets. Supported modes are: ['auto']: hard-link
files between local clones. In-place modification in any clone will alter original annex
content. ['ephemeral']: symlink annex to origin's annex and discard local availability
info via git- annex-dead 'here' and declares this annex private. Shares an annex between
origin and clone w/o git-annex being aware of it. In case of a change in origin you need to
update the clone before you're able to save new content on your end. Alternative to 'auto'
when hardlinks are not an option, or number of consumed inodes needs to be minimized.
Note that this mode can only be used with clones from non-bare repositories or a RIA
store! Otherwise two different annex object tree structures (dirhashmixed vs dirhashlower)
will be used simultaneously, and annex keys using the respective other structure will
be inaccessible. ['shared-<mode>']: set up repository and annex permission to enable
multi-user access. This disables the standard write protection of annex'ed files. <mode>
can be any value support by 'git init --shared=', such as 'group', or 'all'. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: constraint:action:{install}]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: 'successdatasets-or- none']

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.

78 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

[Default: 'item-or-list']

close()

Perform operations which would close any possible process using this Dataset

property config

Get a ConfigManager instance for a dataset's configuration

In case a dataset does not (yet) have an existing corresponding repository, the returned ConfigManager is
the global instance that is also provided via datalad.cfg.

Note, that this property is evaluated every time it is used. If used multiple times within a function it's
probably a good idea to store its value in a local variable and use this variable instead.

Return type
ConfigManager

configuration(spec=None, *, scope=None, dataset=None, recursive=False, recursion_limit=None)
Get and set dataset, dataset-clone-local, or global configuration

This command works similar to git-config, but some features are not supported (e.g., modifying system
configuration), while other features are not available in git-config (e.g., multi-configuration queries).

Query and modification of three distinct configuration scopes is supported:

• 'branch': the persistent configuration in .datalad/config of a dataset branch

• 'local': a dataset clone's Git repository configuration in .git/config

• 'global': non-dataset-specific configuration (usually in $USER/.gitconfig)

Modifications of the persistent 'branch' configuration will not be saved by this command, but have to be
committed with a subsequent save call.

Rules of precedence regarding different configuration scopes are the same as in Git, with two exceptions:
1) environment variables can be used to override any datalad configuration, and have precedence over any
other configuration scope (see below). 2) the 'branch' scope is considered in addition to the standard git
configuration scopes. Its content has lower precedence than Git configuration scopes, but it is committed
to a branch, hence can be used to ship (default and branch-specific) configuration with a dataset.

Besides storing configuration settings statically via this command or git config, DataLad also reads any
DATALAD_* environment on process startup or import, and maps it to a configuration item. Their values
take precedence over any other specification. In variable names _ encodes a . in the configuration name,
and __ encodes a -, such that DATALAD_SOME__VAR is mapped to datalad.some-var. Additionally, a
DATALAD_CONFIG_OVERRIDES_JSON environment variable is queried, which may contain configu-
ration key-value mappings as a JSON-formatted string of a JSON-object:

DATALAD_CONFIG_OVERRIDES_JSON='{"datalad.credential.example_com.user": "jane", .
→˓..}'

This is useful when characters are part of the configuration key that cannot be encoded into an environment
variable name. If both individual configuration variables and JSON-overrides are used, the former take
precedent over the latter, overriding the respective individual settings from configurations declared in the
JSON-overrides.

This command supports recursive operation for querying and modifying configuration across a hierarchy
of datasets.

2.3. Python tooling 79

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Examples

Dump the effective configuration, including an annotation for common items:

> configuration()

Query two configuration items:

> configuration('get', ['user.name', 'user.email'])

Recursively set configuration in all (sub)dataset repositories:

> configuration('set', [('my.config.name', 'value')], recursive=True)

Modify the persistent branch configuration (changes are not committed):

> configuration('set', [('my.config.name', 'value')], scope='branch')

Parameters

• action ({'dump', 'get', 'set', 'unset'}, optional) -- which action to perform. [De-
fault: 'dump']

• spec -- configuration name (for actions 'get' and 'unset'), or name/value pair (for action
'set'). [Default: None]

• scope ({'global', 'local', 'branch', None}, optional) -- scope for getting or set-
ting configuration. If no scope is declared for a query, all configuration sources (including
overrides via environment variables) are considered according to the normal rules of prece-
dence. A 'get' action can be constrained to scope 'branch', otherwise 'global' is used when
not operating on a dataset, or 'local' (including 'global', when operating on a dataset. For ac-
tion 'dump', a scope selection is ignored and all available scopes are considered. [Default:
None]

• dataset (Dataset or None, optional) -- specify the dataset to query or to configure.
[Default: None]

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default:
False]

• recursion_limit (int or None, optional) -- limit recursion into subdatasets to the
given number of levels. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there

80 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

copy_file(*, dataset=None, recursive=False, target_dir=None, specs_from=None, message=None)
Copy files and their availability metadata from one dataset to another.

The difference to a system copy command is that here additional content availability information, such
as registered URLs, is also copied to the target dataset. Moreover, potentially required git-annex special
remote configurations are detected in a source dataset and are applied to a target dataset in an analogous
fashion. It is possible to copy a file for which no content is available locally, by just copying the required
metadata on content identity and availability.

Note: At the moment, only URLs for the special remotes 'web' (git-annex built-in) and 'datalad' are rec-
ognized and transferred.

The interface is modeled after the POSIX 'cp' command, but with one additional way to specify what to
copy where: specs_from allows the caller to flexibly input source-destination path pairs.

This command can copy files out of and into a hierarchy of nested datasets. Unlike with other DataLad com-
mand, the recursive switch does not enable recursion into subdatasets, but is analogous to the POSIX 'cp'
command switch and enables subdirectory recursion, regardless of dataset boundaries. It is not necessary
to enable recursion in order to save changes made to nested target subdatasets.

Examples

Copy a file into a dataset 'myds' using a path and a target directory specification, and save its addition to
'myds':

> copy_file('path/to/myfile', dataset='path/to/myds')

Copy a file to a dataset 'myds' and save it under a new name by providing two paths:

2.3. Python tooling 81

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

> copy_file(path=['path/to/myfile', 'path/to/myds/newname'],
dataset='path/to/myds')

Copy a file into a dataset without saving it:

> copy_file('path/to/myfile', target_dir='path/to/myds/')

Copy a directory and its subdirectories into a dataset 'myds' and save the addition in 'myds':

> copy_file('path/to/dir/', recursive=True, dataset='path/to/myds')

Copy files using a path and optionally target specification from a file:

> copy_file(dataset='path/to/myds', specs_from='path/to/specfile')

Parameters

• path (sequence of str or None, optional) -- paths to copy (and possibly a target
path to copy to). [Default: None]

• dataset (Dataset or None, optional) -- root dataset to save after copy operations
are completed. All destination paths must be within this dataset, or its subdatasets. If no
dataset is given, dataset modifications will be left unsaved. [Default: None]

• recursive (bool, optional) -- copy directories recursively. [Default: False]

• target_dir (str or None, optional) -- copy all source files into this DIRECTORY.
This value is overridden by any explicit destination path provided via 'specs_from'. When
not given, this defaults to the path of the dataset specified via 'dataset'. [Default: None]

• specs_from -- read list of source (and destination) path names from a given file, or stdin
(with '-'). Each line defines either a source path, or a source/destination path pair (separated
by a null byte character). Alternatively, a list of 2-tuples with source/destination pairs can
be given. [Default: None]

• message (str or None, optional) -- a description of the state or the changes made to
a dataset. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering

82 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

create(initopts=None, *, force=False, description=None, dataset=None, annex=True, fake_dates=False,
cfg_proc=None)

Create a new dataset from scratch.

This command initializes a new dataset at a given location, or the current directory. The new dataset can
optionally be registered in an existing superdataset (the new dataset's path needs to be located within the
superdataset for that, and the superdataset needs to be given explicitly via dataset). It is recommended to
provide a brief description to label the dataset's nature and location, e.g. "Michael's music on black laptop".
This helps humans to identify data locations in distributed scenarios. By default an identifier comprised of
user and machine name, plus path will be generated.

This command only creates a new dataset, it does not add existing content to it, even if the target directory
already contains additional files or directories.

Plain Git repositories can be created via annex=False. However, the result will not be a full dataset, and,
consequently, not all features are supported (e.g. a description).

To create a local version of a remote dataset use the ~datalad.api.install command instead.

Note: Power-user info: This command uses git init and git annex init to prepare the new dataset. Regis-
tering to a superdataset is performed via a git submodule add operation in the discovered superdataset.

Examples

Create a dataset 'mydataset' in the current directory:

> create(path='mydataset')

Apply the text2git procedure upon creation of a dataset:

> create(path='mydataset', cfg_proc='text2git')

Create a subdataset in the root of an existing dataset:

2.3. Python tooling 83

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

> create(dataset='.', path='mysubdataset')

Create a dataset in an existing, non-empty directory:

> create(force=True)

Create a plain Git repository:

> create(path='mydataset', annex=False)

Parameters

• path (str or Dataset or None, optional) -- path where the dataset shall be cre-
ated, directories will be created as necessary. If no location is provided, a dataset will be
created in the location specified by dataset (if given) or the current working directory. Ei-
ther way the command will error if the target directory is not empty. Use force to create a
dataset in a non- empty directory. [Default: None]

• initopts -- options to pass to git init. Options can be given as a list of command line
arguments or as a GitPython-style option dictionary. Note that not all options will lead to
viable results. For example ' --bare' will not yield a repository where DataLad can adjust
files in its working tree. [Default: None]

• force (bool, optional) -- enforce creation of a dataset in a non-empty directory. [De-
fault: False]

• description (str or None, optional) -- short description to use for a dataset loca-
tion. Its primary purpose is to help humans to identify a dataset copy (e.g., "mike's dataset
on lab server"). Note that when a dataset is published, this information becomes available
on the remote side. [Default: None]

• dataset (Dataset or None, optional) -- specify the dataset to perform the create
operation on. If a dataset is given along with path, a new subdataset will be created in it
at the path provided to the create command. If a dataset is given but path is unspecified, a
new dataset will be created at the location specified by this option. [Default: None]

• annex (bool, optional) -- if disabled, a plain Git repository will be created without any
annex. [Default: True]

• fake_dates (bool, optional) -- Configure the repository to use fake dates. The date
for a new commit will be set to one second later than the latest commit in the repository.
This can be used to anonymize dates. [Default: False]

• cfg_proc -- Run cfg_PROC procedure(s) (can be specified multiple times) on the created
dataset. Use run_procedure(discover=True) to get a list of available procedures, such as
cfg_text2git. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value

84 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: constraint:(action:{create} or status:{ok, notneeded})]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: 'datasets']

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'item-or-list']

create_sibling(*, name=None, target_dir=None, target_url=None, target_pushurl=None, dataset=None,
recursive=False, recursion_limit=None, existing='error', shared=None, group=None,
ui=False, as_common_datasrc=None, publish_by_default=None, publish_depends=None,
annex_wanted=None, annex_group=None, annex_groupwanted=None, inherit=False,
since=None)

Create a dataset sibling on a UNIX-like Shell (local or SSH)-accessible machine

Given a local dataset, and a path or SSH login information this command creates a remote dataset repository
and configures it as a dataset sibling to be used as a publication target (see publish command).

Various properties of the remote sibling can be configured (e.g. name location on the server, read and write
access URLs, and access permissions.

Optionally, a basic web-viewer for DataLad datasets can be installed at the remote location.

This command supports recursive processing of dataset hierarchies, creating a remote sibling for each
dataset in the hierarchy. By default, remote siblings are created in hierarchical structure that reflects the
organization on the local file system. However, a simple templating mechanism is provided to produce a
flat list of datasets (see --target-dir).

Parameters

• sshurl (str) -- Login information for the target server. This can be given as a URL
(ssh://host/path), SSH-style (user@host:path) or just a local path. Unless overridden, this
also serves the future dataset's access URL and path on the server.

• name (str or None, optional) -- sibling name to create for this publication target. If
recursive is set, the same name will be used to label all the subdatasets' siblings. When
creating a target dataset fails, no sibling is added. [Default: None]

2.3. Python tooling 85

ssh://host/path
mailto:user@host

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• target_dir (str or None, optional) -- path to the directory on the server where
the dataset shall be created. By default this is set to the URL (or local path) specified via
sshurl. If a relative path is provided here, it is interpreted as being relative to the user's
home directory on the server (or relative to sshurl, when that is a local path). Additional
features are relevant for recursive processing of datasets with subdatasets. By default, the
local dataset structure is replicated on the server. However, it is possible to provide a tem-
plate for generating different target directory names for all (sub)datasets. Templates can
contain certain placeholder that are substituted for each (sub)dataset. For example: "/my-
directory/dataset%%RELNAME". Supported placeholders: %%RELNAME - the name
of the datasets, with any slashes replaced by dashes. [Default: None]

• target_url (str or None, optional) -- "public" access URL of the to-be-created
target dataset(s) (default: sshurl). Accessibility of this URL determines the access per-
missions of potential consumers of the dataset. As with target_dir, templates (same set
of placeholders) are supported. Also, if specified, it is provided as the annex description.
[Default: None]

• target_pushurl (str or None, optional) -- In case the target_url cannot be used
to publish to the dataset, this option specifies an alternative URL for this purpose. As with
target_url, templates (same set of placeholders) are supported. [Default: None]

• dataset (Dataset or None, optional) -- specify the dataset to create the publication
target for. If no dataset is given, an attempt is made to identify the dataset based on the
current working directory. [Default: None]

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default:
False]

• recursion_limit (int or None, optional) -- limit recursion into subdatasets to the
given number of levels. [Default: None]

• existing ({'skip', 'error', 'reconfigure', 'replace'}, optional) -- action to
perform, if a sibling is already configured under the given name and/or a target (non-empty)
directory already exists. In this case, a dataset can be skipped ('skip'), the sibling configura-
tion be updated ('reconfigure'), or process interrupts with error ('error'). DANGER ZONE:
If 'replace' is used, an existing target directory will be forcefully removed, re-initialized,
and the sibling (re-)configured (thus implies 'reconfigure'). replace could lead to data loss,
so use with care. To minimize possibility of data loss, in interactive mode DataLad will ask
for confirmation, but it would raise an exception in non-interactive mode. [Default: 'error']

• shared (str or bool or None, optional) -- if given, configures the access permis-
sions on the server for multi- users (this could include access by a webserver!). Possible
values for this option are identical to those of git init --shared and are described in its
documentation. [Default: None]

• group (str or None, optional) -- Filesystem group for the repository. Specifying the
group is particularly important when shared="group". [Default: None]

• ui (bool or str, optional) -- publish a web interface for the dataset with an optional
user- specified name for the html at publication target. defaults to index.html at dataset
root. [Default: False]

• as_common_datasrc -- configure the created sibling as a common data source of the
dataset that can be automatically used by all consumers of the dataset (technical: git-annex
auto-enabled special remote). [Default: None]

• publish_by_default (list of str or None, optional) -- add a refspec to be
published to this sibling by default if nothing specified. [Default: None]

86 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• publish_depends (list of str or None, optional) -- add a dependency such
that the given existing sibling is always published prior to the new sibling. This equals
setting a configuration item 'remote.SIBLINGNAME.datalad-publish-depends'. Multiple
dependencies can be given as a list of sibling names. [Default: None]

• annex_wanted (str or None, optional) -- expression to specify 'wanted' content for
the repository/sibling. See https://git-annex.branchable.com/git-annex-wanted/ for more
information. [Default: None]

• annex_group (str or None, optional) -- expression to specify a group for the repos-
itory. See https://git- annex.branchable.com/git-annex-group/ for more information. [De-
fault: None]

• annex_groupwanted (str or None, optional) -- expression for the groupwanted.
Makes sense only if annex_wanted="groupwanted" and annex-group is given too. See
https://git-annex.branchable.com/git-annex-groupwanted/ for more information. [Default:
None]

• inherit (bool, optional) -- if sibling is missing, inherit settings (git config, git annex
wanted/group/groupwanted) from its super-dataset. [Default: False]

• since (str or None, optional) -- limit processing to subdatasets that have been
changed since a given state (by tag, branch, commit, etc). This can be used to create sib-
lings for recently added subdatasets. If '^' is given, the last state of the current branch at the
sibling is taken as a starting point. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to

2.3. Python tooling 87

https://git-annex.branchable.com/git-annex-wanted/
https://git
https://git-annex.branchable.com/git-annex-groupwanted/

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

create_sibling_gin(*, dataset=None, recursive=False, recursion_limit=None, name='gin',
existing='error', api='https://gin.g-node.org', credential=None,
access_protocol='https-ssh', publish_depends=None, private=False,
description=None, dry_run=False)

Create a dataset sibling on a GIN site (with content hosting)

GIN (G-Node infrastructure) is a free data management system. It is a GitHub-like, web-based repository
store and provides fine-grained access control to shared data. GIN is built on Git and git-annex, and can
natively host DataLad datasets, including their data content!

This command uses the main GIN instance at https://gin.g-node.org as the default target, but other deploy-
ments can be used via the 'api' parameter.

An SSH key, properly registered at the GIN instance, is required for data upload via DataLad. Data down-
load from public projects is also possible via anonymous HTTP.

In order to be able to use this command, a personal access token has to be generated on the platform
(Account->Your Settings->Applications->Generate New Token).

This command can be configured with "datalad.create-sibling-ghlike.extra-remote-
settings.NETLOC.KEY=VALUE" in order to add any local KEY = VALUE configuration to the
created sibling in the local .git/config file. NETLOC is the domain of the Gin instance to apply the con-
figuration for. This leads to a behavior that is equivalent to calling datalad's siblings('configure',
...)``||``siblings configure command with the respective KEY-VALUE pair after creating the
sibling. The configuration, like any other, could be set at user- or system level, so users do not need to add
this configuration to every sibling created with the service at NETLOC themselves.

Added in version 0.16.

Examples

Create a repo 'myrepo' on GIN and register it as sibling 'mygin':

> create_sibling_gin('myrepo', name='mygin', dataset='.')

Create private repos with name(-prefix) 'myrepo' on GIN for a dataset and all its present subdatasets:

> create_sibling_gin('myrepo', dataset='.', recursive=True, private=True)

Create a sibling repo on GIN, and register it as a common data source in the dataset that is available regard-
less of whether the dataset was directly cloned from GIN:

> ds = Dataset('.')
> ds.create_sibling_gin('myrepo', name='gin')
first push creates git-annex branch remotely and obtains annex UUID
> ds.push(to='gin')
> ds.siblings('configure', name='gin', as_common_datasrc='gin-storage')
announce availability (redo for other siblings)
> ds.push(to='gin')

88 Chapter 2. Functionality provided by DataLad NEXT

https://gin.g-node.org

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Parameters

• reponame (str) -- repository name, optionally including an '<organization>/' prefix if the
repository shall not reside under a user's namespace. When operating recursively, a suffix
will be appended to this name for each subdataset.

• dataset (Dataset or None, optional) -- dataset to create the publication target for.
If not given, an attempt is made to identify the dataset based on the current working direc-
tory. [Default: None]

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default:
False]

• recursion_limit (int or None, optional) -- limit recursion into subdatasets to the
given number of levels. [Default: None]

• name (str or None, optional) -- name of the sibling in the local dataset installation
(remote name). [Default: 'gin']

• existing ({'skip', 'error', 'reconfigure', 'replace'}, optional) -- behavior
when already existing or configured siblings are discovered: skip the dataset ('skip'), update
the configuration ('reconfigure'), or fail ('error'). DEPRECATED DANGER ZONE: With
'replace', an existing repository will be irreversibly removed, re-initialized, and the sibling
(re-)configured (thus implies 'reconfigure'). replace could lead to data loss! In interactive
sessions a confirmation prompt is shown, an exception is raised in non-interactive sessions.
The 'replace' mode will be removed in a future release. [Default: 'error']

• api (str or None, optional) -- URL of the GIN instance without an 'api/<version>'
suffix. [Default: 'https://gin.g-node.org']

• credential (str or None, optional) -- name of the credential providing a per-
sonal access token to be used for authorization. The token can be supplied via
configuration setting 'datalad.credential.<name>.secret', or environment variable DATA-
LAD_CREDENTIAL_<NAME>_SECRET, or will be queried from the active credential
store using the provided name. If none is provided, the last-used token for the API URL
realm will be used. If no matching credential exists, a credential named after the hostname
part of the API URL is tried as a last fallback. [Default: None]

• access_protocol ({'https', 'ssh', 'https-ssh'}, optional) -- access proto-
col/URL to configure for the sibling. With 'https-ssh' SSH will be used for write access,
whereas HTTPS is used for read access. [Default: 'https-ssh']

• publish_depends (list of str or None, optional) -- add a dependency such
that the given existing sibling is always published prior to the new sibling. This equals
setting a configuration item 'remote.SIBLINGNAME.datalad-publish-depends'. Multiple
dependencies can be given as a list of sibling names. [Default: None]

• private (bool, optional) -- if set, create a private repository. [Default: False]

• description (str or None, optional) -- Brief description, displayed on the project's
page. [Default: None]

• dry_run (bool, optional) -- if set, no repository will be created, only tests for sibling
name collisions will be performed, and would-be repository names are reported for all
relevant datasets. [Default: False]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is

2.3. Python tooling 89

https://gin.g-node.org

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

create_sibling_gitea(*, dataset=None, recursive=False, recursion_limit=None, name='gitea',
existing='error', api='https://gitea.com', credential=None,
access_protocol='https', publish_depends=None, private=False,
description=None, dry_run=False)

Create a dataset sibling on a Gitea site

Gitea is a lightweight, free and open source code hosting solution with low resource demands that enable
running it on inexpensive devices like a Raspberry Pi.

This command uses the main Gitea instance at https://gitea.com as the default target, but other deployments
can be used via the 'api' parameter.

In order to be able to use this command, a personal access token has to be generated on the platform
(Account->Settings->Applications->Generate Token).

This command can be configured with "datalad.create-sibling-ghlike.extra-remote-
settings.NETLOC.KEY=VALUE" in order to add any local KEY = VALUE configuration to the
created sibling in the local .git/config file. NETLOC is the domain of the Gitea instance to apply the
configuration for. This leads to a behavior that is equivalent to calling datalad's siblings('configure',
...)``||``siblings configure command with the respective KEY-VALUE pair after creating the
sibling. The configuration, like any other, could be set at user- or system level, so users do not need to add
this configuration to every sibling created with the service at NETLOC themselves.

90 Chapter 2. Functionality provided by DataLad NEXT

https://gitea.com

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Added in version 0.16.

Parameters

• reponame (str) -- repository name, optionally including an '<organization>/' prefix if the
repository shall not reside under a user's namespace. When operating recursively, a suffix
will be appended to this name for each subdataset.

• dataset (Dataset or None, optional) -- dataset to create the publication target for.
If not given, an attempt is made to identify the dataset based on the current working direc-
tory. [Default: None]

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default:
False]

• recursion_limit (int or None, optional) -- limit recursion into subdatasets to the
given number of levels. [Default: None]

• name (str or None, optional) -- name of the sibling in the local dataset installation
(remote name). [Default: 'gitea']

• existing ({'skip', 'error', 'reconfigure', 'replace'}, optional) -- behavior
when already existing or configured siblings are discovered: skip the dataset ('skip'), update
the configuration ('reconfigure'), or fail ('error'). DEPRECATED DANGER ZONE: With
'replace', an existing repository will be irreversibly removed, re-initialized, and the sibling
(re-)configured (thus implies 'reconfigure'). replace could lead to data loss! In interactive
sessions a confirmation prompt is shown, an exception is raised in non-interactive sessions.
The 'replace' mode will be removed in a future release. [Default: 'error']

• api (str or None, optional) -- URL of the Gitea instance without a 'api/<version>'
suffix. [Default: 'https://gitea.com']

• credential (str or None, optional) -- name of the credential providing a per-
sonal access token to be used for authorization. The token can be supplied via
configuration setting 'datalad.credential.<name>.secret', or environment variable DATA-
LAD_CREDENTIAL_<NAME>_SECRET, or will be queried from the active credential
store using the provided name. If none is provided, the last-used token for the API URL
realm will be used. If no matching credential exists, a credential named after the hostname
part of the API URL is tried as a last fallback. [Default: None]

• access_protocol ({'https', 'ssh', 'https-ssh'}, optional) -- access proto-
col/URL to configure for the sibling. With 'https-ssh' SSH will be used for write access,
whereas HTTPS is used for read access. [Default: 'https']

• publish_depends (list of str or None, optional) -- add a dependency such
that the given existing sibling is always published prior to the new sibling. This equals
setting a configuration item 'remote.SIBLINGNAME.datalad-publish-depends'. Multiple
dependencies can be given as a list of sibling names. [Default: None]

• private (bool, optional) -- if set, create a private repository. [Default: False]

• description (str or None, optional) -- Brief description, displayed on the project's
page. [Default: None]

• dry_run (bool, optional) -- if set, no repository will be created, only tests for sibling
name collisions will be performed, and would-be repository names are reported for all
relevant datasets. [Default: False]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any

2.3. Python tooling 91

https://gitea.com

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

create_sibling_github(*, dataset=None, recursive=False, recursion_limit=None, name='github',
existing='error', github_login=None, credential=None,
github_organization=None, access_protocol='https', publish_depends=None,
private=False, description=None, dryrun=False, dry_run=False,
api='https://api.github.com')

Create dataset sibling on GitHub.org (or an enterprise deployment).

GitHub is a popular commercial solution for code hosting and collaborative development. GitHub cannot
host dataset content (but see LFS, http://handbook.datalad.org/r.html?LFS). However, in combination with
other data sources and siblings, publishing a dataset to GitHub can facilitate distribution and exchange,
while still allowing any dataset consumer to obtain actual data content from alternative sources.

In order to be able to use this command, a personal access token has to be generated on the platform
(Account->Settings->Developer Settings->Personal access tokens->Generate new token).

This command can be configured with "datalad.create-sibling-ghlike.extra-remote-
settings.NETLOC.KEY=VALUE" in order to add any local KEY = VALUE configuration to the
created sibling in the local .git/config file. NETLOC is the domain of the Github instance to apply the
configuration for. This leads to a behavior that is equivalent to calling datalad's siblings('configure',
...)``||``siblings configure command with the respective KEY-VALUE pair after creating the

92 Chapter 2. Functionality provided by DataLad NEXT

http://handbook.datalad.org/r.html?LFS

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

sibling. The configuration, like any other, could be set at user- or system level, so users do not need to add
this configuration to every sibling created with the service at NETLOC themselves.

Changed in version 0.16: The API has been aligned with the some create_sibling_... commands of
other GitHub-like services, such as GOGS, GIN, GitTea.

Deprecated since version 0.16: The dryrun option will be removed in a future release, use the re-
named dry_run option instead. The github_login option will be removed in a future release, use the
credential option instead. The github_organization option will be removed in a future release, prefix
the reposity name with <org>/ instead.

Examples

Use a new sibling on GIN as a common data source that is auto- available when cloning from GitHub:

> ds = Dataset('.')

the sibling on GIN will host data content
> ds.create_sibling_gin('myrepo', name='gin')

the sibling on GitHub will be used for collaborative work
> ds.create_sibling_github('myrepo', name='github')

register the storage of the public GIN repo as a data source
> ds.siblings('configure', name='gin', as_common_datasrc='gin-storage')

announce its availability on github
> ds.push(to='github')

Parameters

• reponame (str) -- repository name, optionally including an '<organization>/' prefix if the
repository shall not reside under a user's namespace. When operating recursively, a suffix
will be appended to this name for each subdataset.

• dataset (Dataset or None, optional) -- dataset to create the publication target for.
If not given, an attempt is made to identify the dataset based on the current working direc-
tory. [Default: None]

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default:
False]

• recursion_limit (int or None, optional) -- limit recursion into subdatasets to the
given number of levels. [Default: None]

• name (str or None, optional) -- name of the sibling in the local dataset installation
(remote name). [Default: 'github']

• existing ({'skip', 'error', 'reconfigure', 'replace'}, optional) -- behavior
when already existing or configured siblings are discovered: skip the dataset ('skip'), update
the configuration ('reconfigure'), or fail ('error'). DEPRECATED DANGER ZONE: With
'replace', an existing repository will be irreversibly removed, re-initialized, and the sibling
(re-)configured (thus implies 'reconfigure'). replace could lead to data loss! In interactive
sessions a confirmation prompt is shown, an exception is raised in non-interactive sessions.
The 'replace' mode will be removed in a future release. [Default: 'error']

2.3. Python tooling 93

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• github_login (str or None, optional) -- Deprecated, use the credential parameter
instead. If given must be a personal access token. [Default: None]

• credential (str or None, optional) -- name of the credential providing a per-
sonal access token to be used for authorization. The token can be supplied via
configuration setting 'datalad.credential.<name>.secret', or environment variable DATA-
LAD_CREDENTIAL_<NAME>_SECRET, or will be queried from the active credential
store using the provided name. If none is provided, the last-used token for the API URL
realm will be used. If no matching credential exists, a credential named after the hostname
part of the API URL is tried as a last fallback. [Default: None]

• github_organization (str or None, optional) -- Deprecated, prepend a repo
name with an '<orgname>/' prefix instead. [Default: None]

• access_protocol ({'https', 'ssh', 'https-ssh'}, optional) -- access proto-
col/URL to configure for the sibling. With 'https-ssh' SSH will be used for write access,
whereas HTTPS is used for read access. [Default: 'https']

• publish_depends (list of str or None, optional) -- add a dependency such
that the given existing sibling is always published prior to the new sibling. This equals
setting a configuration item 'remote.SIBLINGNAME.datalad-publish-depends'. Multiple
dependencies can be given as a list of sibling names. [Default: None]

• private (bool, optional) -- if set, create a private repository. [Default: False]

• description (str or None, optional) -- Brief description, displayed on the project's
page. [Default: None]

• dryrun (bool, optional) -- Deprecated. Use the renamed dry_run parameter. [De-
fault: False]

• dry_run (bool, optional) -- if set, no repository will be created, only tests for sibling
name collisions will be performed, and would-be repository names are reported for all
relevant datasets. [Default: False]

• api (str or None, optional) -- URL of the GitHub instance API. [Default: 'https:
//api.github.com']

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The

94 Chapter 2. Functionality provided by DataLad NEXT

https://api.github.com
https://api.github.com

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

create_sibling_gitlab(*, site=None, project=None, layout=None, dataset=None, recursive=False,
recursion_limit=None, name=None, existing='error', access=None,
publish_depends=None, description=None, dryrun=False, dry_run=False)

Create dataset sibling at a GitLab site

An existing GitLab project, or a project created via the GitLab web interface can be configured as a sibling
with the siblings command. Alternatively, this command can create a GitLab project at any location/path
a given user has appropriate permissions for. This is particularly helpful for recursive sibling creation
for subdatasets. API access and authentication are implemented via python-gitlab, and all its features are
supported. A particular GitLab site must be configured in a named section of a python-gitlab.cfg file (see
https://python-gitlab.readthedocs.io/en/stable/cli.html#configuration for details), such as:

[mygit]
url = https://git.example.com
api_version = 4
private_token = abcdefghijklmnopqrst

Subsequently, this site is identified by its name ('mygit' in the example above).

(Recursive) sibling creation for all, or a selected subset of subdatasets is supported with two different project
layouts (see --layout):

"flat"
All datasets are placed as GitLab projects in the same group. The project name of the top-level dataset
follows the configured datalad.gitlab-SITENAME-project configuration. The project names of con-
tained subdatasets extend the configured name with the subdatasets' s relative path within the root
dataset, with all path separator characters replaced by '-'. This path separator is configurable (see
Configuration).

"collection"
A new group is created for the dataset hierarchy, following the datalad.gitlab-SITENAME-project con-
figuration. The root dataset is placed in a "project" project inside this group, and all nested subdatasets
are represented inside the group using a "flat" layout. The root datasets project name is configurable
(see Configuration). This command cannot create root-level groups! To use this layout for a collection
located in the root of an account, create the target group via the GitLab web UI first.

GitLab cannot host dataset content. However, in combination with other data sources (and siblings), pub-
lishing a dataset to GitLab can facilitate distribution and exchange, while still allowing any dataset consumer
to obtain actual data content from alternative sources.

2.3. Python tooling 95

https://python-gitlab.readthedocs.io/en/stable/cli.html#configuration

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Configuration

Many configuration switches and options for GitLab sibling creation can be provided arguments to the
command. However, it is also possible to specify a particular setup in a dataset's configuration. This is
particularly important when managing large collections of datasets. Configuration options are:

"datalad.gitlab-default-site"
Name of the default GitLab site (see --site)

"datalad.gitlab-SITENAME-siblingname"
Name of the sibling configured for the local dataset that points to the GitLab instance SITENAME (see
--name)

"datalad.gitlab-SITENAME-layout"
Project layout used at the GitLab instance SITENAME (see --layout)

"datalad.gitlab-SITENAME-access"
Access method used for the GitLab instance SITENAME (see --access)

"datalad.gitlab-SITENAME-project"
Project "location/path" used for a datasets at GitLab instance SITENAME (see --project). Configuring
this is useful for deriving project paths for subdatasets, relative to superdataset. The root-level group
("location") needs to be created beforehand via GitLab's web interface.

"datalad.gitlab-default-projectname"
The collection layout publishes (sub)datasets as projects with a custom name. The default name
"project" can be overridden with this configuration.

"datalad.gitlab-default-pathseparator"
The flat and collection layout represent subdatasets with project names that correspond to the path,
with the regular path separator replaced with a "-": superdataset-subdataset. This configuration can
override this default separator.

This command can be configured with "datalad.create-sibling-ghlike.extra-remote-
settings.NETLOC.KEY=VALUE" in order to add any local KEY = VALUE configuration to the
created sibling in the local .git/config file. NETLOC is the domain of the Gitlab instance to apply the
configuration for. This leads to a behavior that is equivalent to calling datalad's siblings('configure',
...)``||``siblings configure command with the respective KEY-VALUE pair after creating the
sibling. The configuration, like any other, could be set at user- or system level, so users do not need to add
this configuration to every sibling created with the service at NETLOC themselves.

Parameters

• path -- selectively create siblings for any datasets underneath a given path. By default only
the root dataset is considered. [Default: None]

• site (None or str, optional) -- name of the GitLab site to create a sibling at. Must
match an existing python-gitlab configuration section with location and authentication
settings (see https://python- gitlab.readthedocs.io/en/stable/cli-usage.html#configuration).
By default the dataset configuration is consulted. [Default: None]

• project (None or str, optional) -- project name/location at the GitLab site. If a
subdataset of the reference dataset is processed, its project path is automatically determined
by the layout configuration, by default. Users need to create the root-level GitLab group
(NAME) via the webinterface before running the command. [Default: None]

• layout ({None, 'collection', 'flat'}, optional) -- layout of projects at the GitLab
site, if a collection, or a hierarchy of datasets and subdatasets is to be created. By default
the dataset configuration is consulted. [Default: None]

96 Chapter 2. Functionality provided by DataLad NEXT

https://python

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• dataset (Dataset or None, optional) -- reference or root dataset. If no path con-
straints are given, a sibling for this dataset will be created. In this and all other cases, the
reference dataset is also consulted for the GitLab configuration, and desired project lay-
out. If no dataset is given, an attempt is made to identify the dataset based on the current
working directory. [Default: None]

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default:
False]

• recursion_limit (int or None, optional) -- limit recursion into subdatasets to the
given number of levels. [Default: None]

• name (str or None, optional) -- name to represent the GitLab sibling remote in the
local dataset installation. If not specified a name is looked up in the dataset configuration,
or defaults to the site name. [Default: None]

• existing ({'skip', 'error', 'reconfigure'}, optional) -- desired behavior when
already existing or configured siblings are discovered. 'skip': ignore; 'error': fail, if access
URLs differ; 'reconfigure': use the existing repository and reconfigure the local dataset to
use it as a sibling. [Default: 'error']

• access ({None, 'http', 'ssh', 'ssh+http'}, optional) -- access method used for
data transfer to and from the sibling. 'ssh': read and write access used the SSH protocol;
'http': read and write access use HTTP requests; 'ssh+http': read access is done via HTTP
and write access performed with SSH. Dataset configuration is consulted for a default, 'http'
is used otherwise. [Default: None]

• publish_depends (list of str or None, optional) -- add a dependency such
that the given existing sibling is always published prior to the new sibling. This equals
setting a configuration item 'remote.SIBLINGNAME.datalad-publish-depends'. Multiple
dependencies can be given as a list of sibling names. [Default: None]

• description (str or None, optional) -- brief description for the GitLab project
(displayed on the site). [Default: None]

• dryrun (bool, optional) -- Deprecated. Use the renamed dry_run parameter. [De-
fault: False]

• dry_run (bool, optional) -- if set, no repository will be created, only tests for name
collisions will be performed, and would-be repository names are reported for all relevant
datasets. [Default: False]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;

2.3. Python tooling 97

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

create_sibling_gogs(*, api=None, dataset=None, recursive=False, recursion_limit=None, name=None,
existing='error', credential=None, access_protocol='https', publish_depends=None,
private=False, description=None, dry_run=False)

Create a dataset sibling on a GOGS site

GOGS is a self-hosted, free and open source code hosting solution with low resource demands that enable
running it on inexpensive devices like a Raspberry Pi, or even directly on a NAS device.

In order to be able to use this command, a personal access token has to be generated on the platform
(Account->Your Settings->Applications->Generate New Token).

This command can be configured with "datalad.create-sibling-ghlike.extra-remote-
settings.NETLOC.KEY=VALUE" in order to add any local KEY = VALUE configuration to the
created sibling in the local .git/config file. NETLOC is the domain of the Gogs instance to apply the
configuration for. This leads to a behavior that is equivalent to calling datalad's siblings('configure',
...)``||``siblings configure command with the respective KEY-VALUE pair after creating the
sibling. The configuration, like any other, could be set at user- or system level, so users do not need to add
this configuration to every sibling created with the service at NETLOC themselves.

Added in version 0.16.

Parameters

• reponame (str) -- repository name, optionally including an '<organization>/' prefix if the
repository shall not reside under a user's namespace. When operating recursively, a suffix
will be appended to this name for each subdataset.

• api (str or None, optional) -- URL of the GOGS instance without a 'api/<version>'
suffix. [Default: None]

• dataset (Dataset or None, optional) -- dataset to create the publication target for.
If not given, an attempt is made to identify the dataset based on the current working direc-
tory. [Default: None]

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default:
False]

98 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• recursion_limit (int or None, optional) -- limit recursion into subdatasets to the
given number of levels. [Default: None]

• name (str or None, optional) -- name of the sibling in the local dataset installation
(remote name). [Default: None]

• existing ({'skip', 'error', 'reconfigure', 'replace'}, optional) -- behavior
when already existing or configured siblings are discovered: skip the dataset ('skip'), update
the configuration ('reconfigure'), or fail ('error'). DEPRECATED DANGER ZONE: With
'replace', an existing repository will be irreversibly removed, re-initialized, and the sibling
(re-)configured (thus implies 'reconfigure'). replace could lead to data loss! In interactive
sessions a confirmation prompt is shown, an exception is raised in non-interactive sessions.
The 'replace' mode will be removed in a future release. [Default: 'error']

• credential (str or None, optional) -- name of the credential providing a per-
sonal access token to be used for authorization. The token can be supplied via
configuration setting 'datalad.credential.<name>.secret', or environment variable DATA-
LAD_CREDENTIAL_<NAME>_SECRET, or will be queried from the active credential
store using the provided name. If none is provided, the last-used token for the API URL
realm will be used. If no matching credential exists, a credential named after the hostname
part of the API URL is tried as a last fallback. [Default: None]

• access_protocol ({'https', 'ssh', 'https-ssh'}, optional) -- access proto-
col/URL to configure for the sibling. With 'https-ssh' SSH will be used for write access,
whereas HTTPS is used for read access. [Default: 'https']

• publish_depends (list of str or None, optional) -- add a dependency such
that the given existing sibling is always published prior to the new sibling. This equals
setting a configuration item 'remote.SIBLINGNAME.datalad-publish-depends'. Multiple
dependencies can be given as a list of sibling names. [Default: None]

• private (bool, optional) -- if set, create a private repository. [Default: False]

• description (str or None, optional) -- Brief description, displayed on the project's
page. [Default: None]

• dry_run (bool, optional) -- if set, no repository will be created, only tests for sibling
name collisions will be performed, and would-be repository names are reported for all
relevant datasets. [Default: False]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'

2.3. Python tooling 99

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

create_sibling_ria(name, *, dataset=None, storage_name=None, alias=None, post_update_hook=False,
shared=None, group=None, storage_sibling=True, existing='error',
new_store_ok=False, trust_level=None, recursive=False, recursion_limit=None,
disable_storage__=None, push_url=None)

Creates a sibling to a dataset in a RIA store

Communication with a dataset in a RIA store is implemented via two siblings. A regular Git remote (repos-
itory sibling) and a git-annex special remote for data transfer (storage sibling) -- with the former having a
publication dependency on the latter. By default, the name of the storage sibling is derived from the repos-
itory sibling's name by appending "-storage".

The store's base path is expected to not exist, be an empty directory, or a valid RIA store.

Notes

RIA URL format

Interactions with new or existing RIA stores require RIA URLs to identify the store or specific datasets
inside of it.

The general structure of a RIA URL pointing to a store takes the form ria+[scheme]://
<storelocation> (e.g., ria+ssh://[user@]hostname:/absolute/path/to/ria-store, or
ria+file:///absolute/path/to/ria-store)

The general structure of a RIA URL pointing to a dataset in a store (for example for
cloning) takes a similar form, but appends either the datasets UUID or a "~" symbol fol-
lowed by the dataset's alias name: ria+[scheme]://<storelocation>#<dataset-UUID>
or ria+[scheme]://<storelocation>#~<aliasname>. In addition, specific version iden-
tifiers can be appended to the URL with an additional "@" symbol: ria+[scheme]://
<storelocation>#<dataset-UUID>@<dataset-version>, where dataset-version refers to
a branch or tag.

RIA store layout

A RIA store is a directory tree with a dedicated subdirectory for each dataset in the store. The subdirectory
name is constructed from the DataLad dataset ID, e.g. 124/68afe-59ec-11ea-93d7-f0d5bf7b5561,

100 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

where the first three characters of the ID are used for an intermediate subdirectory in order to mitigate files
system limitations for stores containing a large number of datasets.

By default, a dataset in a RIA store consists of two components: A Git repository (for all dataset contents
stored in Git) and a storage sibling (for dataset content stored in git-annex).

It is possible to selectively disable either component using storage-sibling 'off' or
storage-sibling 'only', respectively. If neither component is disabled, a dataset's subdirectory
layout in a RIA store contains a standard bare Git repository and an annex/ subdirectory inside of it. The
latter holds a Git-annex object store and comprises the storage sibling. Disabling the standard git-remote
(storage-sibling='only') will result in not having the bare git repository, disabling the storage sibling
(storage-sibling='off') will result in not having the annex/ subdirectory.

Optionally, there can be a further subdirectory archives with (compressed) 7z archives of annex objects.
The storage remote is able to pull annex objects from these archives, if it cannot find in the regular annex
object store. This feature can be useful for storing large collections of rarely changing data on systems that
limit the number of files that can be stored.

Each dataset directory also contains a ria-layout-version file that identifies the data organization (as,
for example, described above).

Lastly, there is a global ria-layout-version file at the store's base path that identifies where dataset
subdirectories themselves are located. At present, this file must contain a single line stating the version
(currently "1"). This line MUST end with a newline character.

It is possible to define an alias for an individual dataset in a store by placing a symlink to the dataset
location into an alias/ directory in the root of the store. This enables dataset access via URLs of format:
ria+<protocol>://<storelocation>#~<aliasname>.

Compared to standard git-annex object stores, the annex/ subdirectories used as storage siblings follow
a different layout naming scheme ('dirhashmixed' instead of 'dirhashlower'). This is mostly noted as a
technical detail, but also serves to remind git-annex powerusers to refrain from running git-annex commands
directly in-store as it can cause severe damage due to the layout difference. Interactions should be handled
via the ORA special remote instead.

Error logging

To enable error logging at the remote end, append a pipe symbol and an "l" to the version number in ria-
layout-version (like so: 1|l\n).

Error logging will create files in an "error_log" directory whenever the git-annex special remote (storage sib-
ling) raises an exception, storing the Python traceback of it. The logfiles are named according to the scheme
<dataset id>.<annex uuid of the remote>.log showing "who" ran into this issue with which
dataset. Because logging can potentially leak personal data (like local file paths for example), it can be dis-
abled client-side by setting the configuration variable annex.ora-remote.<storage-sibling-name>.
ignore-remote-config.

Parameters

• url (str or None) -- URL identifying the target RIA store and access protocol. If
push_url is given in addition, this is used for read access only. Otherwise it will be used for
write access too and to create the repository sibling in the RIA store. Note, that HTTP(S)
currently is valid for consumption only thus requiring to provide push_url.

• name (str or None) -- Name of the sibling. With recursive, the same name will be used
to label all the subdatasets' siblings.

• dataset (Dataset or None, optional) -- specify the dataset to process. If no dataset
is given, an attempt is made to identify the dataset based on the current working directory.
[Default: None]

2.3. Python tooling 101

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• storage_name (str or None, optional) -- Name of the storage sibling (git-annex
special remote). Must not be identical to the sibling name. If not specified, defaults to
the sibling name plus '-storage' suffix. If only a storage sibling is created, this setting is
ignored, and the primary sibling name is used. [Default: None]

• alias (str or None, optional) -- Alias for the dataset in the RIA store. Add the nec-
essary symlink so that this dataset can be cloned from the RIA store using the given ALIAS
instead of its ID. With recursive=True, only the top dataset will be aliased. [Default: None]

• post_update_hook (bool, optional) -- Enable Git's default post-update-hook for the
created sibling. This is useful when the sibling is made accessible via a "dumb server" that
requires running 'git update-server-info' to let Git interact properly with it. [Default: False]

• shared (str or bool or None, optional) -- If given, configures the permissions in
the RIA store for multi- users access. Possible values for this option are identical to those
of git init --shared and are described in its documentation. [Default: None]

• group (str or None, optional) -- Filesystem group for the repository. Specifying the
group is crucial when shared="group". [Default: None]

• storage_sibling ({'only'} or bool or None, optional) -- By default, an ORA
storage sibling and a Git repository sibling are created (True|'on'). Alternatively, creation
of the storage sibling can be disabled (False|'off'), or a storage sibling created only and no
Git sibling ('only'). In the latter mode, no Git installation is required on the target host.
[Default: True]

• existing ({'skip', 'error', 'reconfigure'}, optional) -- Action to perform, if a
(storage) sibling is already configured under the given name and/or a target already exists.
In this case, a dataset can be skipped ('skip'), an existing target repository be forcefully
re-initialized, and the sibling (re-)configured ('reconfigure'), or the command be instructed
to fail ('error'). [Default: 'error']

• new_store_ok (bool, optional) -- When set, a new store will be created, if necessary.
Otherwise, a sibling will only be created if the url points to an existing RIA store. [Default:
False]

• trust_level ({'trust', 'semitrust', 'untrust', None}, optional) -- specify a
trust level for the storage sibling. If not specified, the default git-annex trust level is used.
'trust' should be used with care (see the git-annex-trust man page). [Default: None]

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default:
False]

• recursion_limit (int or None, optional) -- limit recursion into subdatasets to the
given number of levels. [Default: None]

• disable_storage (bool, optional) -- This option is deprecated. Use '--storage-
sibling off' instead. [Default: None]

• push_url (str or None, optional) -- URL identifying the target RIA store and ac-
cess protocol for write access to the storage sibling. If given this will also be used for
creation of the repository sibling in the RIA store. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

102 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

create_sibling_webdav(*, dataset=None, name=None, storage_name=None, mode='annex',
credential=None, existing='error', recursive=False, recursion_limit=None)

Create a sibling(-tandem) on a WebDAV server

WebDAV is a standard HTTP protocol extension for placing files on a server that is supported by a number
of commercial storage services (e.g. 4shared.com, box.com), but also instances of cloud-storage solutions
like Nextcloud or ownCloud. These software packages are also the basis for some institutional or public
cloud storage solutions, such as EUDAT B2DROP.

For basic usage, only the URL with the desired dataset location on a WebDAV server needs to be specified
for creating a sibling. However, the sibling setup can be flexibly customized (no storage sibling, or only a
storage sibling, multi-version storage, or human-browsable single-version storage).

This command does not check for conflicting content on the WebDAV server!

When creating siblings recursively for a dataset hierarchy, subdataset exports are placed at their correspond-
ing relative paths underneath the root location on the WebDAV server.

Collaboration on WebDAV siblings

The primary use case for WebDAV siblings is dataset deposition, where only one site is uploading dataset
and file content updates. For collaborative workflows with multiple contributors, please make sure to con-
sult the documentation on the underlying datalad-annex:: Git remote helper for advice on appropriate
setups: http://docs.datalad.org/projects/next/

Git-annex implementation details

2.3. Python tooling 103

http://docs.datalad.org/projects/next/

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Storage siblings are presently configured to NOT be enabled automatically on cloning a dataset. Due
to a limitation of git-annex, this would initially fail (missing credentials). Instead, an explicit datalad
siblings enable --name <storage-sibling-name> command must be executed after cloning. If
necessary, it will prompt for credentials.

This command does not (and likely will not) support embedding credentials in the repository (see
embedcreds option of the git-annex webdav special remote; https://git-annex.branchable.com/special_
remotes/webdav), because such credential copies would need to be updated, whenever they change or ex-
pire. Instead, credentials are retrieved from DataLad's credential system. In many cases, credentials are
determined automatically, based on the HTTP authentication realm identified by a WebDAV server.

This command does not support setting up encrypted remotes (yet). Neither for the storage sibling, nor for
the regular Git-remote. However, adding support for it is primarily a matter of extending the API of this
command, and passing the respective options on to the underlying git-annex setup.

This command does not support setting up chunking for webdav storage siblings (https://git-annex.
branchable.com/chunking).

Examples

Create a WebDAV sibling tandem for storage of a dataset's file content and revision history. A user will be
prompted for any required credentials, if they are not yet known.:

> create_sibling_webdav(url='https://webdav.example.com/myds')

Such a dataset can be cloned by DataLad via a specially crafted URL. Again, credentials are automatically
determined, or a user is prompted to enter them:

> clone('datalad-annex::?type=webdav&encryption=none&url=https://webdav.example.
→˓com/myds')

A sibling can also be created with a human-readable file tree, suitable for data exchange with non-DataLad
users, but only able to host a single version of each file:

> create_sibling_webdav(url='https://example.com/browseable', mode='filetree')

Cloning such dataset siblings is possible via a convenience URL:

> clone('webdavs://example.com/browseable')

In all cases, the storage sibling needs to explicitly enabled prior to file content retrieval:

> siblings('enable', name='example.com-storage')

Parameters

• url -- URL identifying the sibling root on the target WebDAV server.

• dataset -- specify the dataset to process. If no dataset is given, an attempt is made to
identify the dataset based on the current working directory. [Default: None]

• name -- name of the sibling. If none is given, the hostname-part of the WebDAV URL will
be used. With recursive, the same name will be used to label all the subdatasets' siblings.
[Default: None]

• storage_name -- name of the storage sibling (git-annex special remote). Must not be
identical to the sibling name. If not specified, defaults to the sibling name plus '-storage'

104 Chapter 2. Functionality provided by DataLad NEXT

https://git-annex.branchable.com/special_remotes/webdav
https://git-annex.branchable.com/special_remotes/webdav
https://git-annex.branchable.com/chunking
https://git-annex.branchable.com/chunking

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

suffix. If only a storage sibling is created, this setting is ignored, and the primary sibling
name is used. [Default: None]

• mode -- Siblings can be created in various modes: full-featured sibling tandem, one for
a dataset's Git history and one storage sibling to host any number of file versions ('an-
nex'). A single sibling for the Git history only ('git-only'). A single annex sibling for multi-
version file storage only ('annex-only'). As an alternative to the standard (annex) storage
sibling setup that is capable of storing any number of historical file versions using a content
hash layout ('annex'|'annex-only'), the 'filetree' mode can used. This mode offers a human-
readable data organization on the WebDAV remote that matches the file tree of a dataset
(branch). However, it can, consequently, only store a single version of each file in the file
tree. This mode is useful for depositing a single dataset snapshot for consumption without
DataLad. The 'filetree' mode nevertheless allows for cloning such a single-version dataset,
because the full dataset history can still be pushed to the WebDAV server. Git history host-
ing can also be turned off for this setup ('filetree- only'). When both a storage sibling and
a regular sibling are created together, a publication dependency on the storage sibling is
configured for the regular sibling in the local dataset clone. [Default: 'annex']

• credential -- name of the credential providing a user/password credential to
be used for authorization. The credential can be supplied via configuration
setting 'datalad.credential.<name>.user|secret', or environment variable DATA-
LAD_CREDENTIAL_<NAME>_USER|SECRET, or will be queried from the active
credential store using the provided name. If none is provided, the last-used credential
for the authentication realm associated with the WebDAV URL will be used. Only if a
credential name was given, it will be encoded in the URL of the created WebDAV Git
remote, credential auto-discovery will be performed on each remote access. [Default:
None]

• existing -- action to perform, if a (storage) sibling is already configured under the given
name. In this case, sibling creation can be skipped ('skip') or the sibling (re-)configured
('reconfigure') in the dataset, or the command be instructed to fail ('error'). [Default: 'error']

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default:
False]

• recursion_limit (int or None, optional) -- limit recursion into subdatasets to the
given number of levels. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering

2.3. Python tooling 105

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

credentials(spec=None, *, name=None, prompt=None, dataset=None)
Credential management and query

This command enables inspection and manipulation of credentials used throughout DataLad.

The command provides four basic actions:

QUERY

When executed without any property specification, all known credentials with all their properties will be
yielded. Please note that this may not include credentials that only comprise of a secret and no other
properties, or legacy credentials for which no trace in the configuration can be found. Therefore, the query
results are not guaranteed to contain all credentials ever configured by DataLad.

When additional property/value pairs are specified, only credentials that have matching values for all given
properties will be reported. This can be used, for example, to discover all suitable credentials for a specific
"realm", if credentials were annotated with such information.

SET

This is the companion to 'get', and can be used to store properties and secret of a credential. Importantly, and
in contrast to a 'get' operation, given properties with no values indicate a removal request. Any matching
properties on record will be removed. If a credential is to be stored for which no secret is on record yet, an
interactive session will prompt a user for a manual secret entry.

Only changed properties will be contained in the result record.

The appearance of the interactive secret entry can be configured with the two settings
datalad.credentials.repeat-secret-entry and datalad.credentials.hidden-secret-entry.

REMOVE

This action will remove any secret and properties associated with a credential identified by its name.

GET (plumbing operation)

This is a read-only action that will never store (updates of) credential properties or secrets. Given properties
will amend/overwrite those already on record. When properties with no value are given, and also no value
for the respective properties is on record yet, their value will be requested interactively, if a prompt text
was provided too. This can be used to ensure a complete credential record, comprising any number of
properties.

106 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Details on credentials

A credential comprises any number of properties, plus exactly one secret. There are no constraints on the
format or property values or the secret, as long as they are encoded as a string.

Credential properties are normally stored as configuration settings in a user's configuration ('global' scope)
using the naming scheme:

datalad.credential.<name>.<property>

Therefore both credential name and credential property name must be syntax-compliant with Git config-
uration items. For property names this means only alphanumeric characters and dashes. For credential
names virtually no naming restrictions exist (only null-byte and newline are forbidden). However, when
naming credentials it is recommended to use simple names in order to enable convenient one-off creden-
tial overrides by specifying DataLad configuration items via their environment variable counterparts (see
the documentation of the configuration command for details. In short, avoid underscores and special
characters other than '.' and '-'.

While there are no constraints on the number and nature of credential properties, a few particular properties
are recognized on used for particular purposes:

• 'secret': always refers to the single secret of a credential

• 'type': identifies the type of a credential. With each standard type, a list of mandatory properties is
associated (see below)

• 'last-used': is an ISO 8601 format time stamp that indicated the last (successful) usage of a credential

Standard credential types and properties

The following standard credential types are recognized, and their mandatory field with their standard names
will be automatically included in a 'get' report.

• 'user_password': with properties 'user', and the password as secret

• 'token': only comprising the token as secret

• 'aws-s3': with properties 'key-id', 'session', 'expiration', and the secret_id as the credential secret

Legacy support

DataLad credentials not configured via this command may not be fully discoverable (i.e., including all their
properties). Discovery of such legacy credentials can be assisted by specifying a dedicated 'type' property.

Examples

Report all discoverable credentials:

> credentials()

Set a new credential mycred & input its secret interactively:

> credentials('set', name='mycred')

Remove a credential's type property:

> credentials('set', name='mycred', spec={'type': None})

Get all information on a specific credential in a structured record:

2.3. Python tooling 107

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

> credentials('get', name='mycred')

Upgrade a legacy credential by annotating it with a 'type' property:

> credentials('set', name='legacycred', spec={'type': 'user_password')

Set a new credential of type user_password, with a given user property, and input its secret interactively:

> credentials('set', name='mycred', spec={'type': 'user_password', 'user': '
→˓<username>'})

Obtain a (possibly yet undefined) credential with a minimum set of properties. All missing properties and
secret will be prompted for, no information will be stored! This is mostly useful for ensuring availability
of an appropriate credential in an application context:

> credentials('get', prompt='Can I haz info plz?', name='newcred', spec={
→˓'newproperty': None})

Parameters

• action -- which action to perform. [Default: 'query']

• spec -- specification of credential properties. Properties are given as name/value pairs.
Properties with a None value indicate a property to be deleted (action 'set'), or a property to
be entered interactively, when no value is set yet, and a prompt text is given (action 'get'). All
property names are case-insensitive, must start with a letter or a digit, and may only contain
'-' apart from these characters. Property specifications should be given a as dictionary,
e.g., spec={'type': 'user_password'}. However, a CLI-like list of string arguments is also
supported, e.g., spec=['type=user_password']. [Default: None]

• name -- name of a credential to set, get, or remove. [Default: None]

• prompt -- message to display when entry of missing credential properties is required for
action 'get'. This can be used to present information on the nature of a credential and for
instructions on how to obtain a credential. [Default: None]

• dataset -- specify a dataset whose configuration to inspect rather than the global (user)
settings. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'

108 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

diff(*, fr='HEAD', to=None, dataset=None, annex=None, untracked='normal', recursive=False,
recursion_limit=None)

Report differences between two states of a dataset (hierarchy)

The two to-be-compared states are given via the --from and --to options. These state identifiers are evaluated
in the context of the (specified or detected) dataset. In the case of a recursive report on a dataset hierarchy,
corresponding state pairs for any subdataset are determined from the subdataset record in the respective
superdataset. Only changes recorded in a subdataset between these two states are reported, and so on.

Any paths given as additional arguments will be used to constrain the difference report. As with Git's diff,
it will not result in an error when a path is specified that does not exist on the filesystem.

Reports are very similar to those of the status command, with the distinguished content types and states
being identical.

Examples

Show unsaved changes in a dataset:

> diff()

Compare a previous dataset state identified by shasum against current worktree:

> diff(fr='SHASUM')

Compare two branches against each other:

> diff(fr='branch1', to='branch2')

Show unsaved changes in the dataset and potential subdatasets:

> diff(recursive=True)

Show unsaved changes made to a particular file:

2.3. Python tooling 109

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

> diff(path='path/to/file')

Parameters

• path (sequence of str or None, optional) -- path to constrain the report to. [De-
fault: None]

• fr (str, optional) -- original state to compare to, as given by any identifier that Git
understands. [Default: 'HEAD']

• to (str or None, optional) -- state to compare against the original state, as given by
any identifier that Git understands. If none is specified, the state of the working tree will
be compared. [Default: None]

• dataset (Dataset or None, optional) -- specify the dataset to query. If no dataset
is given, an attempt is made to identify the dataset based on the current working directory.
[Default: None]

• annex ({None, 'basic', 'availability', 'all'}, optional) -- Switch whether to
include information on the annex content of individual files in the status report, such as
recorded file size. By default no annex information is reported (faster). Three report
modes are available: basic information like file size and key name ('basic'); additionally
test whether file content is present in the local annex ('availability'; requires one or two
additional file system stat calls, but does not call git-annex), this will add the result prop-
erties 'has_content' (boolean flag) and 'objloc' (absolute path to an existing annex object
file); or 'all' which will report all available information (presently identical to 'availability').
[Default: None]

• untracked ({'no', 'normal', 'all'}, optional) -- If and how untracked content is re-
ported when comparing a revision to the state of the working tree. 'no': no untracked
content is reported; 'normal': untracked files and entire untracked directories are reported
as such; 'all': report individual files even in fully untracked directories. [Default: 'normal']

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default:
False]

• recursion_limit (int or None, optional) -- limit recursion into subdatasets to the
given number of levels. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'

110 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

download(*, dataset=None, force=None, credential=None, hash=None)
Download from URLs

This command is the front-end to an extensible framework for performing downloads from a variety of URL
schemes. Built-in support for the schemes 'http', 'https', 'file', and 'ssh' is provided. Extension packages may
add additional support.

In contrast to other downloader tools, this command integrates with the DataLad credential management
and is able to auto-discover credentials. If no credential is available, it automatically prompts for them, and
offers to store them for reuse after a successful authentication.

Simultaneous hashing (checksumming) of downloaded content is supported with user-specified algorithms.

The command can process any number of downloads (serially). it can read download specifications from
(command line) arguments, files, or STDIN. It can deposit downloads to individual files, or stream to
STDOUT.

Implementation and extensibility

Each URL scheme is processed by a dedicated handler. Additional schemes can be sup-
ported by sub-classing datalad_next.url_operations.UrlOperations and implementing the download()
method. Extension packages can register new handlers, by patching them into the data-
lad_next.download._urlscheme_handlers registry dict.

Examples

Download webpage to "myfile.txt":

> download({"http://example.com": "myfile.txt"})

Read download specification from STDIN (e.g. JSON-lines):

> download("-")

Simultaneously hash download, hexdigest reported in result record:

2.3. Python tooling 111

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

> download("http://example.com/data.xml", hash=["sha256"])

Download from SSH server:

> download("ssh://example.com/home/user/data.xml")

Parameters

• spec -- Download sources and targets can be given in a variety of formats: as a URL, or
as a URL-path-pair that is mapping a source URL to a dedicated download target path.
Any number of URLs or URL-path-pairs can be provided, either as an argument list, or
read from a file (one item per line). Such a specification input file can be given as a path
to an existing file (as a single value, not as part of a URL- path-pair). When the special
path identifier '-' is used, the download is written to STDOUT. A specification can also be
read in JSON-lines encoding (each line being a string with a URL or an object mapping a
URL-string to a path-string). In addition, specifications can also be given as a list or URLs,
or as a list of dicts with a URL to path mapping. Paths are supported in string form, or as
Path objects.

• dataset -- Dataset to be used as a configuration source. Beyond reading configuration
items, this command does not interact with the dataset. [Default: None]

• force -- By default, a target path for a download must not exist yet. 'force- overwrite'
disabled this check. [Default: None]

• credential -- name of a credential to be used for authorization. If no credential is iden-
tified, the last-used credential for the authentication realm associated with the download
target will be used. If there is no credential available yet, it will be prompted for. Once
used successfully, a prompt for entering to save such a new credential will be presented.
[Default: None]

• hash -- Name of a hashing algorithm supported by the Python 'hashlib' module, e.g. 'md5'
or 'sha256'. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual

112 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

download_url(*, dataset=None, path=None, overwrite=False, archive=False, save=True, message=None)
Download content

It allows for a uniform download interface to various supported URL schemes (see command help for
details), re-using or asking for authentication details maintained by datalad.

Examples

Download files from an http and S3 URL:

> download_url(urls=['http://example.com/file.dat', 's3://bucket/file2.dat'])

Download a file to a path and provide a commit message:

> download_url(urls='s3://bucket/file2.dat', message='added a file', path=
→˓'myfile.dat')

Append a trailing slash to the target path to download into a specified directory:

> download_url(['http://example.com/file.dat'], path='data/')

Leave off the trailing slash to download into a regular file:

> download_url(['http://example.com/file.dat'], path='data')

Parameters

• urls (non-empty sequence of str) -- URL(s) to be downloaded. Supported proto-
cols: 'ftp', 'http', 'https', 's3', 'shub'.

• dataset (Dataset or None, optional) -- specify the dataset to add files to. If no
dataset is given, an attempt is made to identify the dataset based on the current working
directory. Use save=False to prevent adding files to the dataset. [Default: None]

• path (str or None, optional) -- target for download. If the path has a trailing separa-
tor, it is treated as a directory, and each specified URL is downloaded under that directory
to a base name taken from the URL. Without a trailing separator, the value specifies the
name of the downloaded file (file name extensions inferred from the URL may be added to

2.3. Python tooling 113

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

it, if they are not yet present) and only a single URL should be given. In both cases, lead-
ing directories will be created if needed. This argument defaults to the current directory.
[Default: None]

• overwrite (bool, optional) -- flag to overwrite it if target file exists. [Default: False]

• archive (bool, optional) -- pass the downloaded files to add_archive_content(...,
delete=True). [Default: False]

• save (bool, optional) -- by default all modifications to a dataset are immediately saved.
Giving this option will disable this behavior. [Default: True]

• message (str or None, optional) -- a description of the state or the changes made to
a dataset. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

drop(*, what='filecontent', reckless=None, dataset=None, recursive=False, recursion_limit=None,
jobs=None, check=None, if_dirty=None)

Drop content of individual files or entire (sub)datasets

114 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

This command is the antagonist of 'get'. It can undo the retrieval of file content, and the installation of
subdatasets.

Dropping is a safe-by-default operation. Before dropping any information, the command confirms the
continued availability of file-content (see e.g., configuration 'annex.numcopies'), and the state of all dataset
branches from at least one known dataset sibling. Moreover, prior removal of an entire dataset annex, that
it is confirmed that it is no longer marked as existing in the network of dataset siblings.

Importantly, all checks regarding version history availability and local annex availability are performed
using the current state of remote siblings as known to the local dataset. This is done for performance
reasons and for resilience in case of absent network connectivity. To ensure decision making based on
up-to-date information, it is advised to execute a dataset update before dropping dataset components.

Examples

Drop single file content:

> drop('path/to/file')

Drop all file content in the current dataset:

> drop('.')

Drop all file content in a dataset and all its subdatasets:

> drop(dataset='.', recursive=True)

Disable check to ensure the configured minimum number of remote sources for dropped data:

> drop(path='path/to/content', reckless='availability')

Drop (uninstall) an entire dataset (will fail with subdatasets present):

> drop(what='all')

Kill a dataset recklessly with any existing subdatasets too(this will be fast, but will disable any and all safety
checks):

> drop(what='all', reckless='kill', recursive=True)

Parameters

• path (sequence of str or None, optional) -- path of a dataset or dataset compo-
nent to be dropped. [Default: None]

• what ({'filecontent', 'allkeys', 'datasets', 'all'}, optional) -- select what
type of items shall be dropped. With 'filecontent', only the file content (git-annex keys)
of files in a dataset's worktree will be dropped. With 'allkeys', content of any version of any
file in any branch (including, but not limited to the worktree) will be dropped. This effec-
tively empties the annex of a local dataset. With 'datasets', only complete datasets will be
dropped (implies 'allkeys' mode for each such dataset), but no filecontent will be dropped
for any files in datasets that are not dropped entirely. With 'all', content for any matching
file or dataset will be dropped entirely. [Default: 'filecontent']

• reckless ({'modification', 'availability', 'undead', 'kill', None},
optional) -- disable individual or all data safety measures that would normally

2.3. Python tooling 115

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

prevent potentially irreversible data-loss. With 'modification', unsaved modifications
in a dataset will not be detected. This improves performance at the cost of permitting
potential loss of unsaved or untracked dataset components. With 'availability', detection
of dataset/branch-states that are only available in the local dataset, and detection of an
insufficient number of file- content copies will be disabled. Especially the latter is a
potentially expensive check which might involve numerous network transactions. With
'undead', detection of whether a to-be-removed local annex is still known to exist in the
network of dataset-clones is disabled. This could cause zombie-records of invalid file
availability. With 'kill', all safety-checks are disabled. [Default: None]

• dataset (Dataset or None, optional) -- specify the dataset to perform drop from.
If no dataset is given, the current working directory is used as operation context. [Default:
None]

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default:
False]

• recursion_limit (int or None, optional) -- limit recursion into subdatasets to the
given number of levels. [Default: None]

• jobs (int or None or {'auto'}, optional) -- how many parallel jobs (where possi-
ble) to use. "auto" corresponds to the number defined by 'datalad.runtime.max-annex-jobs'
configuration item NOTE: This option can only parallelize input retrieval (get) and output
recording (save). DataLad does NOT parallelize your scripts for you. [Default: None]

• check (bool, optional) -- DEPRECATED: use '--reckless availability'. [Default:
None]

• if_dirty -- DEPRECATED and IGNORED: use --reckless instead. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned

116 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

export_archive(*, dataset=None, archivetype='tar', compression='gz', missing_content='error')
Export the content of a dataset as a TAR/ZIP archive.

Parameters

• filename (str or None, optional) -- File name of the generated TAR archive. If no
file name is given the archive will be generated in the current directory and will be named:
datalad_<dataset_uuid>.(tar.*|zip). To generate that file in a different directory, provide an
existing directory as the file name. [Default: None]

• dataset (Dataset or None, optional) -- "specify the dataset to export. If no dataset
is given, an attempt is made to identify the dataset based on the current working directory.
[Default: None]

• archivetype ({'tar', 'zip'}, optional) -- Type of archive to generate. [Default: 'tar']

• compression ({'gz', 'bz2', ''}, optional) -- Compression method to use. 'bz2' is
not supported for ZIP archives. No compression is used when an empty string is given.
[Default: 'gz']

• missing_content ({'error', 'continue', 'ignore'}, optional) -- By default, any
discovered file with missing content will result in an error and the export is aborted. Setting
this to 'continue' will issue warnings instead of failing on error. The value 'ignore' will
only inform about problem at the 'debug' log level. The latter two can be helpful when
generating a TAR archive from a dataset where some file content is not available locally.
[Default: 'error']

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated

2.3. Python tooling 117

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

export_archive_ora(opts=None, *, dataset=None, remote=None, annex_wanted=None, froms=None,
missing_content='error')

Export an archive of a local annex object store for the ORA remote.

Keys in the local annex object store are reorganized in a temporary directory (using links to avoid storage
duplication) to use the 'hashdirlower' setup used by git-annex for bare repositories and the directory-type
special remote. This alternative object store is then moved into a 7zip archive that is suitable for use in a
ORA remote dataset store. Placing such an archive into:

<dataset location>/archives/archive.7z

Enables the ORA special remote to locate and retrieve all keys contained in the archive.

Parameters

• target (str or None) -- if an existing directory, an 'archive.7z' is placed into it, other-
wise this is the path to the target archive.

• opts -- list of options for 7z to replace the default '-mx0' to generate an uncompressed
archive. [Default: None]

• dataset (Dataset or None, optional) -- specify the dataset to process. If no dataset
is given, an attempt is made to identify the dataset based on the current working directory.
[Default: None]

• remote (str or None, optional) -- name of the target sibling, wanted/preferred set-
tings will be used to filter the files added to the archives. [Default: None]

• annex_wanted -- git-annex-preferred-content expression for git-annex find to filter files.
Should start with 'or' or 'and' when used in combination with --for. [Default: None]

• froms -- one or multiple tree-ish from which to select files. [Default: None]

• missing_content ({'error', 'continue', 'ignore'}, optional) -- By default, any
discovered file with missing content will result in an error and the export is aborted. Setting
this to 'continue' will issue warnings instead of failing on error. The value 'ignore' will
only inform about problem at the 'debug' log level. The latter two can be helpful when
generating a TAR archive from a dataset where some file content is not available locally.
[Default: 'error']

118 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

export_to_figshare(*, dataset=None, missing_content='error', no_annex=False, article_id=None)
Export the content of a dataset as a ZIP archive to figshare

Very quick and dirty approach. Ideally figshare should be supported as a proper git annex special remote.
Unfortunately, figshare does not support having directories, and can store only a flat list of files. That makes
it impossible for any sensible publishing of complete datasets.

The only workaround is to publish dataset as a zip-ball, where the entire content is wrapped into a .zip
archive for which figshare would provide a navigator.

Parameters

• filename (str or None, optional) -- File name of the generated ZIP archive. If no
file name is given the archive will be generated in the top directory of the dataset and will
be named: datalad_<dataset_uuid>.zip. [Default: None]

• dataset (Dataset or None, optional) -- "specify the dataset to export. If no dataset
is given, an attempt is made to identify the dataset based on the current working directory.
[Default: None]

2.3. Python tooling 119

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• missing_content ({'error', 'continue', 'ignore'}, optional) -- By default, any
discovered file with missing content will result in an error and the plugin is aborted. Setting
this to 'continue' will issue warnings instead of failing on error. The value 'ignore' will
only inform about problem at the 'debug' log level. The latter two can be helpful when
generating a TAR archive from a dataset where some file content is not available locally.
[Default: 'error']

• no_annex (bool, optional) -- By default the generated .zip file would be added to an-
nex, and all files would get registered in git-annex to be available from such a tarball. Also
upon upload we will register for that archive to be a possible source for it in annex. Setting
this flag disables this behavior. [Default: False]

• article_id (int or None, optional) -- Which article to publish to. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

foreach_dataset(*, cmd_type='auto', dataset=None, state='present', recursive=False,
recursion_limit=None, contains=None, bottomup=False, subdatasets_only=False,
output_streams='pass-through', chpwd='ds', safe_to_consume='auto', jobs=None)

Run a command or Python code on the dataset and/or each of its sub-datasets.

120 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

This command provides a convenience for the cases were no dedicated DataLad command is provided to
operate across the hierarchy of datasets. It is very similar to git submodule foreach command with the
following major differences

• by default (unless subdatasets_only=True) it would include operation on the original dataset as well,

• subdatasets could be traversed in bottom-up order,

• can execute commands in parallel (see jobs option), but would account for the order, e.g. in bottom-up
order command is executed in super-dataset only after it is executed in all subdatasets.

Additional notes:

• for execution of "external" commands we use the environment used to execute external git and git-
annex commands.

Command format

cmd_type='external': A few placeholders are supported in the command via Python format specification:

• "{pwd}" will be replaced with the full path of the current working directory.

• "{ds}" and "{refds}" will provide instances of the dataset currently operated on and the reference
"context" dataset which was provided via dataset argument.

• "{tmpdir}" will be replaced with the full path of a temporary directory.

Examples

Aggressively git clean all datasets, running 5 parallel jobs:

> foreach_dataset(['git', 'clean', '-dfx'], recursive=True, jobs=5)

Parameters

• cmd -- command for execution. For cmd_type='exec' or cmd_type='eval' (Python code)
should be either a string or a list with only a single item. If 'eval', the actual function can
be passed, which will be provided all placeholders as keyword arguments.

• cmd_type ({'auto', 'external', 'exec', 'eval'}, optional) -- type of the com-
mand. external: to be run in a child process using dataset's runner; 'exec': Python source
code to execute using 'exec(), no value returned; 'eval': Python source code to evaluate us-
ing 'eval()', return value is placed into 'result' field. 'auto': If used via Python API, and cmd
is a Python function, it will use 'eval', and otherwise would assume 'external'. [Default:
'auto']

• dataset (Dataset or None, optional) -- specify the dataset to operate on. If no
dataset is given, an attempt is made to identify the dataset based on the input and/or the
current working directory. [Default: None]

• state ({'present', 'absent', 'any'}, optional) -- indicate which (sub)datasets to
consider: either only locally present, absent, or any of those two kinds. [Default: 'present']

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default:
False]

• recursion_limit (int or None, optional) -- limit recursion into subdatasets to the
given number of levels. [Default: None]

• contains (list of str or None, optional) -- limit to the subdatasets containing
the given path. If a root path of a subdataset is given, the last considered dataset will be the

2.3. Python tooling 121

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

subdataset itself. Can be a list with multiple paths, in which case datasets that contain any
of the given paths will be considered. [Default: None]

• bottomup (bool, optional) -- whether to report subdatasets in bottom-up order along
each branch in the dataset tree, and not top-down. [Default: False]

• subdatasets_only (bool, optional) -- whether to exclude top level dataset. It is im-
plied if a non-empty contains is used. [Default: False]

• output_streams ({'capture', 'pass-through', 'relpath'}, optional) -- ways to
handle outputs. 'capture' and return outputs from 'cmd' in the record ('stdout', 'stderr'); 'pass-
through' to the screen (and thus absent from returned record); prefix with 'relpath' captured
output (similar to like grep does) and write to stdout and stderr. In 'relpath', relative path
is relative to the top of the dataset if dataset is specified, and if not - relative to current
directory. [Default: 'pass-through']

• chpwd ({'ds', 'pwd'}, optional) -- 'ds' will change working directory to the top of the
corresponding dataset. With 'pwd' no change of working directory will happen. Note that
for Python commands, due to use of threads, we do not allow chdir=ds to be used with jobs
> 1. Hint: use 'ds' and 'refds' objects' methods to execute commands in the context of those
datasets. [Default: 'ds']

• safe_to_consume ({'auto', 'all-subds-done', 'superds-done', 'always'},
optional) -- Important only in the case of parallel (jobs greater than 1) execution.
'all-subds-done' instructs to not consider superdataset until command finished execution
in all subdatasets (it is the value in case of 'auto' if traversal is bottomup). 'superds-done'
instructs to not process subdatasets until command finished in the super-dataset (it is the
value in case of 'auto' in traversal is not bottom up, which is the default). With 'always'
there is no constraint on either to execute in sub or super dataset. [Default: 'auto']

• jobs (int or None or {'auto'}, optional) -- how many parallel jobs (where possi-
ble) to use. "auto" corresponds to the number defined by 'datalad.runtime.max-annex-jobs'
configuration item NOTE: This option can only parallelize input retrieval (get) and output
recording (save). DataLad does NOT parallelize your scripts for you. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual

122 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

get(*, source=None, dataset=None, recursive=False, recursion_limit=None, get_data=True,
description=None, reckless=None, jobs='auto')
Get any dataset content (files/directories/subdatasets).

This command only operates on dataset content. To obtain a new independent dataset from some source
use the clone command.

By default this command operates recursively within a dataset, but not across potential subdatasets, i.e. if
a directory is provided, all files in the directory are obtained. Recursion into subdatasets is supported too.
If enabled, relevant subdatasets are detected and installed in order to fulfill a request.

Known data locations for each requested file are evaluated and data are obtained from some available loca-
tion (according to git-annex configuration and possibly assigned remote priorities), unless a specific source
is specified.

Getting subdatasets

Just as DataLad supports getting file content from more than one location, the same is supported for sub-
datasets, including a ranking of individual sources for prioritization.

The following location candidates are considered. For each candidate a cost is given in parenthesis, higher
values indicate higher cost, and thus lower priority:

• A datalad URL recorded in .gitmodules (cost 590). This allows for datalad URLs that require additional
handling/resolution by datalad, like ria-schemes (ria+http, ria+ssh, etc.)

• A URL or absolute path recorded for git in .gitmodules (cost 600).

• URL of any configured superdataset remote that is known to have the desired submodule commit, with
the submodule path appended to it. There can be more than one candidate (cost 650).

• In case .gitmodules contains a relative path instead of a URL, the URL of any configured superdataset
remote that is known to have the desired submodule commit, with this relative path appended to it.
There can be more than one candidate (cost 650).

• In case .gitmodules contains a relative path as a URL, the absolute path of the superdataset, appended
with this relative path (cost 900).

Additional candidate URLs can be generated based on templates specified as configuration variables with
the pattern

datalad.get.subdataset-source-candidate-<name>

2.3. Python tooling 123

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

where name is an arbitrary identifier. If name starts with three digits (e.g. '400myserver') these will be
interpreted as a cost, and the respective candidate will be sorted into the generated candidate list according
to this cost. If no cost is given, a default of 700 is used.

A template string assigned to such a variable can utilize the Python format mini language and may reference
a number of properties that are inferred from the parent dataset's knowledge about the target subdataset.
Properties include any submodule property specified in the respective .gitmodules record. For convenience,
an existing datalad-id record is made available under the shortened name id.

Additionally, the URL of any configured remote that contains the respective submodule commit is available
as remoteurl-<name> property, where name is the configured remote name.

Hence, such a template could be http://example.org/datasets/{id} or http://example.org/datasets/{path},
where {id} and {path} would be replaced by the datalad-id or path entry in the .gitmodules record.

If this config is committed in .datalad/config, a clone of a dataset can look up any subdataset's URL ac-
cording to such scheme(s) irrespective of what URL is recorded in .gitmodules.

Lastly, all candidates are sorted according to their cost (lower values first), and duplicate URLs are stripped,
while preserving the first item in the candidate list.

Note: Power-user info: This command uses git annex get to fulfill file handles.

Examples

Get a single file:

> get('path/to/file')

Get contents of a directory:

> get('path/to/dir/')

Get all contents of the current dataset and its subdatasets:

> get(dataset='.', recursive=True)

Get (clone) a registered subdataset, but don't retrieve data:

> get('path/to/subds', get_data=False)

Parameters

• path (sequence of str or None, optional) -- path/name of the requested dataset
component. The component must already be known to a dataset. To add new components
to a dataset use the add command. [Default: None]

• source (str or None, optional) -- label of the data source to be used to fulfill re-
quests. This can be the name of a dataset sibling or another known source. [Default:
None]

• dataset (Dataset or None, optional) -- specify the dataset to perform the add op-
eration on, in which case path arguments are interpreted as being relative to this dataset. If
no dataset is given, an attempt is made to identify a dataset for each input path. [Default:
None]

124 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default:
False]

• recursion_limit (int or {'existing'} or None, optional) -- limit recursion
into subdataset to the given number of levels. Alternatively, 'existing' will limit recursion
to subdatasets that already existed on the filesystem at the start of processing, and prevent
new subdatasets from being obtained recursively. [Default: None]

• get_data (bool, optional) -- whether to obtain data for all file handles. If disabled,
get operations are limited to dataset handles. [Default: True]

• description (str or None, optional) -- short description to use for a dataset loca-
tion. Its primary purpose is to help humans to identify a dataset copy (e.g., "mike's dataset
on lab server"). Note that when a dataset is published, this information becomes available
on the remote side. [Default: None]

• reckless ({None, True, False, 'auto', 'ephemeral'} or shared-...,
optional) -- Obtain a dataset or subdatset and set it up in a potentially unsafe way
for performance, or access reasons. Use with care, any dataset is marked as 'untrusted'.
The reckless mode is stored in a dataset's local configuration under 'datalad.clone.reckless',
and will be inherited to any of its subdatasets. Supported modes are: ['auto']: hard-link
files between local clones. In-place modification in any clone will alter original annex
content. ['ephemeral']: symlink annex to origin's annex and discard local availability
info via git- annex-dead 'here' and declares this annex private. Shares an annex between
origin and clone w/o git-annex being aware of it. In case of a change in origin you need to
update the clone before you're able to save new content on your end. Alternative to 'auto'
when hardlinks are not an option, or number of consumed inodes needs to be minimized.
Note that this mode can only be used with clones from non-bare repositories or a RIA
store! Otherwise two different annex object tree structures (dirhashmixed vs dirhashlower)
will be used simultaneously, and annex keys using the respective other structure will
be inaccessible. ['shared-<mode>']: set up repository and annex permission to enable
multi-user access. This disables the standard write protection of annex'ed files. <mode>
can be any value support by 'git init --shared=', such as 'group', or 'all'. [Default: None]

• jobs (int or None or {'auto'}, optional) -- how many parallel jobs (where possi-
ble) to use. "auto" corresponds to the number defined by 'datalad.runtime.max-annex-jobs'
configuration item. [Default: 'auto']

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering

2.3. Python tooling 125

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

get_superdataset(datalad_only=False, topmost=False, registered_only=True)
Get the dataset's superdataset

Parameters

• datalad_only (bool, optional) -- Whether to consider only "datalad datasets" (with
non-None id), or (if False, which is default) - any git repository

• topmost (bool, optional) -- Return the topmost super-dataset. Might then be the cur-
rent one.

• registered_only (bool, optional) -- Test whether any discovered superdataset ac-
tually contains the dataset in question as a registered subdataset (as opposed to just being
located in a subdirectory without a formal relationship).

Return type
Dataset or None

property id

Identifier of the dataset.

This identifier is supposed to be unique across datasets, but identical for different versions of the same
dataset (that have all been derived from the same original dataset repository).

Note, that a plain git/git-annex repository doesn't necessarily have a dataset id yet. It is created by
Dataset.create() and stored in .datalad/config. If None is returned while there is a valid repository, there
may have never been a call to create in this branch before current commit.

Note, that this property is evaluated every time it is used. If used multiple times within a function it's
probably a good idea to store its value in a local variable and use this variable instead.

Returns
This is either a stored UUID, or None.

Return type
str

install(*, source=None, dataset=None, get_data=False, description=None, recursive=False,
recursion_limit=None, reckless=None, jobs='auto', branch=None)

Install one or many datasets from remote URL(s) or local PATH source(s).

126 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

This command creates local sibling(s) of existing dataset(s) from (remote) locations specified as URL(s)
or path(s). Optional recursion into potential subdatasets, and download of all referenced data is supported.
The new dataset(s) can be optionally registered in an existing superdataset by identifying it via the dataset
argument (the new dataset's path needs to be located within the superdataset for that).

If no explicit source option is specified, then all positional URL- OR-PATH arguments are considered to
be "sources" if they are URLs or target locations if they are paths. If a target location path corresponds to a
submodule, the source location for it is figured out from its record in the .gitmodules. If source is specified,
then a single optional positional PATH would be taken as the destination path for that dataset.

It is possible to provide a brief description to label the dataset's nature and location, e.g. "Michael's music
on black laptop". This helps humans to identify data locations in distributed scenarios. By default an
identifier comprised of user and machine name, plus path will be generated.

When only partial dataset content shall be obtained, it is recommended to use this command without the
get-data flag, followed by a ~datalad.api.get operation to obtain the desired data.

Note: Power-user info: This command uses git clone, and git annex init to prepare the dataset. Registering
to a superdataset is performed via a git submodule add operation in the discovered superdataset.

Examples

Install a dataset from GitHub into the current directory:

> install(source='https://github.com/datalad-datasets/longnow-podcasts.git')

Install a dataset as a subdataset into the current dataset:

> install(dataset='.',
source='https://github.com/datalad-datasets/longnow-podcasts.git')

Install a dataset into 'podcasts' (not 'longnow-podcasts') directory, and get all content right away:

> install(path='podcasts',
source='https://github.com/datalad-datasets/longnow-podcasts.git',
get_data=True)

Install a dataset with all its subdatasets:

> install(source='https://github.com/datalad-datasets/longnow-podcasts.git',
recursive=True)

Parameters

• path -- path/name of the installation target. If no path is provided a destination path will
be derived from a source URL similar to git clone. [Default: None]

• source (str or None, optional) -- URL or local path of the installation source. [De-
fault: None]

• dataset (Dataset or None, optional) -- specify the dataset to perform the install
operation on. If no dataset is given, an attempt is made to identify the dataset in a parent
directory of the current working directory and/or the path given. [Default: None]

• get_data (bool, optional) -- if given, obtain all data content too. [Default: False]

2.3. Python tooling 127

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• description (str or None, optional) -- short description to use for a dataset loca-
tion. Its primary purpose is to help humans to identify a dataset copy (e.g., "mike's dataset
on lab server"). Note that when a dataset is published, this information becomes available
on the remote side. [Default: None]

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default:
False]

• recursion_limit (int or None, optional) -- limit recursion into subdatasets to the
given number of levels. [Default: None]

• reckless ({None, True, False, 'auto', 'ephemeral'} or shared-...,
optional) -- Obtain a dataset or subdatset and set it up in a potentially unsafe way
for performance, or access reasons. Use with care, any dataset is marked as 'untrusted'.
The reckless mode is stored in a dataset's local configuration under 'datalad.clone.reckless',
and will be inherited to any of its subdatasets. Supported modes are: ['auto']: hard-link
files between local clones. In-place modification in any clone will alter original annex
content. ['ephemeral']: symlink annex to origin's annex and discard local availability
info via git- annex-dead 'here' and declares this annex private. Shares an annex between
origin and clone w/o git-annex being aware of it. In case of a change in origin you need to
update the clone before you're able to save new content on your end. Alternative to 'auto'
when hardlinks are not an option, or number of consumed inodes needs to be minimized.
Note that this mode can only be used with clones from non-bare repositories or a RIA
store! Otherwise two different annex object tree structures (dirhashmixed vs dirhashlower)
will be used simultaneously, and annex keys using the respective other structure will
be inaccessible. ['shared-<mode>']: set up repository and annex permission to enable
multi-user access. This disables the standard write protection of annex'ed files. <mode>
can be any value support by 'git init --shared=', such as 'group', or 'all'. [Default: None]

• jobs (int or None or {'auto'}, optional) -- how many parallel jobs (where possi-
ble) to use. "auto" corresponds to the number defined by 'datalad.runtime.max-annex-jobs'
configuration item. [Default: 'auto']

• branch (str or None, optional) -- Clone source at this branch or tag. This option
applies only to the top-level dataset not any subdatasets that may be cloned when installing
recursively. Note that if the source is a RIA URL with a version, it takes precedence over
this option. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: <function is_result_matching_pathsource_argument at 0x7f8fc6c8d670>]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering

128 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: 'successdatasets-or- none']

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'item-or-list']

is_installed()

Returns whether a dataset is installed.

A dataset is installed when a repository for it exists on the filesystem.

Return type
bool

next_status(*, untracked='normal', recursive='repository', eval_subdataset_state='full')→
Generator[StatusResult, None, None] | list[StatusResult]

Report on the (modification) status of a dataset

Note: This is a preview of an command implementation aiming to replace the DataLad status command.

For now, expect anything here to change again.

This command provides a report that is roughly identical to that of git status. Running with default
parameters yields a report that should look familiar to Git and DataLad users alike, and contain the same
information as offered by git status.

The main difference to git status are:

• Support for recursion into submodule. git status does that too, but the report is limited to the global
state of an entire submodule, whereas this command can issue detailed reports in changes inside a
submodule (any nesting depth).

• Support for directory-constrained reporting. Much like git status limits its report to a single repos-
itory, this command can optionally limit its report to a single directory and its direct children. In this
report subdirectories are considered containers (much like) submodules, and a change summary is
provided for them.

• Support for a "mono" (monolithic repository) report. Unlike a standard recursion into submodules,
and checking each of them for changes with respect to the HEAD commit of the worktree, this report
compares a submodule with respect to the state recorded in its parent repository. This provides an
equally comprehensive status report from the point of view of a queried repository, but does not include
a dedicated item on the global state of a submodule. This makes nested hierarchy of repositories appear
like a single (mono) repository.

2.3. Python tooling 129

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• Support for "adjusted mode" git-annex repositories. These utilize a managed branch that is repeat-
edly rewritten, hence is not suitable for tracking within a parent repository. Instead, the underlying
"corresponding branch" is used, which contains the equivalent content in an un-adjusted form, persis-
tently. This command detects this condition and automatically check a repositories state against the
corresponding branch state.

Presently missing/planned features

• There is no support for specifying paths (or pathspecs) for constraining the operation to specific dataset
parts. This will be added in the future.

• There is no reporting of git-annex properties, such as tracked file size. It is undetermined whether this
will be added in the future. However, even without a dedicated switch, this command has support for
datasets (and their submodules) in git-annex's "adjusted mode".

Differences to the ``status`` command implementation prior DataLad v2

• Like git status this implementation reports on dataset modification, whereas the previous status
also provided a listing of unchanged dataset content. This is no longer done. Equivalent functionality
for listing dataset content is provided by the ls_file_collection command.

• The implementation is substantially faster. Depending on the context the speed-up is typically some-
where between 2x and 100x.

• The implementation does not suffer from the limitation re type change detection.

• Python and CLI API of the command use uniform parameter validation.

Parameters

• dataset -- Dataset to be used as a configuration source. Beyond reading configuration
items, this command does not interact with the dataset. [Default: None]

• untracked -- Determine how untracked content is considered and reported when compar-
ing a revision to the state of the working tree. 'no': no untracked content is considered as a
change; 'normal': untracked files and entire untracked directories are reported as such; 'all':
report individual files even in fully untracked directories. In addition to these git-status
modes, 'whole-dir' (like normal, but include empty directories), and 'no-empty-dir' (alias
for 'normal') are understood. [Default: 'normal']

• recursive -- Mode of recursion for status reporting. With 'no' the report is restricted to a
single directory and its direct children. With 'repository', the report comprises all reposi-
tory content underneath current working directory or root of a given dataset, but is limited
to items directly contained in that repository. With 'datasets', the report also comprises any
content in any subdatasets. Each subdataset is evaluated against its respective HEAD com-
mit. With 'mono', a report similar to 'datasets' is generated, but any subdataset is evaluate
with respect to the state recorded in its parent repository. In contrast to the 'datasets' mode,
no report items on a joint submodule are generated. [Default: 'repository']

• eval_subdataset_state -- Evaluation of subdataset state (modified or untracked con-
tent) can be expensive for deep dataset hierarchies as subdataset have to be tested recur-
sively for uncommitted modifications. Setting this option to 'no' or 'commit' can substan-
tially boost performance by limiting what is being tested. With 'no' no state is evaluated
and subdataset are not investigated for modifications. With 'commit' only a discrepancy
of the HEAD commit gitsha of a subdataset and the gitsha recorded in the superdataset's
record is evaluated. With 'full' any other modifications are considered too. [Default: 'full']

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any

130 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

no_annex(pattern, ref_dir='.', makedirs=False)
Configure a dataset to never put some content into the dataset's annex

This can be useful in mixed datasets that also contain textual data, such as source code, which can be
efficiently and more conveniently managed directly in Git.

Patterns generally look like this:

code/*

which would match all file in the code directory. In order to match all files under code/, including all its
subdirectories use such a pattern:

code/**

Note that this command works incrementally, hence any existing configuration (e.g. from a previous plugin
run) is amended, not replaced.

Parameters

2.3. Python tooling 131

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• dataset (Dataset or None) -- "specify the dataset to configure. If no dataset is given,
an attempt is made to identify the dataset based on the current working directory.

• pattern -- list of path patterns. Any content whose path is matching any pattern will not
be annexed when added to a dataset, but instead will be tracked directly in Git. Path pattern
have to be relative to the directory given by the ref_dir option. By default, patterns should
be relative to the root of the dataset.

• ref_dir -- Relative path (within the dataset) to the directory that is to be configured.
All patterns are interpreted relative to this path, and configuration is written to a .
gitattributes file in this directory. [Default: '.']

• makedirs (bool, optional) -- If set, any missing directories will be created in order to
be able to place a file into --ref-dir. [Default: False]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

property path

path to the dataset

132 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

property pathobj

pathobj for the dataset

push(*, dataset=None, to=None, since=None, data='auto-if-wanted', force=None, recursive=False,
recursion_limit=None, jobs=None)

Push a dataset to a known sibling.

This makes a saved state of a dataset available to a sibling or special remote data store of a dataset. Any
target sibling must already exist and be known to the dataset.

By default, all files tracked in the last saved state (of the current branch) will be copied to the target location.
Optionally, it is possible to limit a push to changes relative to a particular point in the version history of
a dataset (e.g. a release tag) using the since option in conjunction with the specification of a reference
dataset. In recursive mode subdatasets will also be evaluated, and only those subdatasets are pushed where
a change was recorded that is reflected in the current state of the top-level reference dataset.

Note: Power-user info: This command uses git push, and git annex copy to push a dataset. Publication
targets are either configured remote Git repositories, or git-annex special remotes (if they support data
upload).

The following feature is added by the datalad-next extension:

If a target is a git-annex special remote that has "exporttree" set to "yes", push will call 'git-annex export'
to export the current HEAD to the remote target. This will usually result in a copy of the file tree, to
which HEAD refers, on the remote target. A git-annex special remote with "exporttree" set to "yes" can, for
example, be created with the datalad command "create-sibling-webdav" with the option "--mode=filetree"
or "--mode=filetree-only".

Parameters

• path (sequence of str or None, optional) -- path to constrain a push to. If given,
only data or changes for those paths are considered for a push. [Default: None]

• dataset (Dataset or None, optional) -- specify the dataset to push. [Default:
None]

• to (str or None, optional) -- name of the target sibling. If no name is given an at-
tempt is made to identify the target based on the dataset's configuration (i.e. a configured
tracking branch, or a single sibling that is configured for push). [Default: None]

• since (str or None, optional) -- specifies commit-ish (tag, shasum, etc.) from
which to look for changes to decide whether pushing is necessary. If '^' is given, the last
state of the current branch at the sibling is taken as a starting point. [Default: None]

• data ({'anything', 'nothing', 'auto', 'auto-if-wanted'}, optional) -- what to
do with (annex'ed) data. 'anything' would cause transfer of all annexed content, 'nothing'
would avoid call to git annex copy altogether. 'auto' would use 'git annex copy' with '--
auto' thus transferring only data which would satisfy "wanted" or "numcopies" settings for
the remote (thus "nothing" otherwise). 'auto-if-wanted' would enable '--auto' mode only
if there is a "wanted" setting for the remote, and transfer 'anything' otherwise. [Default:
'auto-if- wanted']

• force ({'all', 'gitpush', 'checkdatapresent', 'export', None}, optional) --
force particular operations, possibly overruling safety protections or optimizations: use --
force with git-push ('gitpush'); do not use --fast with git-annex copy ('checkdatapresent');
force an annex export (to git annex remotes with "exporttree" set to "yes"); combine all
force modes ('all'). [Default: None]

2.3. Python tooling 133

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default:
False]

• recursion_limit (int or None, optional) -- limit recursion into subdatasets to the
given number of levels. [Default: None]

• jobs (int or None or {'auto'}, optional) -- how many parallel jobs (where possi-
ble) to use. "auto" corresponds to the number defined by 'datalad.runtime.max-annex-jobs'
configuration item. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

recall_state(whereto)
Something that can be used to checkout a particular state (tag, commit) to "undo" a change or switch to a
otherwise desired previous state.

Parameters
whereto (str)

remove(*, dataset=None, drop='datasets', reckless=None, message=None, jobs=None, recursive=None,
check=None, save=None, if_dirty=None)

134 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Remove components from datasets

Removing "unlinks" a dataset component, such as a file or subdataset, from a dataset. Such a removal
advances the state of a dataset, just like adding new content. A remove operation can be undone, by restoring
a previous dataset state, but might require re-obtaining file content and subdatasets from remote locations.

This command relies on the 'drop' command for safe operation. By default, only file content from datasets
which will be uninstalled as part of a removal will be dropped. Otherwise file content is retained, such
that restoring a previous version also immediately restores file content access, just as it is the case for files
directly committed to Git. This default behavior can be changed to always drop content prior removal, for
cases where a minimal storage footprint for local datasets installations is desirable.

Removing a dataset component is always a recursive operation. Removing a directory, removes all content
underneath the directory too. If subdatasets are located under a to-be-removed path, they will be uninstalled
entirely, and all their content dropped. If any subdataset can not be uninstalled safely, the remove operation
will fail and halt.

Changed in version 0.16: More in-depth and comprehensive safety-checks are now performed by default.
The if_dirty argument is ignored, will be removed in a future release, and can be removed for a safe-
by-default behavior. For other cases consider the reckless argument. The save argument is ignored and
will be removed in a future release, a dataset modification is now always saved. Consider save's amend
argument for post-remove fix-ups. The recursive argument is ignored, and will be removed in a future
release. Removal operations are always recursive, and the parameter can be stripped from calls for a safe-
by-default behavior.

Deprecated since version 0.16: The check argument will be removed in a future release. It needs to be
replaced with reckless.

Examples

Permanently remove a subdataset (and all further subdatasets contained in it) from a dataset:

> remove(dataset='path/to/dataset', path='path/to/subds')

Permanently remove a superdataset (with all subdatasets) from the filesystem:

> remove(dataset='path/to/dataset')

DANGER-ZONE: Fast wipe-out a dataset and all its subdataset, bypassing all safety checks:

> remove(dataset='path/to/dataset', reckless='kill')

Parameters

• path (sequence of str or None, optional) -- path of a dataset or dataset compo-
nent to be removed. [Default: None]

• dataset (Dataset or None, optional) -- specify the dataset to perform remove from.
If no dataset is given, the current working directory is used as operation context. [Default:
None]

• drop ({'datasets', 'all'}, optional) -- which dataset components to drop prior re-
moval. This parameter is passed on to the underlying drop operation as its 'what' argument.
[Default: 'datasets']

• reckless ({'modification', 'availability', 'undead', 'kill', None},
optional) -- disable individual or all data safety measures that would normally

2.3. Python tooling 135

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

prevent potentially irreversible data-loss. With 'modification', unsaved modifications
in a dataset will not be detected. This improves performance at the cost of permitting
potential loss of unsaved or untracked dataset components. With 'availability', detection
of dataset/branch-states that are only available in the local dataset, and detection of an
insufficient number of file- content copies will be disabled. Especially the latter is a
potentially expensive check which might involve numerous network transactions. With
'undead', detection of whether a to-be-removed local annex is still known to exist in the
network of dataset-clones is disabled. This could cause zombie-records of invalid file
availability. With 'kill', all safety-checks are disabled. [Default: None]

• message (str or None, optional) -- a description of the state or the changes made to
a dataset. [Default: None]

• jobs (int or None or {'auto'}, optional) -- how many parallel jobs (where possi-
ble) to use. "auto" corresponds to the number defined by 'datalad.runtime.max-annex-jobs'
configuration item NOTE: This option can only parallelize input retrieval (get) and output
recording (save). DataLad does NOT parallelize your scripts for you. [Default: None]

• recursive -- DEPRECATED and IGNORED: removal is always a recursive operation.
[Default: None]

• check (bool, optional) -- DEPRECATED: use '--reckless availability'. [Default:
None]

• save (bool, optional) -- DEPRECATED and IGNORED; use save --amend instead.
[Default: None]

• if_dirty -- DEPRECATED and IGNORED: use --reckless instead. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result

136 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

property repo

Get an instance of the version control system/repo for this dataset, or None if there is none yet (or none
anymore).

If testing the validity of an instance of GitRepo is guaranteed to be really cheap this could also serve as a
test whether a repo is present.

Note, that this property is evaluated every time it is used. If used multiple times within a function it's
probably a good idea to store its value in a local variable and use this variable instead.

Return type
GitRepo or AnnexRepo

rerun(*, since=None, dataset=None, branch=None, message=None, onto=None, script=None, report=False,
assume_ready=None, explicit=False, jobs=None)

Re-execute previous datalad run commands.

This will unlock any dataset content that is on record to have been modified by the command in the specified
revision. It will then re-execute the command in the recorded path (if it was inside the dataset). Afterwards,
all modifications will be saved.

Report mode

When called with report=True, this command reports information about what would be re-executed as a
series of records. There will be a record for each revision in the specified revision range. Each of these will
have one of the following "rerun_action" values:

• run: the revision has a recorded command that would be re-executed

• skip-or-pick: the revision does not have a recorded command and would be either skipped or cherry
picked

• merge: the revision is a merge commit and a corresponding merge would be made

The decision to skip rather than cherry pick a revision is based on whether the revision would be reachable
from HEAD at the time of execution.

In addition, when a starting point other than HEAD is specified, there is a rerun_action value "checkout",
in which case the record includes information about the revision the would be checked out before rerunning
any commands.

Note: Currently the "onto" feature only sets the working tree of the current dataset to a previous state. The
working trees of any subdatasets remain unchanged.

2.3. Python tooling 137

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Examples

Re-execute the command from the previous commit:

> rerun()

Re-execute any commands in the last five commits:

> rerun(since='HEAD~5')

Do the same as above, but re-execute the commands on top of HEAD~5 in a detached state:

> rerun(onto='', since='HEAD~5')

Parameters

• revision (str or None, optional) -- rerun command(s) in revision. By default, the
command from this commit will be executed, but since can be used to construct a revision
range. The default value is like "HEAD" but resolves to the main branch when on an
adjusted branch. [Default: None]

• since (str or None, optional) -- If since is a commit-ish, the commands from all
commits that are reachable from revision but not since will be re-executed (in other words,
the commands in git log SINCE..REVISION). If SINCE is an empty string, it is set to the
parent of the first commit that contains a recorded command (i.e., all commands in git log
REVISION will be re-executed). [Default: None]

• dataset (Dataset or None, optional) -- specify the dataset from which to rerun a
recorded command. If no dataset is given, an attempt is made to identify the dataset based
on the current working directory. If a dataset is given, the command will be executed in
the root directory of this dataset. [Default: None]

• branch (str or None, optional) -- create and checkout this branch before rerunning
the commands. [Default: None]

• message (str or None, optional) -- use MESSAGE for the reran commit rather than
the recorded commit message. In the case of a multi-commit rerun, all the reran commits
will have this message. [Default: None]

• onto (str or None, optional) -- start point for rerunning the commands. If not spec-
ified, commands are executed at HEAD. This option can be used to specify an alternative
start point, which will be checked out with the branch name specified by branch or in a de-
tached state otherwise. As a special case, an empty value for this option means the parent
of the first run commit in the specified revision list. [Default: None]

• script (str or None, optional) -- extract the commands into this file rather than
rerunning. Use - to write to stdout instead. [Default: None]

• report (bool, optional) -- Don't actually re-execute anything, just display what would
be done. [Default: False]

• assume_ready ({None, 'inputs', 'outputs', 'both'}, optional) -- Assume that
inputs do not need to be retrieved and/or outputs do not need to unlocked or removed before
running the command. This option allows you to avoid the expense of these preparation
steps if you know that they are unnecessary. Note that this option also affects any additional
outputs that are automatically inferred based on inspecting changed files in the run commit.
[Default: None]

138 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• explicit (bool, optional) -- Consider the specification of inputs and outputs in the
run record to be explicit. Don't warn if the repository is dirty, and only save modifications
to the outputs from the original record. Note that when several run commits are specified,
this applies to every one. Care should also be taken when using onto because checking out
a new HEAD can easily fail when the working tree has modifications. [Default: False]

• jobs (int or None or {'auto'}, optional) -- how many parallel jobs (where possi-
ble) to use. "auto" corresponds to the number defined by 'datalad.runtime.max-annex-jobs'
configuration item NOTE: This option can only parallelize input retrieval (get) and output
recording (save). DataLad does NOT parallelize your scripts for you. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

run(*, dataset=None, inputs=None, outputs=None, expand=None, assume_ready=None, explicit=False,
message=None, sidecar=None, dry_run=None, jobs=None)
Run an arbitrary shell command and record its impact on a dataset.

It is recommended to craft the command such that it can run in the root directory of the dataset that the
command will be recorded in. However, as long as the command is executed somewhere underneath the

2.3. Python tooling 139

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

dataset root, the exact location will be recorded relative to the dataset root.

If the executed command did not alter the dataset in any way, no record of the command execution is made.

If the given command errors, a CommandError exception with the same exit code will be raised, and no
modifications will be saved. A command execution will not be attempted, by default, when an error oc-
curred during input or output preparation. This default stop behavior can be overridden via on_failure=....

In the presence of subdatasets, the full dataset hierarchy will be checked for unsaved changes prior command
execution, and changes in any dataset will be saved after execution. Any modification of subdatasets is also
saved in their respective superdatasets to capture a comprehensive record of the entire dataset hierarchy
state. The associated provenance record is duplicated in each modified (sub)dataset, although only being
fully interpretable and re-executable in the actual top-level superdataset. For this reason the provenance
record contains the dataset ID of that superdataset.

Command format

A few placeholders are supported in the command via Python format specification. "{pwd}" will be re-
placed with the full path of the current working directory. "{dspath}" will be replaced with the full path of
the dataset that run is invoked on. "{tmpdir}" will be replaced with the full path of a temporary directory.
"{inputs}" and "{outputs}" represent the values specified by inputs and outputs. If multiple values are spec-
ified, the values will be joined by a space. The order of the values will match that order from the command
line, with any globs expanded in alphabetical order (like bash). Individual values can be accessed with an
integer index (e.g., "{inputs[0]}").

Note that the representation of the inputs or outputs in the formatted command string depends on whether
the command is given as a list of arguments or as a string. The concatenated list of inputs or outputs will be
surrounded by quotes when the command is given as a list but not when it is given as a string. This means
that the string form is required if you need to pass each input as a separate argument to a preceding script
(i.e., write the command as "./script {inputs}", quotes included). The string form should also be used if the
input or output paths contain spaces or other characters that need to be escaped.

To escape a brace character, double it (i.e., "{{" or "}}").

Custom placeholders can be added as configuration variables under "datalad.run.substitutions". As an
example:

Add a placeholder "name" with the value "joe":

% datalad configuration --scope branch set datalad.run.substitutions.
→˓name=joe
% datalad save -m "Configure name placeholder" .datalad/config

Access the new placeholder in a command:

% datalad run "echo my name is {name} >me"

Examples

Run an executable script and record the impact on a dataset:

> run(message='run my script', cmd='code/script.sh')

Run a command and specify a directory as a dependency for the run. The contents of the dependency will
be retrieved prior to running the script:

> run(cmd='code/script.sh', message='run my script',
inputs=['data/*'])

140 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Run an executable script and specify output files of the script to be unlocked prior to running the script:

> run(cmd='code/script.sh', message='run my script',
inputs=['data/*'], outputs=['output_dir'])

Specify multiple inputs and outputs:

> run(cmd='code/script.sh',
message='run my script',
inputs=['data/*', 'datafile.txt'],
outputs=['output_dir', 'outfile.txt'])

Use ** to match any file at any directory depth recursively. Single * does not check files within matched
directories.:

> run(cmd='code/script.sh',
message='run my script',
inputs=['data/**/*.dat'],
outputs=['output_dir/**'])

Parameters

• cmd -- command for execution. A leading '--' can be used to disambiguate this command
from the preceding options to DataLad. [Default: None]

• dataset (Dataset or None, optional) -- specify the dataset to record the command
results in. An attempt is made to identify the dataset based on the current working directory.
If a dataset is given, the command will be executed in the root directory of this dataset.
[Default: None]

• inputs -- A dependency for the run. Before running the command, the content for this
relative path will be retrieved. A value of "." means "run datalad get .". The value can also
be a glob. [Default: None]

• outputs -- Prepare this relative path to be an output file of the command. A value of "."
means "run datalad unlock ." (and will fail if some content isn't present). For any other
value, if the content of this file is present, unlock the file. Otherwise, remove it. The value
can also be a glob. [Default: None]

• expand ({None, 'inputs', 'outputs', 'both'}, optional) -- Expand globs when
storing inputs and/or outputs in the commit message. [Default: None]

• assume_ready ({None, 'inputs', 'outputs', 'both'}, optional) -- Assume that
inputs do not need to be retrieved and/or outputs do not need to unlocked or removed before
running the command. This option allows you to avoid the expense of these preparation
steps if you know that they are unnecessary. [Default: None]

• explicit (bool, optional) -- Consider the specification of inputs and outputs to be
explicit. Don't warn if the repository is dirty, and only save modifications to the listed
outputs. [Default: False]

• message (str or None, optional) -- a description of the state or the changes made to
a dataset. [Default: None]

• sidecar (None or bool, optional) -- By default, the configuration variable
'datalad.run.record-sidecar' determines whether a record with information on a command's
execution is placed into a separate record file instead of the commit message (default:

2.3. Python tooling 141

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

off). This option can be used to override the configured behavior on a case-by-case ba-
sis. Sidecar files are placed into the dataset's '.datalad/runinfo' directory (customizable via
the 'datalad.run.record-directory' configuration variable). [Default: None]

• dry_run ({None, 'basic', 'command'}, optional) -- Do not run the command; just
display details about the command execution. A value of "basic" reports a few important
details about the execution, including the expanded command and expanded inputs and
outputs. "command" displays the expanded command only. Note that input and output
globs underneath an uninstalled dataset will be left unexpanded because no subdatasets
will be installed for a dry run. [Default: None]

• jobs (int or None or {'auto'}, optional) -- how many parallel jobs (where possi-
ble) to use. "auto" corresponds to the number defined by 'datalad.runtime.max-annex-jobs'
configuration item NOTE: This option can only parallelize input retrieval (get) and output
recording (save). DataLad does NOT parallelize your scripts for you. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'stop']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

142 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

run_procedure(*, dataset=None, discover=False, help_proc=False)
Run prepared procedures (DataLad scripts) on a dataset

Concept

A "procedure" is an algorithm with the purpose to process a dataset in a particular way. Procedures can be
useful in a wide range of scenarios, like adjusting dataset configuration in a uniform fashion, populating
a dataset with particular content, or automating other routine tasks, such as synchronizing dataset content
with certain siblings.

Implementations of some procedures are shipped together with DataLad, but additional procedures can be
provided by 1) any DataLad extension, 2) any (sub-)dataset, 3) a local user, or 4) a local system adminis-
trator. DataLad will look for procedures in the following locations and order:

Directories identified by the configuration settings

• 'datalad.locations.user-procedures' (determined by platformdirs.user_config_dir; defaults to
'$HOME/.config/datalad/procedures' on GNU/Linux systems)

• 'datalad.locations.system-procedures' (determined by platformdirs.site_config_dir; defaults to
'/etc/xdg/datalad/procedures' on GNU/Linux systems)

• 'datalad.locations.dataset-procedures'

and subsequently in the 'resources/procedures/' directories of any installed extension, and, lastly, of the
DataLad installation itself.

Please note that a dataset that defines 'datalad.locations.dataset-procedures' provides its procedures to any
dataset it is a subdataset of. That way you can have a collection of such procedures in a dedicated dataset
and install it as a subdataset into any dataset you want to use those procedures with. In case of a naming
conflict with such a dataset hierarchy, the dataset you're calling run-procedures on will take precedence
over its subdatasets and so on.

Each configuration setting can occur multiple times to indicate multiple directories to be searched. If a
procedure matching a given name is found (filename without a possible extension), the search is aborted
and this implementation will be executed. This makes it possible for individual datasets, users, or ma-
chines to override externally provided procedures (enabling the implementation of customizable processing
"hooks").

Procedure implementation

A procedure can be any executable. Executables must have the appropriate permissions and, in the case
of a script, must contain an appropriate "shebang" line. If a procedure is not executable, but its filename
ends with '.py', it is automatically executed by the 'python' interpreter (whichever version is available in the
present environment). Likewise, procedure implementations ending on '.sh' are executed via 'bash'.

Procedures can implement any argument handling, but must be capable of taking at least one positional
argument (the absolute path to the dataset they shall operate on).

For further customization there are two configuration settings per procedure available:

• 'datalad.procedures.<NAME>.call-format' fully customizable format string to determine how to exe-
cute procedure NAME (see also datalad-run). It currently requires to include the following placehold-
ers:

– '{script}': will be replaced by the path to the procedure

– '{ds}': will be replaced by the absolute path to the dataset the procedure shall operate on

– '{args}': (not actually required) will be replaced by

all but the first element of spec if spec is a list or tuple As an example the default format string for
a call to a python script is: "python {script} {ds} {args}"

2.3. Python tooling 143

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• 'datalad.procedures.<NAME>.help' will be shown on datalad run-procedure --help-proc NAME to
provide a description and/or usage info for procedure NAME

Examples

Find out which procedures are available on the current system:

> run_procedure(discover=True)

Run the 'yoda' procedure in the current dataset:

> run_procedure(spec='cfg_yoda', recursive=True)

Parameters

• spec -- Name and possibly additional arguments of the to-be-executed procedure. [PY:
Can also be a dictionary coming from run- procedure(discover=True).]. [Default: None]

• dataset (Dataset or None, optional) -- specify the dataset to run the procedure on.
An attempt is made to identify the dataset based on the current working directory. [Default:
None]

• discover (bool, optional) -- if given, all configured paths are searched for procedures
and one result record per discovered procedure is yielded, but no procedure is executed.
[Default: False]

• help_proc (bool, optional) -- if given, get a help message for procedure NAME from
config setting datalad.procedures.NAME.help. [Default: False]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

144 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

save(*, message=None, dataset=None, version_tag=None, recursive=False, recursion_limit=None,
updated=False, message_file=None, to_git=None, jobs=None, amend=False)

Save the current state of a dataset

Saving the state of a dataset records changes that have been made to it. This change record is annotated
with a user-provided description. Optionally, an additional tag, such as a version, can be assigned to the
saved state. Such tag enables straightforward retrieval of past versions at a later point in time.

Note: Before Git v2.22, any Git repository without an initial commit located inside a Dataset is ignored,
and content underneath it will be saved to the respective superdataset. DataLad datasets always have an
initial commit, hence are not affected by this behavior.

Examples

Save any content underneath the current directory, without altering any potential subdataset:

> save(path='.')

Save specific content in the dataset:

> save(path='myfile.txt')

Attach a commit message to save:

> save(path='myfile.txt', message='add file')

Save any content underneath the current directory, and recurse into any potential subdatasets:

> save(path='.', recursive=True)

Save any modification of known dataset content in the current directory, but leave untracked files (e.g.
temporary files) untouched:

> save(path='.', updated=True)

Tag the most recent saved state of a dataset:

> save(version_tag='bestyet')

Save a specific change but integrate into last commit keeping the already recorded commit message:

2.3. Python tooling 145

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

> save(path='myfile.txt', amend=True)

Parameters

• path (sequence of str or None, optional) -- path/name of the dataset component
to save. If given, only changes made to those components are recorded in the new state.
[Default: None]

• message (str or None, optional) -- a description of the state or the changes made to
a dataset. [Default: None]

• dataset (Dataset or None, optional) -- "specify the dataset to save. [Default:
None]

• version_tag (str or None, optional) -- an additional marker for that state. Every
dataset that is touched will receive the tag. [Default: None]

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default:
False]

• recursion_limit (int or None, optional) -- limit recursion into subdatasets to the
given number of levels. [Default: None]

• updated (bool, optional) -- if given, only saves previously tracked paths. [Default:
False]

• message_file (str or None, optional) -- take the commit message from this file.
This flag is mutually exclusive with -m. [Default: None]

• to_git (bool, optional) -- flag whether to add data directly to Git, instead of tracking
data identity only. Use with caution, there is no guarantee that a file put directly into Git
like this will not be annexed in a subsequent save operation. If not specified, it will be
up to git-annex to decide how a file is tracked, based on a dataset's configuration to track
particular paths, file types, or file sizes with either Git or git-annex. (see https://git-annex.
branchable.com/tips/largefiles). [Default: None]

• jobs (int or None or {'auto'}, optional) -- how many parallel jobs (where possi-
ble) to use. "auto" corresponds to the number defined by 'datalad.runtime.max-annex-jobs'
configuration item. [Default: None]

• amend (bool, optional) -- if set, changes are not recorded in a new, separate commit, but
are integrated with the changeset of the previous commit, and both together are recorded
by replacing that previous commit. This is mutually exclusive with recursive operation.
[Default: False]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

146 Chapter 2. Functionality provided by DataLad NEXT

https://git-annex.branchable.com/tips/largefiles
https://git-annex.branchable.com/tips/largefiles

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

siblings(*, dataset=None, name=None, url=None, pushurl=None, description=None, fetch=False,
as_common_datasrc=None, publish_depends=None, publish_by_default=None,
annex_wanted=None, annex_required=None, annex_group=None, annex_groupwanted=None,
inherit=False, get_annex_info=True, recursive=False, recursion_limit=None)

Manage sibling configuration

This command offers four different actions: 'query', 'add', 'remove', 'configure', 'enable'. 'query' is the default
action and can be used to obtain information about (all) known siblings. 'add' and 'configure' are highly
similar actions, the only difference being that adding a sibling with a name that is already registered will fail,
whereas re-configuring a (different) sibling under a known name will not be considered an error. 'enable'
can be used to complete access configuration for non-Git sibling (aka git-annex special remotes). Lastly,
the 'remove' action allows for the removal (or de-configuration) of a registered sibling.

For each sibling (added, configured, or queried) all known sibling properties are reported. This includes:

"name"
Name of the sibling

"path"
Absolute path of the dataset

"url"
For regular siblings at minimum a "fetch" URL, possibly also a "pushurl"

Additionally, any further configuration will also be reported using a key that matches that in the Git con-
figuration.

By default, sibling information is rendered as one line per sibling following this scheme:

<dataset_path>: <sibling_name>(<+|->) [<access_specification]

2.3. Python tooling 147

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

where the + and - labels indicate the presence or absence of a remote data annex at a particular remote, and
access_specification contains either a URL and/or a type label for the sibling.

Parameters

• action ({'query', 'add', 'remove', 'configure', 'enable'}, optional) -- com-
mand action selection (see general documentation). [Default: 'query']

• dataset (Dataset or None, optional) -- specify the dataset to configure. If no
dataset is given, an attempt is made to identify the dataset based on the input and/or the
current working directory. [Default: None]

• name (str or None, optional) -- name of the sibling. For addition with path "URLs"
and sibling removal this option is mandatory, otherwise the hostname part of a given URL
is used as a default. This option can be used to limit 'query' to a specific sibling. [Default:
None]

• url (str or None, optional) -- the URL of or path to the dataset sibling named by
name. For recursive operation it is required that a template string for building subdataset
sibling URLs is given. List of currently available placeholders: %%NAME the name of
the dataset, where slashes are replaced by dashes. [Default: None]

• pushurl (str or None, optional) -- in case the url cannot be used to publish to the
dataset sibling, this option specifies a URL to be used instead. If no url is given, pushurl
serves as url as well. [Default: None]

• description (str or None, optional) -- short description to use for a dataset loca-
tion. Its primary purpose is to help humans to identify a dataset copy (e.g., "mike's dataset
on lab server"). Note that when a dataset is published, this information becomes available
on the remote side. [Default: None]

• fetch (bool, optional) -- fetch the sibling after configuration. [Default: False]

• as_common_datasrc -- configure a sibling as a common data source of the dataset that
can be automatically used by all consumers of the dataset. The sibling must be a regular
Git remote with a configured HTTP(S) URL. [Default: None]

• publish_depends (list of str or None, optional) -- add a dependency such
that the given existing sibling is always published prior to the new sibling. This equals
setting a configuration item 'remote.SIBLINGNAME.datalad-publish-depends'. Multiple
dependencies can be given as a list of sibling names. [Default: None]

• publish_by_default (list of str or None, optional) -- add a refspec to be
published to this sibling by default if nothing specified. [Default: None]

• annex_wanted (str or None, optional) -- expression to specify 'wanted' content for
the repository/sibling. See https://git-annex.branchable.com/git-annex-wanted/ for more
information. [Default: None]

• annex_required (str or None, optional) -- expression to specify 'required' con-
tent for the repository/sibling. See https://git-annex.branchable.com/git-annex-required/
for more information. [Default: None]

• annex_group (str or None, optional) -- expression to specify a group for the repos-
itory. See https://git- annex.branchable.com/git-annex-group/ for more information. [De-
fault: None]

• annex_groupwanted (str or None, optional) -- expression for the groupwanted.
Makes sense only if annex_wanted="groupwanted" and annex-group is given too. See
https://git-annex.branchable.com/git-annex-groupwanted/ for more information. [Default:
None]

148 Chapter 2. Functionality provided by DataLad NEXT

https://git-annex.branchable.com/git-annex-wanted/
https://git-annex.branchable.com/git-annex-required/
https://git
https://git-annex.branchable.com/git-annex-groupwanted/

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• inherit (bool, optional) -- if sibling is missing, inherit settings (git config, git annex
wanted/group/groupwanted) from its super-dataset. [Default: False]

• get_annex_info (bool, optional) -- Whether to query all information about the annex
configurations of siblings. Can be disabled if speed is a concern. [Default: True]

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default:
False]

• recursion_limit (int or None, optional) -- limit recursion into subdatasets to the
given number of levels. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

status(*, dataset=None, annex=None, untracked='normal', recursive=False, recursion_limit=None,
eval_subdataset_state='full', report_filetype=None)

Report on the state of dataset content.

This is an analog to git status that is simultaneously crippled and more powerful. It is crippled, because it
only supports a fraction of the functionality of its counter part and only distinguishes a subset of the states
that Git knows about. But it is also more powerful as it can handle status reports for a whole hierarchy

2.3. Python tooling 149

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

of datasets, with the ability to report on a subset of the content (selection of paths) across any number of
datasets in the hierarchy.

Path conventions

All reports are guaranteed to use absolute paths that are underneath the given or detected reference dataset,
regardless of whether query paths are given as absolute or relative paths (with respect to the working di-
rectory, or to the reference dataset, when such a dataset is given explicitly). Moreover, so-called "explicit
relative paths" (i.e. paths that start with '.' or '..') are also supported, and are interpreted as relative paths
with respect to the current working directory regardless of whether a reference dataset with specified.

When it is necessary to address a subdataset record in a superdataset without causing a status query for the
state _within_ the subdataset itself, this can be achieved by explicitly providing a reference dataset and the
path to the root of the subdataset like so:

datalad status --dataset . subdspath

In contrast, when the state of the subdataset within the superdataset is not relevant, a status query for the
content of the subdataset can be obtained by adding a trailing path separator to the query path (rsync-like
syntax):

datalad status --dataset . subdspath/

When both aspects are relevant (the state of the subdataset content and the state of the subdataset within
the superdataset), both queries can be combined:

datalad status --dataset . subdspath subdspath/

When performing a recursive status query, both status aspects of subdataset are always included in the
report.

Content types

The following content types are distinguished:

• 'dataset' -- any top-level dataset, or any subdataset that is properly registered in superdataset

• 'directory' -- any directory that does not qualify for type 'dataset'

• 'file' -- any file, or any symlink that is placeholder to an annexed file when annex-status reporting is
enabled

• 'symlink' -- any symlink that is not used as a placeholder for an annexed file

Content states

The following content states are distinguished:

• 'clean'

• 'added'

• 'modified'

• 'deleted'

• 'untracked'

150 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Examples

Report on the state of a dataset:

> status()

Report on the state of a dataset and all subdatasets:

> status(recursive=True)

Address a subdataset record in a superdataset without causing a status query for the state _within_ the
subdataset itself:

> status(dataset='.', path='mysubdataset')

Get a status query for the state within the subdataset without causing a status query for the superdataset
(using trailing path separator in the query path)::

> status(dataset='.', path='mysubdataset/')

Report on the state of a subdataset in a superdataset and on the state within the subdataset:

> status(dataset='.', path=['mysubdataset', 'mysubdataset/'])

Report the file size of annexed content in a dataset:

> status(annex=True)

Parameters

• path (sequence of str or None, optional) -- path to be evaluated. [Default:
None]

• dataset (Dataset or None, optional) -- specify the dataset to query. If no dataset
is given, an attempt is made to identify the dataset based on the current working directory.
[Default: None]

• annex ({None, 'basic', 'availability', 'all'}, optional) -- Switch whether to
include information on the annex content of individual files in the status report, such as
recorded file size. By default no annex information is reported (faster). Three report
modes are available: basic information like file size and key name ('basic'); additionally
test whether file content is present in the local annex ('availability'; requires one or two
additional file system stat calls, but does not call git-annex), this will add the result prop-
erties 'has_content' (boolean flag) and 'objloc' (absolute path to an existing annex object
file); or 'all' which will report all available information (presently identical to 'availability').
[Default: None]

• untracked ({'no', 'normal', 'all'}, optional) -- If and how untracked content is re-
ported when comparing a revision to the state of the working tree. 'no': no untracked
content is reported; 'normal': untracked files and entire untracked directories are reported
as such; 'all': report individual files even in fully untracked directories. [Default: 'normal']

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default:
False]

• recursion_limit (int or None, optional) -- limit recursion into subdatasets to the
given number of levels. [Default: None]

2.3. Python tooling 151

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• eval_subdataset_state ({'no', 'commit', 'full'}, optional) -- Evaluation of
subdataset state (clean vs. modified) can be expensive for deep dataset hierarchies as sub-
dataset have to be tested recursively for uncommitted modifications. Setting this option to
'no' or 'commit' can substantially boost performance by limiting what is being tested. With
'no' no state is evaluated and subdataset result records typically do not contain a 'state' prop-
erty. With 'commit' only a discrepancy of the HEAD commit shasum of a subdataset and
the shasum recorded in the superdataset's record is evaluated, and the 'state' result prop-
erty only reflects this aspect. With 'full' any other modification is considered too (see the
'untracked' option for further tailoring modification testing). [Default: 'full']

• report_filetype ({'raw', 'eval', None}, optional) -- THIS OPTION IS IG-
NORED. It will be removed in a future release. Dataset component types are always re-
ported as-is (previous 'raw' mode), unless annex-reporting is enabled with the annex option,
in which case symlinks that represent annexed files will be reported as type='file'. [Default:
None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

152 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

subdatasets(*, dataset=None, state='any', fulfilled=None(DEPRECATED), recursive=False,
recursion_limit=None, contains=None, bottomup=False, set_property=None,
delete_property=None)

Report subdatasets and their properties.

The following properties are reported (if possible) for each matching subdataset record.

"name"
Name of the subdataset in the parent (often identical with the relative path in the parent dataset)

"path"
Absolute path to the subdataset

"parentds"
Absolute path to the parent dataset

"gitshasum"
SHA1 of the subdataset commit recorded in the parent dataset

"state"
Condition of the subdataset: 'absent', 'present'

"gitmodule_url"
URL of the subdataset recorded in the parent

"gitmodule_name"
Name of the subdataset recorded in the parent

"gitmodule_<label>"
Any additional configuration property on record.

Performance note: Property modification, requesting bottomup reporting order, or a particular numerical
recursion_limit implies an internal switch to an alternative query implementation for recursive query that
is more flexible, but also notably slower (performs one call to Git per dataset versus a single call for all
combined).

The following properties for subdatasets are recognized by DataLad (without the 'gitmodule_' prefix that is
used in the query results):

"datalad-recursiveinstall"
If set to 'skip', the respective subdataset is skipped when DataLad is recursively installing its super-
dataset. However, the subdataset remains installable when explicitly requested, and no other features
are impaired.

"datalad-url"
If a subdataset was originally established by cloning, 'datalad-url' records the URL that was used to do
so. This might be different from 'url' if the URL contains datalad specific pieces like any URL of the
form "ria+<some protocol>...".

Parameters

• path (sequence of str or None, optional) -- path/name to query for subdatasets.
Defaults to the current directory, or the entire dataset if called as a dataset method. [Default:
None]

• dataset (Dataset or None, optional) -- specify the dataset to query. If no dataset
is given, an attempt is made to identify the dataset based on the input and/or the current
working directory. [Default: None]

• state ({'present', 'absent', 'any'}, optional) -- indicate which (sub)datasets to
consider: either only locally present, absent, or any of those two kinds. [Default: 'any']

2.3. Python tooling 153

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• fulfilled (bool or None, optional) -- DEPRECATED: use state instead. If given,
must be a boolean flag indicating whether to consider either only locally present or absent
datasets. By default all subdatasets are considered regardless of their status. [Default:
None(DEPRECATED)]

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default:
False]

• recursion_limit (int or None, optional) -- limit recursion into subdatasets to the
given number of levels. [Default: None]

• contains (list of str or None, optional) -- limit to the subdatasets containing
the given path. If a root path of a subdataset is given, the last considered dataset will be the
subdataset itself. Can be a list with multiple paths, in which case datasets that contain any
of the given paths will be considered. [Default: None]

• bottomup (bool, optional) -- whether to report subdatasets in bottom-up order along
each branch in the dataset tree, and not top-down. [Default: False]

• set_property (list of 2-item sequence of str or None, optional) --
Name and value of one or more subdataset properties to be set in the parent dataset's
.gitmodules file. The property name is case- insensitive, must start with a letter, and
consist only of alphanumeric characters. The value can be a Python format() template
string wrapped in '<>' (e.g. '<{gitmodule_name}>'). Supported keywords are any item
reported in the result properties of this command, plus 'refds_relpath' and 'refds_relname':
the relative path of a subdataset with respect to the base dataset of the command call,
and, in the latter case, the same string with all directory separators replaced by dashes.
[Default: None]

• delete_property (list of str or None, optional) -- Name of one or more sub-
dataset properties to be removed from the parent dataset's .gitmodules file. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

154 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

tree(*, depth=None, recursive=False, recursion_limit=None, include_files=False, include_hidden=False)
Visualize directory and dataset hierarchies

This command mimics the UNIX/MS-DOS 'tree' utility to generate and display a directory tree, with
DataLad-specific enhancements.

It can serve the following purposes:

1. Glorified 'tree' command

2. Dataset discovery

3. Programmatic directory traversal

Glorified 'tree' command

The rendered command output uses 'tree'-style visualization:

/tmp/mydir
[DS~0] ds_A/

[DS~1] subds_A/
[DS~0] ds_B/

dir_B/
file.txt
subdir_B/
[DS~1] subds_B0/

[DS~1] (not installed) subds_B1/

5 datasets, 2 directories, 1 file

Dataset paths are prefixed by a marker indicating subdataset hierarchy level, like [DS~1]. This is the
absolute subdataset level, meaning it may also take into account superdatasets located above the tree root and
thus not included in the output. If a subdataset is registered but not installed (such as after a non-recursive
datalad clone), it will be prefixed by (not installed). Only DataLad datasets are considered, not
pure git/git-annex repositories.

The 'report line' at the bottom of the output shows the count of displayed datasets, in addition to the count
of directories and files. In this context, datasets and directories are mutually exclusive categories.

By default, only directories (no files) are included in the tree, and hidden directories are skipped. Both
behaviours can be changed using command options.

Symbolic links are always followed. This means that a symlink pointing to a directory is traversed and
counted as a directory (unless it potentially creates a loop in the tree).

Dataset discovery

2.3. Python tooling 155

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Using the recursive or recursion_limit option, this command generates the layout of dataset hierar-
chies based on subdataset nesting level, regardless of their location in the filesystem.

In this case, tree depth is determined by subdataset depth. This mode is thus suited for discovering available
datasets when their location is not known in advance.

By default, only datasets are listed, without their contents. If depth is specified additionally, the contents
of each dataset will be included up to depth directory levels (excluding subdirectories that are themselves
datasets).

Tree filtering options such as include_hidden only affect which directories are reported as dataset con-
tents, not which directories are traversed to find datasets.

Performance note: since no assumption is made on the location of datasets, running this command with
the recursive or recursion_limit option does a full scan of the whole directory tree. As such, it can
be significantly slower than a call with an equivalent output that uses depth to limit the tree instead.

Programmatic directory traversal

The command yields a result record for each tree node (dataset, directory or file). The following properties
are reported, where available:

"path"
Absolute path of the tree node

"type"
Type of tree node: "dataset", "directory" or "file"

"depth"
Directory depth of node relative to the tree root

"exhausted_levels"
Depth levels for which no nodes are left to be generated (the respective subtrees have been 'exhausted')

"count"
Dict with cumulative counts of datasets, directories and files in the tree up until the current node. File
count is only included if the command is run with the include_files option.

"dataset_depth"
Subdataset depth level relative to the tree root. Only included for node type "dataset".

"dataset_abs_depth"
Absolute subdataset depth level. Only included for node type "dataset".

"dataset_is_installed"
Whether the registered subdataset is installed. Only included for node type "dataset".

"symlink_target"
If the tree node is a symlink, the path to the link target

"is_broken_symlink"
If the tree node is a symlink, whether it is a broken symlink

156 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Examples

Show up to 3 levels of subdirectories below the current directory, including files and hidden contents:

> tree(depth=3, include_files=True, include_hidden=True)

Find all top-level datasets located anywhere under /tmp:

> tree('/tmp', recursion_limit=0)

Report all subdatasets recursively and their directory contents, up to 1 subdirectory deep within each
dataset:

> tree(recursive=True, depth=1)

Parameters

• path -- path to directory from which to generate the tree. Defaults to the current directory.
[Default: '.']

• depth -- limit the tree to maximum level of subdirectories. If not specified, will generate
the full tree with no depth constraint. If paired with recursive or recursion_limit,
refers to the maximum directory level to output below each dataset. [Default: None]

• recursive (bool, optional) -- produce a dataset tree of the full hierarchy of nested
subdatasets. Note: may have slow performance on large directory trees. [Default: False]

• recursion_limit -- limit the dataset tree to maximum level of nested subdatasets. 0
means include only top-level datasets, 1 means top-level datasets and their immediate sub-
datasets, etc. Note: may have slow performance on large directory trees. [Default: None]

• include_files (bool, optional) -- include files in the tree. [Default: False]

• include_hidden (bool, optional) -- include hidden files/directories in the tree. This
option does not affect which directories will be searched for datasets when specifying
recursive or recursion_limit. For example, datasets located underneath the hidden
folder .datalad will be reported even if include_hidden is omitted. [Default: False]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering

2.3. Python tooling 157

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

uninstall(*, dataset=None, recursive=False, check=True, if_dirty='save-before')
DEPRECATED: use the drop command

Parameters

• path (sequence of str or None, optional) -- path/name of the component to be
uninstalled. [Default: None]

• dataset (Dataset or None, optional) -- specify the dataset to perform the operation
on. If no dataset is given, an attempt is made to identify a dataset based on the path given.
[Default: None]

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default:
False]

• check (bool, optional) -- whether to perform checks to assure the configured minimum
number (remote) source for data. [Default: True]

• if_dirty -- desired behavior if a dataset with unsaved changes is discovered: 'fail' will
trigger an error and further processing is aborted; 'save-before' will save all changes prior
any further action; 'ignore' let's datalad proceed as if the dataset would not have unsaved
changes. [Default: 'save-before']

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there

158 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

unlock(*, dataset=None, recursive=False, recursion_limit=None)
Unlock file(s) of a dataset

Unlock files of a dataset in order to be able to edit the actual content

Examples

Unlock a single file:

> unlock(path='path/to/file')

Unlock all contents in the dataset:

> unlock('.')

Parameters

• path (sequence of str or None, optional) -- file(s) to unlock. [Default: None]

• dataset (Dataset or None, optional) -- "specify the dataset to unlock files in. If no
dataset is given, an attempt is made to identify the dataset based on the current working
directory. [Default: None]

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default:
False]

• recursion_limit (int or None, optional) -- limit recursion into subdatasets to the
given number of levels. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception

2.3. Python tooling 159

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

update(*, sibling=None, merge=False, how=None, how_subds=None, follow='sibling', dataset=None,
recursive=False, recursion_limit=None, fetch_all=None, reobtain_data=False)

Update a dataset from a sibling.

Examples

Update from a particular sibling:

> update(sibling='siblingname')

Update from a particular sibling and merge the changes from a configured or matching branch from the
sibling (see follow for details):

> update(sibling='siblingname', how='merge')

Update from the sibling 'origin', traversing into subdatasets. For subdatasets, merge the revision registered
in the parent dataset into the current branch:

160 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

> update(sibling='origin', how='merge', follow='parentds', recursive=True)

Fetch and merge the remote tracking branch into the current dataset. Then update each subdataset by
resetting its current branch to the revision registered in the parent dataset, fetching only if the revision isn't
already present:

> update(how='merge', how_subds='reset', follow='parentds-lazy', recursive=True)

Parameters

• path (sequence of str or None, optional) -- constrain to-be-updated subdatasets
to the given path for recursive operation. [Default: None]

• sibling (str or None, optional) -- name of the sibling to update from. When un-
specified, updates from all siblings are fetched. If there is more than one sibling and
changes will be brought into the working tree (as requested via merge, how, or how_subds),
a sibling will be chosen based on the configured remote for the current branch. [Default:
None]

• merge (bool or {'any', 'ff-only'}, optional) -- merge obtained changes from the
sibling. This is a subset of the functionality that can be achieved via the newer how.
merge=True or merge="any" is equivalent to how="merge". merge="ff-only" is equiva-
lent to how="ff-only". [Default: False]

• how ({'fetch', 'merge', 'ff-only', 'reset', 'checkout', None}, optional) --
how to update the dataset. The default ("fetch") simply fetches the changes from the sib-
ling but doesn't incorporate them into the working tree. A value of "merge" or "ff-only"
merges in changes, with the latter restricting the allowed merges to fast-forwards. "reset"
incorporates the changes with 'git reset --hard <target>', staying on the current branch but
discarding any changes that aren't shared with the target. "checkout", on the other hand,
runs 'git checkout <target>', switching from the current branch to a detached state. When
recursive=True is specified, this action will also apply to subdatasets unless overridden by
how_subds. [Default: None]

• how_subds ({'fetch', 'merge', 'ff-only', 'reset', 'checkout', None},
optional) -- Override the behavior of how in subdatasets. [Default: None]

• follow ({'sibling', 'parentds', 'parentds-lazy'}, optional) -- source of up-
dates for subdatasets. For 'sibling', the update will be done by merging in a branch from
the (specified or inferred) sibling. The branch brought in will either be the current branch's
configured branch, if it points to a branch that belongs to the sibling, or a sibling branch
with a name that matches the current branch. For 'parentds', the revision registered in the
parent dataset of the subdataset is merged in. 'parentds-lazy' is like 'parentds', but prevents
fetching from a subdataset's sibling if the registered revision is present in the subdataset.
Note that the current dataset is always updated according to 'sibling'. This option has no
effect unless a merge is requested and recursive=True is specified. [Default: 'sibling']

• dataset (Dataset or None, optional) -- specify the dataset to update. If no dataset
is given, an attempt is made to identify the dataset based on the current working directory.
[Default: None]

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default:
False]

• recursion_limit (int or None, optional) -- limit recursion into subdatasets to the
given number of levels. [Default: None]

2.3. Python tooling 161

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• fetch_all (bool, optional) -- this option has no effect and will be removed in a future
version. When no siblings are given, an all-sibling update will be performed. [Default:
None]

• reobtain_data (bool, optional) -- if enabled, file content that was present before an
update will be re-obtained in case a file was changed by the update. [Default: False]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

wtf(*, sensitive=None, sections=None, flavor='full', decor=None, clipboard=None)
Generate a report about the DataLad installation and configuration

IMPORTANT: Sharing this report with untrusted parties (e.g. on the web) should be done with care, as it
may include identifying information, and/or credentials or access tokens.

Parameters

• dataset (Dataset or None, optional) -- "specify the dataset to report on. no dataset
is given, an attempt is made to identify the dataset based on the current working directory.
[Default: None]

162 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• sensitive ({None, 'some', 'all'}, optional) -- if set to 'some' or 'all', it will display
sections such as config and metadata which could potentially contain sensitive information
(credentials, names, etc.). If 'some', the fields which are known to be sensitive will still be
masked out. [Default: None]

• sections (list of {None, 'configuration', 'credentials', 'datalad',
'dataset', 'dependencies', 'environment', 'extensions', 'git-annex',
'location', 'metadata', 'metadata.extractors', 'metadata.filters',
'metadata.indexers', 'python', 'system', '*'}, optional) -- section to in-
clude. If not set - depends on flavor. '*' could be used to force all sections. If there are
subsections like section.subsection available, then specifying just 'section' would select all
subsections for that section. [Default: None]

• flavor ({'full', 'short'}, optional) -- Flavor of WTF. 'full' would produce mark-
down with exhaustive list of sections. 'short' will provide a condensed summary only of
datalad and dependencies by default. Use section to list other sections. [Default: 'full']

• decor ({'html_details', None}, optional) -- decoration around the rendering to fa-
cilitate embedding into issues etc, e.g. use 'html_details' for posting collapsible entry to
GitHub issues. [Default: None]

• clipboard (bool, optional) -- if set, do not print but copy to clipboard (requires pyper-
clip module). [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

2.3. Python tooling 163

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

datalad_next.datasets.LeanGitRepo

datalad_next.datasets.LeanGitRepo

alias of GitRepo

datalad_next.datasets.LeanAnnexRepo

class datalad_next.datasets.LeanAnnexRepo(*args, **kwargs)
Bases: AnnexRepo

git-annex repository representation with a minimized API

This is a companion of LeanGitRepo. In the same spirit, it restricts its API to a limited set of method that extend
LeanGitRepo.

datalad_next.datasets.LegacyGitRepo

datalad_next.datasets.LegacyGitRepo

alias of GitRepo

datalad_next.datasets.LegacyAnnexRepo

datalad_next.datasets.LegacyAnnexRepo

alias of AnnexRepo

2.3.8 datalad_next.exceptions

Special purpose exceptions

CapturedException(exc[, limit, ...]) This class represents information about an occurred ex-
ception (including its traceback), while not holding any
references to the actual exception object or its traceback,
frame references, etc.

IncompleteResultsError([results, failed, msg]) Exception to be raised whenever results are incomplete.
NoDatasetFound Raised whenever a dataset is required, but none could be

determined

164 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.exceptions.CapturedException

class datalad_next.exceptions.CapturedException(exc, limit=None, capture_locals=False, level=8,
logger=None)

Bases: object

This class represents information about an occurred exception (including its traceback), while not holding any
references to the actual exception object or its traceback, frame references, etc.

Just keep the textual information for logging or whatever other kind of reporting.

format_oneline_tb(limit=None, include_str=True)
Format an exception traceback as a one-line summary

Returns a string of the form [filename:contextname:linenumber, ...]. If include_str is True (default), this is
prepended with the string representation of the exception.

format_short()

Returns a short representation of the original exception

Form: ExceptionName(exception message)

Return type
str

format_standard()

Returns python's standard formatted traceback output

Return type
str

format_with_cause()

Returns a representation of the original exception including the underlying causes

property message

Returns only the message of the original exception

Return type
str

property name

Returns the class name of the original exception

Return type
str

datalad_next.exceptions.IncompleteResultsError

exception datalad_next.exceptions.IncompleteResultsError(results=None, failed=None, msg=None)
Exception to be raised whenever results are incomplete.

Any results produced nevertheless are to be passed as results, and become available via the results attribute.

2.3. Python tooling 165

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.exceptions.NoDatasetFound

exception datalad_next.exceptions.NoDatasetFound

Raised whenever a dataset is required, but none could be determined

2.3.9 datalad_next.iterable_subprocess

Context manager to communicate with a subprocess using iterables

This offers a higher level interface to subprocesses than Python's built-in subprocess module, and is particularly helpful
when data won't fit in memory and has to be streamed.

This also allows an external subprocess to be naturally placed in a chain of iterables as part of a data processing pipeline.

This code has been taken from https://pypi.org/project/iterable-subprocess/ and was subsequently adjusted for cross-
platform compatibility and performance, as well as tighter integration with DataLad.

The original code was made available under the terms of the MIT License, and was written by Michal Charemza.

iterable_subprocess(program, input_chunks[, ...])

datalad_next.iterable_subprocess.iterable_subprocess

datalad_next.iterable_subprocess.iterable_subprocess(program, input_chunks, chunk_size=65536,
cwd=None, bufsize=-1)

2.3.10 datalad_next.itertools

Various iterators, e.g., for subprocess pipelining and output processing

align_pattern(iterable, pattern) Yield data chunks that contain a complete pattern, if it is
present

decode_bytes(iterable[, encoding, ...]) Decode bytes in an iterable into strings
itemize(iterable, sep, *[, keep_ends]) Yields complete items (only), assembled from an iter-

able
load_json(iterable) Convert items yielded by iterable into JSON objects

and yield them
load_json_with_flag(iterable) Convert items from iterable into JSON objects and a

success flag
route_out(iterable, data_store, splitter) Route data around the consumer of this iterable
route_in(iterable, data_store, joiner) Yield previously rerouted data to the consumer

166 Chapter 2. Functionality provided by DataLad NEXT

https://pypi.org/project/iterable-subprocess/

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.itertools.align_pattern

datalad_next.itertools.align_pattern(iterable: Iterable[str | bytes | bytearray], pattern: str | bytes |
bytearray)→ Generator[str | bytes | bytearray, None, None]

Yield data chunks that contain a complete pattern, if it is present

align_patternmakes it easy to find a pattern (str, bytes, or bytearray) in data chunks. It joins data-chunks
in such a way, that a simple containment-check (e.g. pattern in chunk) on the chunks that align_pattern
yields will suffice to determine whether the pattern is present in the stream yielded by the underlying iterable or
not.

To achieve this, align_pattern will join consecutive chunks to ensures that the following two assertions hold:

1. Each chunk that is yielded by align_pattern has at least the length of the pattern (unless the underlying
iterable is exhausted before the length of the pattern is reached).

2. The pattern is not split between two chunks, i.e. no chunk that is yielded by align_pattern ends with a
prefix of the pattern (unless it is the last chunk that the underlying iterable yield).

The pattern might be present multiple times in a yielded data chunk.

Note: the pattern is compared verbatim to the content in the data chunks, i.e. no parsing of the pattern is
performed and no regular expressions or wildcards are supported.

>>> from datalad_next.itertools import align_pattern
>>> tuple(align_pattern([b'abcd', b'e', b'fghi'], pattern=b'def'))
(b'abcdefghi',)
>>> # The pattern can be present multiple times in a yielded chunk
>>> tuple(align_pattern([b'abcd', b'e', b'fdefghi'], pattern=b'def'))
(b'abcdefdefghi',)

Use this function if you want to locate a pattern in an input stream. It allows to use a simple in-check to determine
whether the pattern is present in the yielded result chunks.

The function always yields everything it has fetched from the underlying iterable. So after a yield it does not
cache any data from the underlying iterable. That means, if the functionality of align_pattern is no longer
required, the underlying iterator can be used, when align_pattern has yielded a data chunk. This allows more
efficient processing of the data that remains in the underlying iterable.

Parameters

• iterable (Iterable) -- An iterable that yields data chunks.

• pattern (str | bytes | bytearray) -- The pattern that should be contained in the
chunks. Its type must be compatible to the type of the elements in iterable.

Yields
str | bytes | bytearray -- data chunks that have at least the size of the pattern and do not end with
a prefix of the pattern. Note that a data chunk might contain the pattern multiple times.

2.3. Python tooling 167

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.itertools.decode_bytes

datalad_next.itertools.decode_bytes(iterable: Iterable[bytes], encoding: str = 'utf-8', backslash_replace:
bool = True)→ Generator[str, None, None]

Decode bytes in an iterable into strings

This function decodes bytes or bytearray into str objects, using the specified encoding. Importantly, the
decoding input can be spread across multiple chunks of heterogeneous sizes, for example output read from a
process or pieces of a download.

Multi-byte encodings that are spread over multiple byte chunks are supported, and chunks are joined as necessary.
For example, the utf-8 encoding for ö is b'\xc3\xb6'. If the encoding is split in the middle because a chunk
ends with b'\xc3' and the next chunk starts with b'\xb6', a naive decoding approach like the following would
fail:

>>> [chunk.decode() for chunk in [b'\xc3', b'\xb6']]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 1, in <listcomp>

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xc3 in position 0: unexpected␣
→˓end of data

Compared to:

>>> from datalad_next.itertools import decode_bytes
>>> tuple(decode_bytes([b'\xc3', b'\xb6']))
('ö',)

Input chunks are only joined, if it is necessary to properly decode bytes:

>>> from datalad_next.itertools import decode_bytes
>>> tuple(decode_bytes([b'\xc3', b'\xb6', b'a']))
('ö', 'a')

If backslash_replace is True, undecodable bytes will be replaced with a backslash-substitution. Otherwise,
undecodable bytes will raise a UnicodeDecodeError:

>>> tuple(decode_bytes([b'\xc3']))
('\\xc3',)
>>> tuple(decode_bytes([b'\xc3'], backslash_replace=False))
Traceback (most recent call last):

...
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xc3 in position 1: invalid␣
→˓continuation byte

Backslash-replacement of undecodable bytes is an ambiguous mapping, because, for example, b'\xc3' can
already be present in the input.

Parameters

• iterable (Iterable[bytes]) -- Iterable that yields bytes that should be decoded

• encoding (str (default: 'utf-8')) -- Encoding to be used for decoding.

• backslash_replace (bool (default: True)) -- If True, backslash-escapes are used for un-
decodable bytes. If False, a UnicodeDecodeError is raised if a byte sequence cannot be
decoded.

168 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Yields
str -- Decoded strings that are generated by decoding the data yielded by iterable with the
specified encoding

Raises
UnicodeDecodeError -- If backslash_replace is False and the data yielded by iterable
cannot be decoded with the specified encoding

datalad_next.itertools.itemize

datalad_next.itertools.itemize(iterable: Iterable[T], sep: T | None, *, keep_ends: bool = False)→
Generator[T, None, None]

Yields complete items (only), assembled from an iterable

This function consumes chunks from an iterable and yields items defined by a separator. An item might span
multiple input chunks. Input (chunks) can be bytes, bytearray, or str objects. The result type is determined
by the type of the first input chunk. During its runtime, the type of the elements in iterable must not change.

Items are defined by a separator given via sep. If sep is None, the line-separators built into str.splitlines()
are used, and each yielded item will be a line. If sep is not None, its type must be compatible to the type of the
elements in iterable.

A separator could, for example, be b'\n', in which case the items would be terminated by Unix line-endings,
i.e. each yielded item is a single line. The separator could also be, b'\x00' (or '\x00'), to split zero-byte
delimited content, like the output of git ls-files -z.

Separators can be longer than one byte or character, e.g. b'\r\n', or b'\n-------------------\n'.

Content after the last separator, possibly merged across input chunks, is always yielded as the last item, even if it
is not terminated by the separator.

Performance notes:

• Using None as a separator (splitlines-mode) is slower than providing a specific separator.

• If another separator than None is used, the runtime with keep_end=False is faster than with
keep_end=True.

Parameters

• iterable (Iterable[str | bytes | bytearray]) -- The iterable that yields the input
data

• sep (str | bytes | bytearray | None) -- The separator that defines items. If None,
the items are determined by the line-separators that are built into str.splitlines().

• keep_ends (bool) -- If True, the item-separator will remain at the end of a yielded item.
If False, items will not contain the separator. Preserving separators implies a runtime cost,
unless the separator is None.

Yields
str | bytes | bytearray -- The items determined from the input iterable. The type of the yielded
items depends on the type of the first element in iterable.

2.3. Python tooling 169

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Examples

>>> from datalad_next.itertools import itemize
>>> with open('/etc/passwd', 'rt') as f:
... print(tuple(itemize(iter(f.read, ''), sep=None))[0:2])
('root:x:0:0:root:/root:/bin/bash',
'systemd-timesync:x:497:497:systemd Time Synchronization:/:/usr/sbin/nologin')
>>> with open('/etc/passwd', 'rt') as f:
... print(tuple(itemize(iter(f.read, ''), sep=':'))[0:10])
('root', 'x', '0', '0', 'root', '/root',
'/bin/bash\nsystemd-timesync', 'x', '497', '497')
>>> with open('/etc/passwd', 'rt') as f:
... print(tuple(itemize(iter(f.read, ''), sep=':', keep_ends=True))[0:10])
('root:', 'x:', '0:', '0:', 'root:', '/root:',
'/bin/bash\nsystemd-timesync:', 'x:', '497:', '497:')

datalad_next.itertools.load_json

datalad_next.itertools.load_json(iterable: Iterable[bytes | str])→ Generator[Any, None, None]
Convert items yielded by iterable into JSON objects and yield them

This function fetches items from the underlying iterable. The items are expected to be bytes, str, or bytearry,
and contain one JSON-encoded object. Items are converted into a JSON-object, by feeding them into json.
loads.

On successful conversion to a JSON-object, load_json will yield the resulting JSON-object. If the conversion
to a JSON-object fails, load_json will raise a json.decoder.JSONDecodeError:

>>> from datalad_next.itertools import load_json, load_json_with_flag
>>> tuple(load_json(['{"a": 1}']))
({'a': 1},)
>>> tuple(load_json(['{"c": 3'])) # Faulty JSON-encoding, doctest: +SKIP
Traceback (most recent call last):

...
json.decoder.JSONDecodeError: Expecting ',' delimiter: line 1 column 8 (char 7)

Using load_json together with itemize allows the processing of JSON-lines data. itemize will yield a single
item for each line and load_json will convert it into a JSON-object.

Note: JSON-decoding is slightly faster if the items of type str. Items of type bytes or bytearray will work
as well, but processing might be slower.

Parameters
iterable (Iterable[bytes | str]) -- The iterable that yields the JSON-strings or -
bytestrings that should be parsed and converted into JSON-objects

Yields
Any -- The JSON-object that are generated from the data yielded by iterable

Raises
json.decoder.JSONDecodeError -- If the data yielded by iterable is not a valid JSON-
string

170 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.itertools.load_json_with_flag

datalad_next.itertools.load_json_with_flag(iterable: Iterable[bytes | str])→ Generator[tuple[Any |
json.decoder.JSONDecodeError, bool], None, None]

Convert items from iterable into JSON objects and a success flag

load_json_with_flag works analogous to load_json, but reports success and failure differently.

On successful conversion to a JSON-object, load_json_with_flag will yield a tuple of two elements. The
first element contains the JSON-object, the second element is True.

If the conversion to a JSON-object fails, load_json_with_flag will yield a tuple of two elements, where the
first element contains the json.decoder.JSONDecodeError that was raised during conversion, and the second
element is False:

>>> from datalad_next.itertools import load_json, load_json_with_flag
>>> tuple(load_json_with_flag(['{"b": 2}']))
(({'b': 2}, True),)
>>> tuple(load_json_with_flag(['{"d": 4'])) # Faulty JSON-encoding
((JSONDecodeError("Expecting ',' delimiter: line 1 column 8 (char 7)"), False),)

Parameters
iterable (Iterable[bytes | str]) -- The iterable that yields the JSON-strings or -
bytestrings that should be parsed and converted into JSON-objects

Yields
tuple[Any | json.decoder.JSONDecodeError, bool] -- A tuple containing of a decoded JSON-
object and True, if the JSON string could be decoded correctly. If the JSON string could not be
decoded correctly, the tuple will contain the json.decoder.JSONDecodeError that was raised
during JSON-decoding and False.

datalad_next.itertools.route_out

datalad_next.itertools.route_out(iterable: Iterable, data_store: list, splitter: Callable[[Any], tuple[Any,
Any]])→ Generator

Route data around the consumer of this iterable

route_out() allows its user to:

1. store data that is received from an iterable,

2. determine whether this data should be yielded to a consumer of route_out, by calling splitter().

To determine which data is to be yielded to the consumer and which data should only be stored but not yielded,
route_out() calls splitter(). splitter() is called for each item of the input iterable, with the item as sole
argument. The function should return a tuple of two elements. The first element is the data that is to be yielded
to the consumer. The second element is the data that is to be stored in the list data_store. If the first element
of the tuple is datalad_next.itertools.StoreOnly, no data is yielded to the consumer.

route_in() can be used to combine data that was previously stored by route_out() with the data that is
yielded by route_out() and with the data the was not processed, i.e. not yielded by route_out().

The items yielded by route_in() will be in the same order in which they were passed into route_out(),
including the items that were not yielded by route_out() because splitter() returned StoreOnly in the
first element of the result-tuple.

2.3. Python tooling 171

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

The combination of the two functions route_out() and route_in() can be used to "carry" additional data
along with data that is processed by iterators. And it can be used to route data around iterators that cannot process
certain data.

For example, a user has an iterator to divide the number 2 by all numbers in a list. The user wants the iterator to
process all numbers in a divisor list, except from zeros, In this case route_out() and route_in() can be used
as follows:

from math import nan
from datalad_next.itertools import route_out, route_in, StoreOnly

def splitter(divisor):
if divisor == 0, return `StoreOnly` in the first element of the
result tuple to indicate that route_out should not yield this
element to its consumer
return (StoreOnly, divisor) if divisor == 0 else (divisor, divisor)

def joiner(processed_data, stored_data):
#
return nan if processed_data is StoreOnly else processed_data

divisors = [0, 1, 0, 2, 0, 3, 0, 4]
store = list()
r = route_in(

map(
lambda x: 2.0 / x,
route_out(

divisors,
store,
splitter

)
),
store,
joiner

)
print(list(r))

The example about will print [nan, 2.0, nan, 1.0, nan, 0.6666666666666666, nan, 0.5].

Parameters

• iterable (Iterable) -- The iterable that yields the input data

• data_store (list) -- The list that is used to store the data that is routed out

• splitter (Callable[[Any], tuple[Any, Any | None]]) -- The function that is used
to determine which part of the input data, if any, is to be yielded to the consumer and which
data is to be stored in the list data_store. The function is called for each item of the in-
put iterable with the item as sole argument. It should return a tuple of two elements. If
the first element is not datalad_next.itertools.StoreOnly, it is yielded to the con-
sumer. If the first element is datalad_next.itertools.StoreOnly, nothing is yielded
to the consumer. The second element is stored in the list data_store. The cardinality of
data_store will be the same as the cardinality of the input iterable.

172 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.itertools.route_in

datalad_next.itertools.route_in(iterable: Iterable, data_store: list, joiner: Callable[[Any, Any], Any])→
Generator

Yield previously rerouted data to the consumer

This function is the counter-part to route_out(). It takes the iterable iterable and a data store given in
data_store and yields items in the same order in which route_out() received them from its underlying
iterable (using the same data store). This includes items that were not yielded by route_out(), but only stored.

route_in() uses joiner()-function to determine how stored and optionally processed data should be joined
into a single item, which is then yielded by route_in(). route_in() calls joiner() with a 2-tuple. The
first element of the tuple is either datalad_next.itertools.StoreOnly or the next item from the underlying
iterator. The second element is the data that was stored in the data store. The result of joiner() which will be
yielded by route_in().

This module provides a standard joiner-function: join_with_list() that works with splitter-functions that
return a list as second element of the result tuple.

The cardinality of iterable must match the number of processed data elements in the data store. The output
cardinality of route_in() will be the cardinality of the input iterable of the corresponding route_out()-call.
Given the following code:

store_1 = list()
route_in(

some_generator(
route_out(input_iterable, store_1, splitter_1)

),
store_1,
joiner_1

)

route_in() will yield the same number of elements as input_iterable. But, the number of elements pro-
cessed by some_generator is determined by the splitter_1() in route_out(), i.e. by the number of
splitter_1()-results that have don't have datalad_next.itertools.don_process as first element.

Parameters

• iterable (Iterable) -- The iterable that yields the input data.

• data_store (list) -- The list from which the data that is to be "routed in" is read.

• joiner (Callable[[Any, Any], Any]) -- A function that determines how the items
that are yielded by iterable should be combined with the corresponding data from
data_store, in order to yield the final result. The first argument to joiner is the item
that is yielded by iterable, or datalad_next.itertools.StoreOnly if no data was
processed in the corresponding step. The second argument is the data that was stored in
data_store in the corresponding step.

2.3. Python tooling 173

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

2.3.11 datalad_next.iter_collections

Iterators for particular types of collections

Most importantly this includes different collections (or containers) for files, such as a file system directory, or an archive
(also see the ls_file_collection command). However, this module is not per-se limited to file collections.

Most, if not all, implementation come in the form of a function that takes a collection identifier or a collection location
(e.g., a file system path), and possibly some additional options. When called, an iterator is returned that produces
collection items in the form of data class instances of a given type. The particular type can be different across different
collections.

iter_annexworktree(path, *[, untracked, ...]) Companion to iter_gitworktree() for git-annex
repositories

iter_dir(path, *[, fp]) Uses Path.iterdir() to iterate over a directory and
reports content

iter_gitdiff (path, from_treeish, to_treeish, *) Report differences between Git tree-ishes or tracked
worktree content

iter_gitstatus(path, *[, untracked, ...]) Recursion mode 'no'
iter_gittree(path, treeish, *[, recursive]) Uses git ls-tree to report on a tree in a Git repository
iter_gitworktree(path, *[, untracked, ...]) Uses git ls-files to report on a work tree of a Git

repository
iter_submodules(path) Given a path, report all submodules of a repository work-

tree underneath
iter_tar(path, *[, fp]) Uses the standard library tarfile module to report on

TAR archives
iter_zip(path, *[, fp]) Uses the standard library zipfile module to report on

ZIP-files
TarfileItem(type, name, size[, mtime, mode, ...])

ZipfileItem(type, name, size[, mtime, mode, ...])

FileSystemItem(type, name, size[, mtime, ...])

FileSystemItemType(value) Enumeration of file system path types
GitTreeItemType(value) Enumeration of item types of Git trees
GitWorktreeItem(name[, gitsha, gittype])

GitWorktreeFileSystemItem(type, name, size)

GitDiffItem(name[, gitsha, gittype, ...]) GitTreeItem with "previous" property values given a
state comparison

GitDiffStatus(value) Enumeration of statuses for diff items
GitContainerModificationType(value) An enumeration.

174 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.iter_collections.iter_annexworktree

datalad_next.iter_collections.iter_annexworktree(path: Path, *, untracked: str | None = 'all',
link_target: bool = False, fp: bool = False,
recursive: str = 'repository')→
Generator[AnnexWorktreeItem |
AnnexWorktreeFileSystemItem, None, None]

Companion to iter_gitworktree() for git-annex repositories

This iterator wraps iter_gitworktree(). For each item, it determines whether it is an annexed file. If so, it
amends the yielded item with information on the respective annex key, the byte size of the key, and its (would-be)
location in the repository's annex.

The basic semantics of all arguments are identical to iter_gitworktree(). Importantly, with fp=True, an
annex object is opened directly, if available. If not available, no attempt is made to open the associated symlink
or pointer file.

With link_target and fp disabled items of type AnnexWorktreeItem are yielded, otherwise
AnnexWorktreeFileSystemItem instances are yielded. In both cases, annexkey, annexsize, and
annnexobjpath properties are provided.

Note: Although annexobjpath is always set for annexed content, that does not imply that an object at this path
actually exists. The latter will only be the case if the annexed content is present in the work tree, typically as a
result of a datalad get- or git annex get-call.

Parameters

• path (Path) -- Path of a directory in a git-annex repository to report on. This directory need
not be the root directory of the repository, but must be part of the repository's work tree.

• untracked ({'all', 'whole-dir', 'no-empty-dir'} or None, optional) -- If not
None, also reports on untracked work tree content. all reports on any untracked file;
whole-dir yields a single report for a directory that is entirely untracked, and not individual
untracked files in it; no-empty-dir skips any reports on untracked empty directories.

• link_target (bool, optional) -- If True, information matching a FileSystemItem
will be included for each yielded item, and the targets of any symlinks will be reported, too.

• fp (bool, optional) -- If True, information matching a FileSystemItem will be in-
cluded for each yielded item, but without a link target detection, unless link_target is
given. Moreover, each file-type item includes a file-like object to access the file's content.
This file handle will be closed automatically when the next item is yielded.

• recursive ({'repository', 'no'}, optional) -- Pass on to iter_gitworktree(),
thereby determining which items this iterator will yield.

Yields
AnnexWorktreeItem or AnnexWorktreeFileSystemItem -- The name attribute of an item is
a PurePath instance with the corresponding (relative) path, in platform conventions.

2.3. Python tooling 175

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.iter_collections.iter_dir

datalad_next.iter_collections.iter_dir(path: Path, *, fp: bool = False)→ Generator[DirectoryItem,
None, None]

Uses Path.iterdir() to iterate over a directory and reports content

The iterator produces an DirectoryItem instance with standard information on file system elements, such as
size, or mtime.

In addition to a plain Path.iterdir() the report includes a path-type label (distinguished are file,
directory, symlink).

Parameters

• path (Path) -- Path of the directory to report content for (iterate over).

• fp (bool, optional) -- If True, each file-type item includes a file-like object to access
the file's content. This file handle will be closed automatically when the next item is yielded.

Yields
DirectoryItem -- The name attribute of an item is a Path instance, with the format matching
the main path argument. When an absolute path is given, item names are absolute paths too.
When a relative path is given, it is relative to CWD, and items names are relative paths (relative
to CWD) too.

datalad_next.iter_collections.iter_gitdiff

datalad_next.iter_collections.iter_gitdiff(path: Path, from_treeish: str | None, to_treeish: str | None,
*, recursive: str = 'repository', find_renames: int | None =
None, find_copies: int | None = None, yield_tree_items: str |
None = None, eval_submodule_state: str = 'full')→
Generator[GitDiffItem, None, None]

Report differences between Git tree-ishes or tracked worktree content

This function is a wrapper around the Git command diff-tree and diff-index. Therefore most semantics
also apply here.

The main difference with respect to the Git commands are: 1) uniform support for non-recursive, single tree
reporting (no subtrees); and 2) support for submodule recursion.

Notes on 'no' recursion mode

When comparing to the worktree, git diff-index always reports on subdirectories. For homogeneity with
the report on a committed tree, a non-recursive mode emulation is implemented. It compresses all reports from
a direct subdirectory into a single report on that subdirectory. The gitsha of that directory item will always
be None. Moreover, no type or typechange inspection, or further filesystem queries are performed. Therefore,
prev_gittype will always be None, and any change other than the addition of the directory will be labeled as
a GitDiffStatus.modification.

Parameters

• path (Path) -- Path of a directory in a Git repository to report on. This directory need not
be the root directory of the repository, but must be part of the repository. If the directory is
not the root directory of a non-bare repository, the iterator is constrained to items underneath
that directory.

• from_treeish (str or None) -- Git "tree-ish" that defines the comparison reference. If
None, to_treeeish must not be None (see its documentation for details).

176 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• to_treeish -- Git "tree-ish" that defines the comparison target. If None, from_treeish
must not be None, and that tree-ish will be compared against the worktree. (see its documen-
tation for details). If from_treeish is None, the given tree-ish is compared to its immediate
parents (see git diff-tree documentation for details).

• recursive ({'repository', 'submodules', 'no'}, optional) -- Behavior for recur-
sion into subtrees. By default (repository), all trees within the repository underneath
path) are reported, but no tree within submodules. With submodules, recursion includes
any submodule that is present. If no, only direct children are reported on.

• find_renames (int, optional) -- If given, this defines the similarity threshold for detect-
ing renames (see git diff-{index,tree} --find-renames). By default, no rename
detection is done and reported items never have the rename status. Instead, a renames would
be reported as a deletion and an addition.

• find_copied (int, optional) -- If given, this defines the similarity threshold for detect-
ing copies (see git diff-{index,tree} --find-copies). By default, no copy detec-
tion is done and reported items never have the copy status. Instead, a copy would be reported
as addition. This option always implies the use of the --find-copies-harder Git option
that enables reporting of copy sources, even when they have not been modified in the same
change. This is a very expensive operation for large projects, so use it with caution.

• yield_tree_items ({'submodules', 'directories', 'all', None}, optional) --
Whether to yield an item on type of subtree that will also be recursed into. For example,
a submodule item, when submodule recursion is enabled. When disabled, subtree items
(directories, submodules) will still be reported whenever there is no recursion into them.
For example, submodule items are reported when recursive='repository, even when
yield_tree_items=None.

Yields
GitDiffItem -- The name and prev_name attributes of an item are a strwith the corresponding
(relative) path, as reported by Git (in POSIX conventions).

datalad_next.iter_collections.iter_gitstatus

datalad_next.iter_collections.iter_gitstatus(path: Path, *, untracked: str | None = 'all', recursive: str
= 'repository', eval_submodule_state: str = 'full')→
Generator[GitDiffItem, None, None]

Recursion mode 'no'

This mode limits the reporting to immediate directory items of a given path. This mode is not necessarily faster
than a 'repository' recursion. Its primary purpose is the ability to deliver a collapsed report in that subdirectories
are treated similar to submodules -- as containers that maybe have modified or untracked content.

Parameters

• path (Path) -- Path of a directory in a Git repository to report on. This directory need not
be the root directory of the repository, but must be part of the repository. If the directory is
not the root directory of a non-bare repository, the iterator is constrained to items underneath
that directory.

• untracked ({'all', 'whole-dir', 'no-empty-dir'} or None, optional) -- If not
None, also reports on untracked work tree content. all reports on any untracked file;
whole-dir yields a single report for a directory that is entirely untracked, and not individual
untracked files in it; no-empty-dir skips any reports on untracked empty directories. Also
see eval_submodule_state for how this parameter is applied in submodule recursion.

2.3. Python tooling 177

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• recursive ({'no', 'repository', 'submodules', 'monolithic'}, optional) -- Be-
havior for recursion into subtrees. By default (repository), all trees within the repository
underneath path) are reported, but no tree within submodules. With submodules, recursion
includes any submodule that is present. If no, only direct children are reported on.

• eval_submodule_state ({"no", "commit", "full"}, optional) -- If 'full' (de-
fault), the state of a submodule is evaluated by considering all modifications, with the treat-
ment of untracked files determined by untracked. If 'commit', the modification check is
restricted to comparing the submodule's "HEAD" commit to the one recorded in the super-
dataset. If 'no', the state of the subdataset is not evaluated. When a git-annex repository in
adjusted mode is detected, the reference commit that the worktree is being compared to is
the basis of the adjusted branch (i.e., the corresponding branch).

Yields
GitDiffItem -- The name and prev_name attributes of an item are a strwith the corresponding
(relative) path, as reported by Git (in POSIX conventions).

datalad_next.iter_collections.iter_gittree

datalad_next.iter_collections.iter_gittree(path: Path, treeish: str, *, recursive: str = 'repository')→
Generator[GitTreeItem, None, None]

Uses git ls-tree to report on a tree in a Git repository

Parameters

• path (Path) -- Path of a directory in a Git repository to report on. This directory need not
be the root directory of the repository, but must be part of the repository. If the directory is
not the root directory of a non-bare repository, the iterator is constrained to items underneath
that directory.

• recursive ({'repository', 'no'}, optional) -- Behavior for recursion into subtrees.
By default (repository), all tree within the repository underneath path) are reported, but
not tree within submodules. If no, only direct children are reported on.

Yields
GitTreeItem -- The name attribute of an item is a str with the corresponding (relative) path,
as reported by Git (in POSIX conventions).

datalad_next.iter_collections.iter_gitworktree

datalad_next.iter_collections.iter_gitworktree(path: Path, *, untracked: str | None = 'all', link_target:
bool = False, fp: bool = False, recursive: str =
'repository')→ Generator[GitWorktreeItem |
GitWorktreeFileSystemItem, None, None]

Uses git ls-files to report on a work tree of a Git repository

This iterator can be used to report on all tracked, and untracked content of a Git repository's work tree. This
includes files that have been removed from the work tree (deleted), unless their removal has already been staged.

For any tracked content, yielded items include type information and gitsha as last known to Git. This means that
such reports reflect the last committed or staged content, not the state of a potential unstaged modification in the
work tree.

When no reporting of link targets or file-objects are requested, items of type GitWorktreeItem are yielded, oth-
erwise GitWorktreeFileSystemItem instances. In both cases, gitsha and gittype properties are provided.
Either of them being None indicates untracked work tree content.

178 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Note: The gitsha is not equivalent to a SHA1 hash of a file's content, but is the SHA-type blob identifier as
reported and used by Git.

Parameters

• path (Path) -- Path of a directory in a Git repository to report on. This directory need not
be the root directory of the repository, but must be part of the repository's work tree.

• untracked ({'all', 'whole-dir', 'no-empty-dir'} or None, optional) -- If not
None, also reports on untracked work tree content. all reports on any untracked file;
whole-dir yields a single report for a directory that is entirely untracked, and not individual
untracked files in it; no-empty-dir skips any reports on untracked empty directories.

• link_target (bool, optional) -- If True, information matching a FileSystemItem
will be included for each yielded item, and the targets of any symlinks will be reported, too.

• fp (bool, optional) -- If True, information matching a FileSystemItem will be in-
cluded for each yielded item, but without a link target detection, unless link_target is
given. Moreover, each file-type item includes a file-like object to access the file's content.
This file handle will be closed automatically when the next item is yielded.

• recursive ({'repository', 'no'}, optional) -- Behavior for recursion into subdirec-
tories of path. By default (repository), all directories within the repository are reported.
This possibly includes untracked ones (see untracked), but not directories within submod-
ules. If no, only direct children of path are reported on. For any worktree items in sub-
directories of path only a single record for the containing immediate subdirectory path
is yielded. For example, with 'path/subdir/file1' and 'path/subdir/file2' there will only be a
single item with name='subdir' and type='directory'.

Yields
GitWorktreeItem or GitWorktreeFileSystemItem -- The name attribute of an item is a
PurePath instance with the corresponding (relative) path, in platform conventions.

datalad_next.iter_collections.iter_submodules

datalad_next.iter_collections.iter_submodules(path: Path)→ Generator[GitTreeItem, None, None]
Given a path, report all submodules of a repository worktree underneath

This is a thin convenience wrapper around iter_gitworktree().

datalad_next.iter_collections.iter_tar

datalad_next.iter_collections.iter_tar(path: Path, *, fp: bool = False)→ Generator[TarfileItem, None,
None]

Uses the standard library tarfile module to report on TAR archives

A TAR archive can represent more or less the full bandwidth of file system properties, therefore reporting on
archive members is implemented similar to iter_dir(). The iterator produces an TarfileItem instance with
standard information on file system elements, such as size, or mtime.

Parameters

• path (Path) -- Path of the TAR archive to report content for (iterate over).

2.3. Python tooling 179

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• fp (bool, optional) -- If True, each file-type item includes a file-like object to access
the file's content. This file handle will be closed automatically when the next item is yielded
or the function returns.

Yields
TarfileItem -- The name attribute of an item is a str with the corresponding archive member
name (in POSIX conventions).

datalad_next.iter_collections.iter_zip

datalad_next.iter_collections.iter_zip(path: Path, *, fp: bool = False)→ Generator[ZipfileItem, None,
None]

Uses the standard library zipfile module to report on ZIP-files

A ZIP archive can represent more or less the full bandwidth of file system properties, therefore reporting on
archive members is implemented similar to iter_dir(). The iterator produces an ZipfileItem instance with
standard information on file system elements, such as size, or mtime.

Parameters

• path (Path) -- Path of the ZIP archive to report content for (iterate over).

• fp (bool, optional) -- If True, each file-type item includes a file-like object to access
the file's content. This file handle will be closed automatically when the next item is yielded
or the function returns.

Yields
ZipfileItem -- The name attribute of an item is a str with the corresponding archive member
name (in POSIX conventions).

datalad_next.iter_collections.TarfileItem

class datalad_next.iter_collections.TarfileItem(type: 'FileSystemItemType', name: 'str', size: 'int',
mtime: 'float | None' = None, mode: 'int | None' =
None, uid: 'int | None' = None, gid: 'int | None' =
None, link_target: 'str | None' = None, fp: 'IO | None'
= None)

Bases: FileSystemItem

link_target: str | None = None

Just as for name, a link target is also reported in POSIX format.

property link_target_path: PurePosixPath

Returns the link_target as a PurePosixPath instance

name: str

TAR uses POSIX paths as item identifiers. Not all POSIX paths can be represented on all (non-POSIX)
file systems, therefore the item name is represented in POSIX form, instead of in platform conventions.

property path: PurePosixPath

Returns the item name as a PurePosixPath instance

180 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.iter_collections.ZipfileItem

class datalad_next.iter_collections.ZipfileItem(type: 'FileSystemItemType', name: 'str', size: 'int',
mtime: 'float | None' = None, mode: 'int | None' =
None, uid: 'int | None' = None, gid: 'int | None' =
None, link_target: 'Any | None' = None, fp: 'IO |
None' = None)

Bases: FileSystemItem

name: str

property path: PurePosixPath

Returns the item name as a PurePosixPath instance

ZIP uses POSIX paths as item identifiers from version 6.3.3 onwards. Not all POSIX paths are legal paths on
non-POSIX file systems or platforms. Therefore we cannot use a platform-dependent PurePath-instance
to address ZIP-file items, anq we use PurePosixPath-instances instead.

datalad_next.iter_collections.FileSystemItem

class datalad_next.iter_collections.FileSystemItem(type: 'FileSystemItemType', name: 'Any', size:
'int', mtime: 'float | None' = None, mode: 'int |
None' = None, uid: 'int | None' = None, gid: 'int |
None' = None, link_target: 'Any | None' = None,
fp: 'IO | None' = None)

Bases: PathBasedItem, TypedItem

fp: IO | None = None

classmethod from_path(path: Path, *, link_target: bool = True)
Populate item properties from a single stat and readlink call

The given path must exist. The link_target flag indicates whether to report the result of readlink for
a symlink-type path.

gid: int | None = None

link_target: Any | None = None

link_target_path()→ PurePath
Returns the link_target as a PurePath instance

mode: int | None = None

mtime: float | None = None

size: int

type: FileSystemItemType

uid: int | None = None

2.3. Python tooling 181

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.iter_collections.FileSystemItemType

class datalad_next.iter_collections.FileSystemItemType(value)
Bases: Enum

Enumeration of file system path types

The associated str values are chosen to be appropriate for downstream use (e.g, as type labels in DataLad result
records).

directory = 'directory'

file = 'file'

hardlink = 'hardlink'

specialfile = 'specialfile'

symlink = 'symlink'

datalad_next.iter_collections.GitTreeItemType

class datalad_next.iter_collections.GitTreeItemType(value)
Bases: Enum

Enumeration of item types of Git trees

directory = 'directory'

executablefile = 'executablefile'

file = 'file'

submodule = 'submodule'

symlink = 'symlink'

datalad_next.iter_collections.GitWorktreeItem

class datalad_next.iter_collections.GitWorktreeItem(name: 'PurePath', gitsha: 'str | None' = None,
gittype: 'GitTreeItemType | None' = None)

Bases: GitTreeItem

name: PurePath

datalad_next.iter_collections.GitWorktreeFileSystemItem

class datalad_next.iter_collections.GitWorktreeFileSystemItem(type: 'FileSystemItemType', name:
'PurePath', size: 'int', mtime: 'float
| None' = None, mode: 'int | None'
= None, uid: 'int | None' = None,
gid: 'int | None' = None,
link_target: 'Any | None' = None,
fp: 'IO | None' = None, gitsha: 'str |
None' = None, gittype:
'GitTreeItemType | None' = None)

182 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Bases: FileSystemItem

gitsha: str | None = None

gittype: GitTreeItemType | None = None

name: PurePath

datalad_next.iter_collections.GitDiffItem

class datalad_next.iter_collections.GitDiffItem(name: str, gitsha: str | None = None, gittype:
GitTreeItemType | None = None, prev_name: str |
None = None, prev_gitsha: str | None = None,
prev_gittype: GitTreeItemType | None = None, status:
GitDiffStatus | None = None, percentage: int | None =
None, modification_types:
tuple[GitContainerModificationType, ...] | None =
None)

Bases: GitTreeItem

GitTreeItem with "previous" property values given a state comparison

add_modification_type(value: GitContainerModificationType)

modification_types: tuple[GitContainerModificationType, ...] | None = None

Qualifiers for modification types of container-type items (directories, submodules).

percentage: int | None = None

This is the percentage of similarity for copy-status and rename-status diff items, and the percentage of
dissimilarity for modifications.

prev_gitsha: str | None = None

prev_gittype: GitTreeItemType | None = None

prev_name: str | None = None

property prev_path: PurePosixPath | None

Returns the item prev_name as a PurePosixPath instance

status: GitDiffStatus | None = None

datalad_next.iter_collections.GitDiffStatus

class datalad_next.iter_collections.GitDiffStatus(value)
Bases: Enum

Enumeration of statuses for diff items

addition = 'addition'

copy = 'copy'

deletion = 'deletion'

2.3. Python tooling 183

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

modification = 'modification'

other = 'other'

rename = 'rename'

typechange = 'typechange'

unknown = 'unknown'

unmerged = 'unmerged'

datalad_next.iter_collections.GitContainerModificationType

class datalad_next.iter_collections.GitContainerModificationType(value)
Bases: Enum

An enumeration.

modified_content = 'modified content'

new_commits = 'new commits'

untracked_content = 'untracked content'

2.3.12 datalad_next.repo_utils

Common repository operations

get_worktree_head(path) Returns the symbolic name of the worktree HEAD at the
given path

has_initialized_annex(path) Return whether there is an initialized annex for path

datalad_next.repo_utils.get_worktree_head

datalad_next.repo_utils.get_worktree_head(path: Path)→ tuple[str | None, str | None]
Returns the symbolic name of the worktree HEAD at the given path

Returns
The first item is the symbolic name of the worktree HEAD, or None if there is no commit. The
second item is the symbolic name of the "corresponding branch" in an adjusted-mode git-annex
repository, or None.

Return type
tuple

184 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.repo_utils.has_initialized_annex

datalad_next.repo_utils.has_initialized_annex(path: Path)→ bool
Return whether there is an initialized annex for path

The given path can be any directory, inside or outside a Git repository. True is returned when the path is found
to be within a (locally) initialized git-annex repository.

When this test returns True it can be expected that no subsequent call to an annex command fails with

git-annex: First run: git-annex init

for this path.

2.3.13 datalad_next.runners

Execution of subprocesses

This module provides all relevant components for subprocess execution. The main work horse is iter_subproc(),
a context manager that enables interaction with a subprocess in the form of an iterable for input/output processing.
Execution errors are communicated with the CommandError exception. In addition, a few convenience functions are
provided to execute Git commands (including git-annex).

iter_subproc(args, *[, input, chunk_size, ...]) Context manager to communicate with a subprocess us-
ing iterables

call_git(args, *[, cwd, force_c_locale]) Call Git with no output capture, raises on non-zero exit.
call_git_lines(args, *[, cwd, input, ...]) Call Git for any (small) number of lines of output
call_git_oneline(args, *[, cwd, input, ...]) Call Git for a single line of output
call_git_success(args, *[, cwd, capture_output]) Call Git and report success or failure of the command
iter_git_subproc(args, **kwargs) iter_subproc() wrapper for calling Git commands
CommandError([cmd, msg, code, stdout, ...]) Thrown if a command call fails.

datalad_next.runners.iter_subproc

datalad_next.runners.iter_subproc(args: List[str], *, input: Iterable[bytes] | None = None, chunk_size: int
= 65536, cwd: Path | None = None, bufsize: int = -1)

Context manager to communicate with a subprocess using iterables

This offers a higher level interface to subprocesses than Python's built-in subprocess module. It allows a
subprocess to be naturally placed in a chain of iterables as part of a data processing pipeline. It is also helpful
when data won't fit in memory and has to be streamed.

This is a convenience wrapper around datalad_next.iterable_subprocess, which itself is a slightly mod-
ified (for use on Windows) fork of https://github.com/uktrade/iterable-subprocess, written by Michal Charemza.

This function provides a context manager. On entering the context, the subprocess is started, the thread to read
from standard error is started, the thread to populate subprocess input is started. When running, the standard
input thread iterates over the input, passing chunks to the process, while the standard error thread fetches the
error output, and while the main thread iterates over the process's output from client code in the context.

On context exit, the main thread closes the process's standard output, waits for the standard input thread to exit,
waits for the standard error thread to exit, and wait for the process to exit. If the process exited with a non-zero
return code, a CommandError is raised, containing the process's return code.

2.3. Python tooling 185

https://github.com/uktrade/iterable-subprocess

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

If the context is exited due to an exception that was raised in the context, the main thread terminates the process
via Popen.terminate(), closes the process's standard output, waits for the standard input thread to exit, waits
for the standard error thread to exit, waits for the process to exit, and re-raises the exception.

Note, if an exception is raised in the context, this exception will bubble up to the main thread. That means no
CommandError will be raised if the subprocess exited with a non-zero return code. To access the return code in
case of an exception inside the context, use the code-attribute of the as-variable. This object will always contain
the return code of the subprocess. For example, the following code will raise a StopIteration-exception in
the context (by repeatedly using next()). The subprocess will exit with 2 due to the illegal option -@, and no
CommandError is raised. The return code is read from the variable ls_stdout

>>> from datalad_next.runners import iter_subproc
>>> try:
... with iter_subproc(['ls', '-@']) as ls_stdout:
... while True:
... next(ls_stdout)
... except Exception as e:
... print(repr(e), ls_stdout.returncode)
StopIteration() 2

Parameters

• args (list) -- Sequence of program arguments to be passed to subprocess.Popen.

• input (iterable, optional) -- If given, chunks of bytes to be written, iteratively, to
the subprocess's stdin.

• chunk_size (int, optional) -- Size of chunks to read from the subprocess's stdout/stderr
in bytes.

• cwd (Path) -- Working directory for the subprocess, passed to subprocess.Popen.

• bufsize (int, optional) -- Buffer size to use for the subprocess's stdin, stdout, and
stderr. See subprocess.Popen for details.

Return type
contextmanager

datalad_next.runners.call_git

datalad_next.runners.call_git(args: list[str], *, cwd: Path | None = None, force_c_locale: bool = False)→
None

Call Git with no output capture, raises on non-zero exit.

If cwd is not None, the function changes the working directory to cwd before executing the command.

If force_c_locale is True the environment of the Git process is altered to ensure output according to the C
locale. This is useful when output has to be processed in a locale invariant fashion.

186 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.runners.call_git_lines

datalad_next.runners.call_git_lines(args: list[str], *, cwd: Path | None = None, input: str | None = None,
force_c_locale: bool = False)→ list[str]

Call Git for any (small) number of lines of output

args is a list of arguments for the Git command. This list must not contain the Git executable itself. It will be
prepended (unconditionally) to the arguments before passing them on.

If cwd is not None, the function changes the working directory to cwd before executing the command.

If input is not None, the argument becomes the subprocess’s stdin. This is intended for small-scale inputs. For
call that require processing large inputs, iter_git_subproc() is to be preferred.

If force_c_locale is True the environment of the Git process is altered to ensure output according to the C
locale. This is useful when output has to be processed in a locale invariant fashion.

Raises
CommandError if the call exits with a non-zero status. --

datalad_next.runners.call_git_oneline

datalad_next.runners.call_git_oneline(args: list[str], *, cwd: Path | None = None, input: str | None =
None, force_c_locale: bool = False)→ str

Call Git for a single line of output

If cwd is not None, the function changes the working directory to cwd before executing the command.

If input is not None, the argument becomes the subprocess’s stdin. This is intended for small-scale inputs. For
call that require processing large inputs, iter_git_subproc() is to be preferred.

If force_c_locale is True the environment of the Git process is altered to ensure output according to the C
locale. This is useful when output has to be processed in a locale invariant fashion.

Raises

• CommandError if the call exits with a non-zero status. --

• AssertionError if there is more than one line of output. --

datalad_next.runners.call_git_success

datalad_next.runners.call_git_success(args: list[str], *, cwd: Path | None = None, capture_output: bool =
False)→ bool

Call Git and report success or failure of the command

args is a list of arguments for the Git command. This list must not contain the Git executable itself. It will be
prepended (unconditionally) to the arguments before passing them on.

If cwd is not None, the function changes the working directory to cwd before executing the command.

If capture_output is True, process output is captured, but not returned. By default process output is not
captured.

2.3. Python tooling 187

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.runners.iter_git_subproc

datalad_next.runners.iter_git_subproc(args: list[str], **kwargs)
iter_subproc() wrapper for calling Git commands

All argument semantics are identical to those of iter_subproc(), except that args must not contain the Git
binary, but need to be exclusively arguments to it. The respective git command/binary is automatically added
internally.

datalad_next.runners.CommandError

exception datalad_next.runners.CommandError(cmd: str | list[str] = '', msg: str = '', code: int | None =
None, stdout: str | bytes = '', stderr: str | bytes = '', cwd: str
| os.PathLike | None = None, **kwargs: Any)

Thrown if a command call fails.

Note: Subclasses should override to_str rather than __str__ because to_str is called directly in datalad.cli.main.

Low-level tooling from datalad-core

Deprecated since version 1.4: The functionality described here has been deprecated, and the associated imports from
datalad-core are scheduled for removal with version 2.0. Use the implementations listed above instead.

Few process execution/management utilities are provided, for generic command execution, and for execution command
in the context of a Git repository.

GitRunner alias of GitWitlessRunner
Runner alias of WitlessRunner

datalad_next.runners.GitRunner

datalad_next.runners.GitRunner

alias of GitWitlessRunner

datalad_next.runners.Runner

datalad_next.runners.Runner

alias of WitlessRunner

Additional information on the design of the subprocess execution tooling is available from https://docs.datalad.org/
design/threaded_runner.html

A standard exception type is used to communicate any process termination with a non-zero exit code

CommandError([cmd, msg, code, stdout, ...]) Thrown if a command call fails.

Command output can be processed via "protocol" implementations that are inspired by asyncio.
SubprocessProtocol.

188 Chapter 2. Functionality provided by DataLad NEXT

https://docs.datalad.org/design/threaded_runner.html
https://docs.datalad.org/design/threaded_runner.html

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

KillOutput([done_future, encoding]) WitlessProtocol that swallows stdout/stderr of a subpro-
cess

NoCapture([done_future, encoding]) WitlessProtocol that captures no subprocess output
StdOutCapture([done_future, encoding]) WitlessProtocol that only captures and returns stdout of

a subprocess
StdErrCapture([done_future, encoding]) WitlessProtocol that only captures and returns stderr of

a subprocess
StdOutErrCapture([done_future, encoding]) WitlessProtocol that captures and returns stdout/stderr

of a subprocess

datalad_next.runners.KillOutput

class datalad_next.runners.KillOutput(done_future: Any | None = None, encoding: str | None = None)
Bases: WitlessProtocol

WitlessProtocol that swallows stdout/stderr of a subprocess

pipe_data_received(fd: int, data: bytes)→ None

proc_err = True

proc_out = True

datalad_next.runners.NoCapture

class datalad_next.runners.NoCapture(done_future: Any | None = None, encoding: str | None = None)
Bases: WitlessProtocol

WitlessProtocol that captures no subprocess output

As this is identical with the behavior of the WitlessProtocol base class, this class is merely a more readable
convenience alias.

datalad_next.runners.StdOutCapture

class datalad_next.runners.StdOutCapture(done_future: Any | None = None, encoding: str | None = None)
Bases: WitlessProtocol

WitlessProtocol that only captures and returns stdout of a subprocess

proc_out = True

2.3. Python tooling 189

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.runners.StdErrCapture

class datalad_next.runners.StdErrCapture(done_future: Any | None = None, encoding: str | None = None)
Bases: WitlessProtocol

WitlessProtocol that only captures and returns stderr of a subprocess

proc_err = True

datalad_next.runners.StdOutErrCapture

class datalad_next.runners.StdOutErrCapture(done_future: Any | None = None, encoding: str | None =
None)

Bases: WitlessProtocol

WitlessProtocol that captures and returns stdout/stderr of a subprocess

proc_err = True

proc_out = True

2.3.14 datalad_next.shell

A persistent shell connection

This module provides a context manager that establishes a connection to a shell and can be used to execute multiple
commands in that shell. Shells are usually remote shells, e.g. connected via an ssh-client, but local shells like zsh,
bash or PowerShell can also be used.

The context manager returns an instance of ShellCommandExecutor that can be used to execute commands in the
shell via the method ShellCommandExecutor.__call__(). The method will return an instance of a subclass of
ShellCommandResponseGenerator that can be used to retrieve the output of the command, the result code of the
command, and the stderr-output of the command.

Every response generator expects a certain output structure. It is responsible for ensuring that the output struc-
ture is generated. To this end every response generator provides a method ShellCommandResponseGenerator.
get_command_list(). The method ShellCommandExecutor.__call__ will pass the user-provided com-
mand to ShellCommandResponseGenerator.get_command_list() and receive a list of final commands that
should be executed in the connected shell and that will generate the expected output structure. Instances of
ShellCommandResponseGenerator have therefore four tasks:

1. Create a final command list that is used to execute the user provided command. This could, for example, execute
the command, print an end marker, and print the return code of the command.

2. Parse the output of the command, yield it to the user.

3. Read the return code and provide it to the user.

4. Provide stderr-output to the user.

A very versatile example of a response generator is the class VariableLengthResponseGenerator. It can be used to
execute a command that will result in an output of unknown length, e.g. ls, and will yield the output of the command
to the user. It does that by using a random end marker to detect the end of the output and read the trailing return code.
This is suitable for almost all commands.

If VariableLengthResponseGenerator is so versatile, why not just implement its functionality in
ShellCommandExecutor? There are two major reasons for that:

190 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

1. Although the VariableLengthResponseGenerator is very versatile, it is not the most efficient implemen-
tation for commands that produce large amounts of output. In addition, there is also a minimal risk that the
end marker is part of the output of the command, which would trip up the response generator. Putting response
generation into a separate class allows to implement specific operations more efficiently and more safely. For
example, DownloadResponseGenerator implements the download of files. It takes a remote file name as user
"command" and creates a final command list that emits the length of the file, a newline, the file content, a return
code, and a newline. This allows DownloadResponseGenerator to parse the output without relying on an end
marker, thus increasing efficiency and safety

2. Factoring out the response generation creates an interface that can be used to support the syntax of different
shells and the difference in command names and options in different operating systems. For example, the response
generator class VariableLengthResponseGeneratorPowerShell supports the invocation of commands with
variable length output in a PowerShell.

In short, parser generator classes encapsulate details of shell-syntax and operation implementation. That allows support
of different shell syntax, and the efficient implementation of specific higher level operations, e.g. download. It also
allows users to extend the functionality of ShellCommandExecutor by providing their own response generator classes.

The module datalad_next.shell.response_generators provides two generally applicable abstract response
generator classes:

• VariableLengthResponseGenerator

• FixedLengthResponseGenerator

The functionality of the former is described above. The latter can be used to execute a command that will result in
output of known length, e.g. echo -n 012345. It reads the specified number of bytes and a trailing return code. This
is more performant than the variable length response generator (because it does not have to search for the end marker).
In addition, it does not rely on the uniqueness of the end marker. It is most useful for operation like download, where
the length of the output can be known in advance.

As mentioned above, the classes VariableLengthResponseGenerator and FixedLengthResponseGenerator
are abstract. The module datalad_next.shell.response_generators provides the following concrete imple-
mentations for them:

• VariableLengthResponseGeneratorPosix

• VariableLengthResponseGeneratorPowerShell

• FixedLengthResponseGeneratorPosix

• FixedLengthResponseGeneratorPowerShell

When shell() is executed it will use a VariableLengthResponseClass to skip the login message of the
shell. This is done by executing a zero command (a command that will possibly generate some output, and
successfully return) in the shell. The zero command is provided by the concrete implementation of class
VariableLengthResponseGenerator. For example, the zero command for POSIX shells is test 0 -eq 0, for
PowerShell it is Write-Host hello.

Because there is no way for func:shell to determine the kind of shell it connects to, the user can provide an alternative
response generator class, in the zero_command_rg_class-parameter. Instance of that class will then be used to
execute the zero command. Currently, the following two response generator classes are available:

• VariableLengthResponseGeneratorPosix: works with POSIX-compliant shells, e.g. sh or bash. This is
the default.

• VariableLengthResponseGeneratorPowerShell: works with PowerShell.

Whenever a command is executed via ShellCommandExecutor.__call__(), the class identified by
zero_command_rg_class will be used by default to create the final command list and to parse the result. Users
can override this on a per-call basis by providing a different response generator class in the response_generator-
parameter of ShellCommandExecutor.__call__().

2.3. Python tooling 191

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

ShellCommandExecutor(process_inputs, stdout, ...) Execute a command in a shell and return a generator that
yields output

ShellCommandResponseGenerator(stdout_gen, ...) An abstract class the specifies the minimal functionality
of a response generator

VariableLengthResponseGenerator(stdout) Response generator that handles outputs of unknown
length

VariableLengthResponseGeneratorPosix(stdout) A variable length response generator for POSIX shells
VariableLengthResponseGeneratorPowerShell(stdout)A variable length response generator for PowerShell

shells
FixedLengthResponseGenerator(stdout, length) Response generator for efficient handling of outputs of

known length
FixedLengthResponseGeneratorPosix(stdout,
length)
FixedLengthResponseGeneratorPowerShell(...)

DownloadResponseGenerator(stdout) Response generator interface for efficient download
DownloadResponseGeneratorPosix(stdout) A response generator for efficient download commands

from Linux systems
operations.posix.upload(shell, local_path, ...) Upload a local file to a named file in the connected shell
operations.posix.download(shell, ...[, ...]) Download a file from the connected shell
operations.posix.delete(shell, files, *[, ...]) Delete files on the connected shell

datalad_next.shell.ShellCommandExecutor

class datalad_next.shell.ShellCommandExecutor(process_inputs: Queue, stdout: OutputFrom, shell_cmd:
list[str], default_rg_class:
type[VariableLengthResponseGenerator])

Bases: object

Execute a command in a shell and return a generator that yields output

Instances of ShellCommandExecutor allow to execute commands that are provided as byte-strings via its
__call__()-method.

To execute the command and collect its output, return code, and stderr-output,
ShellCommandExecutor uses instances of subclasses of ShellCommandResponseGenerator, e.g.
VariableLengthResponseGeneratorPosix.

__call__(command: bytes | str, *, stdin: Iterable[bytes] | None = None, response_generator:
ShellCommandResponseGenerator | None = None, encoding: str = 'utf-8', check: bool = False)→
ExecutionResult

Execute a command in the connected shell and return the result

This method executes the given command in the connected shell. It assembles all output on stdout, all output
on stderr that was written during the execution of the command, and the return code of the command. (The
response generator defines when the command output is considered complete. Usually that is done by
checking for a random end-of-output marker.)

Parameters

• command (bytes | str) -- The command to execute. If the command is given as a string,
it will be encoded to bytes using the encoding given in encoding.

• stdin (Iterable[byte] | None, optional, default: None) -- If given, the
bytes are sent to stdin of the command.

192 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Note: If the command reads its stdin until EOF, you have to use self.close()
to close stdin of the command. Otherwise, the command will usually not termi-
nate. Once self.close() is called, no more commands can be executed with this
ShellCommandExecutor-instance. If you want to execute further commands in the same
ShellCommandExecutor-instance, you must ensure that commands consume a fixed
amount of input, for example, by using head -c <byte-count> | <command>.

• response_generator (ShellCommandResponseGenerator | None, optional,
default: None) -- If given, the responder generator (usually an instance of a subclass
of ShellCommandResponseGenerator), that is used to generate the command line and
to parse the output of the command. This can be used to implement, for example, fixed
length output processing.

• encoding (str, optional, default: 'utf-8') -- The encoding that is used to en-
code the command if it is given as a string. Note: the encoding should match the decoding
the is used in the connected shell.

• check (bool, optional, default: False) -- If True, a CommandError-exception
is raised if the return code of the command is not zero.

Returns
An instance of ExecutionResult that contains the stdout-output, the stderr-output, and
the return code of the command.

Return type
ExecutionResult

Raises
CommandError -- If the return code of the command is not zero and check is True.

close()

stop input to the shell

This method closes stdin of the shell. This will in turn terminate the shell, no further commands can be
executed in the shell.

command_zero(response_generator: VariableLengthResponseGenerator)→ None
Execute the zero command

This method is only used by shell() to skip any login messages

start(command: bytes | str, *, stdin: Iterable[bytes] | None = None, response_generator:
ShellCommandResponseGenerator | None = None, encoding: str = 'utf-8')→
ShellCommandResponseGenerator

Execute a command in the connected shell

Execute a command in the connected shell and return a generator that provides the content written to stdout
of the command. After the generator is exhausted, the return code of the command is available in the
returncode-attribute of the generator.

Parameters

• command (bytes | str) -- The command to execute. If the command is given as a string,
it will be encoded to bytes using the encoding given in encoding.

• stdin (Iterable[byte] | None, optional, default: None) -- If given, the
bytes are sent to stdin of the command.

Note: If the command reads its stdin until EOF, you have to use self.close()
to close stdin of the command. Otherwise, the command will usually not termi-
nate. Once self.close() is called, no more commands can be executed with this

2.3. Python tooling 193

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

ShellCommandExecutor-instance. If you want to execute further commands in the same
ShellCommandExecutor-instance, you must ensure that commands consume a fixed
amount of input, for example, by using head -c <byte-count> | <command>.

• response_generator (ShellCommandResponseGenerator | None, optional,
default: None) -- If given, the responder generator (usually an instance of a subclass
of ShellCommandResponseGenerator), that is used to generate the command line and
to parse the output of the command. This can be used to implement, for example, fixed
length output processing.

• encoding (str, optional, default: 'utf-8') -- The encoding that is used to en-
code the command if it is given as a string. Note: the encoding should match the decoding
the is used in the connected shell.

Returns
A generator that yields the output of stdout of the command. The generator is exhausted
when all output is read. After that, the return code of the command execution is avail-
able in the returncode-attribute of the generator, and the stderr-output is available in the
stderr_deque-attribute of the response generator. If a response generator was passed in via
the response_generator-parameter, the same instance will be returned.

Return type
ShellCommandResponseGenerator

datalad_next.shell.ShellCommandResponseGenerator

class datalad_next.shell.ShellCommandResponseGenerator(stdout_gen: Generator, stderr_deque:
deque)

Bases: Generator

An abstract class the specifies the minimal functionality of a response generator

Subclasses of this class can be used to implement operation-specific, shell-specific or OS-specific details of the
command execution and the command output parsing.

The return code is available in the returncode-attribute, the stderr-output is available in the stderr_deque-
attribute (a deque-instance), of instances of this class.

abstract get_final_command(command: bytes)→ bytes
Return a final command list that executes command

This method should return a "final" command-pipeline that executes command and generates the output
structure that the response generator expects. This structure will typically be parsed in the implementation
of send().

This method is usually only called by ShellCommandExecutor.__call__().

abstract send(_)→ bytes
Deliver the next part of generated output

Whenever the response generator is iterated over, this method is called and should deliver the next part of
the command output or raise StopIteration if the command has finished.

throw(typ, val=Ellipsis, tb=Ellipsis)
Raise an exception in the generator. Return next yielded value or raise StopIteration.

194 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.shell.VariableLengthResponseGenerator

class datalad_next.shell.VariableLengthResponseGenerator(stdout: OutputFrom)

Bases: ShellCommandResponseGenerator

Response generator that handles outputs of unknown length

This response generator is used to execute a command that will result in an output of unknown length, e.g. ls.
The final command list it creates will execute the command and print a random end-marker and the return code
after the output of the command. The send()-method of this class uses the end-marker to determine then end
of the command output.

send(_)→ bytes
Deliver the next part of generated output

Whenever the response generator is iterated over, this method is called and should deliver the next part of
the command output or raise StopIteration if the command has finished.

abstract property zero_command: bytes

Return a command that functions as "zero command"

datalad_next.shell.VariableLengthResponseGeneratorPosix

class datalad_next.shell.VariableLengthResponseGeneratorPosix(stdout)
Bases: VariableLengthResponseGenerator

A variable length response generator for POSIX shells

get_final_command(command: bytes)→ bytes
Return a command list that executes command and prints the end-marker

The POSIX version for variable length response generators.

This method is usually only called by ShellCommandExecutor.__call__().

property zero_command: bytes

Return a command that functions as "zero command"

datalad_next.shell.VariableLengthResponseGeneratorPowerShell

class datalad_next.shell.VariableLengthResponseGeneratorPowerShell(stdout)
Bases: VariableLengthResponseGenerator

A variable length response generator for PowerShell shells

get_final_command(command: bytes)→ bytes
Return a command list that executes command and prints the end-marker

The PowerShell version for variable length response generators.

This method is usually only called by ShellCommandExecutor.__call__().

property zero_command: bytes

Return a command that functions as "zero command"

2.3. Python tooling 195

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.shell.FixedLengthResponseGenerator

class datalad_next.shell.FixedLengthResponseGenerator(stdout: OutputFrom, length: int)
Bases: ShellCommandResponseGenerator

Response generator for efficient handling of outputs of known length

This response generator is used to execute commands that have an output of known length. The final command
list it creates will execute the command and print the return code followed by a newline.

The send()-method of this response generator will read the specified number of bytes and a trailing return code.
This is more performant than scanning the output for an end-marker.

send(_)→ bytes
Deliver the next part of generated output

Whenever the response generator is iterated over, this method is called and should deliver the next part of
the command output or raise StopIteration if the command has finished.

datalad_next.shell.FixedLengthResponseGeneratorPosix

class datalad_next.shell.FixedLengthResponseGeneratorPosix(stdout: OutputFrom, length: int)
Bases: FixedLengthResponseGenerator

get_final_command(command: bytes)→ bytes
Return a final command list for a command with a fixed length output

The POSIX version for fixed length response generators.

This method is usually only called by ShellCommandExecutor.__call__().

datalad_next.shell.FixedLengthResponseGeneratorPowerShell

class datalad_next.shell.FixedLengthResponseGeneratorPowerShell(stdout: OutputFrom, length: int)
Bases: FixedLengthResponseGenerator

get_final_command(command: bytes)→ bytes
Return a final command list for a command with a fixed length output

The PowerShell version for fixed length response generators.

This method is usually only called by ShellCommandExecutor.__call__().

datalad_next.shell.DownloadResponseGenerator

class datalad_next.shell.DownloadResponseGenerator(stdout: OutputFrom)

Bases: ShellCommandResponseGenerator

Response generator interface for efficient download

This response generator is used to implement download in a single command call (instead of using one command
to determine the length of a file and a subsequent fixed-length command to download the file). It assumes that
the shell sends <length>\n, the content of the file, and <return code>\n. The response generator delegates
the creation of the appropriate final command list to its subclasses.

196 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

send(_)→ bytes
Deliver the next part of generated output

Whenever the response generator is iterated over, this method is called and should deliver the next part of
the command output or raise StopIteration if the command has finished.

datalad_next.shell.DownloadResponseGeneratorPosix

class datalad_next.shell.DownloadResponseGeneratorPosix(stdout: OutputFrom)

Bases: DownloadResponseGenerator

A response generator for efficient download commands from Linux systems

get_final_command(remote_file_name: bytes)→ bytes
Return a final command list for the download of remote_file_name

The POSIX version for download response generators.

This method is usually only called by ShellCommandExecutor.__call__().

datalad_next.shell.operations.posix.upload

datalad_next.shell.operations.posix.upload(shell: ShellCommandExecutor, local_path: Path,
remote_path: PurePosixPath, progress_callback:
Callable[[int, int], None] | None = None, check: bool =
False)→ ExecutionResult

Upload a local file to a named file in the connected shell

This function uploads a file to the connected shell shell. It uses head to limit the number of bytes that the
remote shell will read. This ensures that the upload is terminated.

The requirements for upload are: - The connected shell must be a POSIX shell. - head must be installed in the
remote shell.

Parameters

• shell (ShellCommandExecutor) -- The shell that should be used to upload the file.

• local_path (Path) -- The file that should be uploaded.

• remote_path (PurePosixPath) -- The name of the file on the connected shell that will
contain the uploaded content.

• progress_callback (callable[[int, int], None], optional, default:
None) -- If given, the callback is called with the number of bytes that have been sent and the
total number of bytes that should be sent.

• check (bool, optional, default: False) -- If True, raise a CommandError if the
remote operation does not exit with a 0 as return code.

Returns
The result of the upload operation.

Return type
ExecutionResult

Raises
CommandError: -- If the remote operation does not exit with a 0 as return code, and check is
True, a CommandError is raised. It will contain the exit code and the last (up to chunk_size
(defined by the chunk_size keyword argument to shell())) bytes of stderr output.

2.3. Python tooling 197

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.shell.operations.posix.download

datalad_next.shell.operations.posix.download(shell: ShellCommandExecutor, remote_path:
PurePosixPath, local_path: Path, progress_callback:
Callable[[int, int], None] | None = None, *,
response_generator_class:
type[DownloadResponseGenerator] = <class 'data-
lad_next.shell.operations.posix.DownloadResponseGeneratorPosix'>,
check: bool = False)→ ExecutionResult

Download a file from the connected shell

This method downloads a file from the connected shell.

The requirements for download via instances of class DownloadResponseGeneratorPosix are: - The con-
nected shell must support ls -dln. - The connected shell must support echo -e. - The connected shell must
support awk. - The connected shell must support cat.

Parameters

• shell (ShellCommandExecutor) -- The shell from which a file should be downloaded.

• remote_path (PurePosixPath) -- The name of the file on the connected shell that should
be downloaded.

• local_path (Path) -- The name of the local file that will contain the downloaded content.

• progress_callback (callable[[int, int], None], optional, default:
None) -- If given, the callback is called with the number of bytes that have been received
and the total number of bytes that should be received.

• response_generator_class (type[DownloadResponseGenerator], optional,
default: DownloadResponseGeneratorPosix) -- The response generator
that should be used to handle the download output. It must be a subclass of
DownloadResponseGenerator. The default works if the connected shell runs on a
Unix-like system that provides ls -dln and awk, e.g. Linux or OSX.

• check (bool, optional, default: False) -- If True, raise a CommandError if the
remote operation does not exit with a 0 as return code.

Returns
The result of the download operation.

Return type
ExecutionResult

Raises
CommandError: -- If the remote operation does not exit with a 0 as return code, and check is
True, a CommandError is raised. It will contain the exit code and the last (up to chunk_size
(defined by the chunk_size keyword argument to shell())) bytes of stderr output.

198 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.shell.operations.posix.delete

datalad_next.shell.operations.posix.delete(shell: ShellCommandExecutor, files: list[PurePosixPath], *,
force: bool = False, check: bool = False)→
ExecutionResult

Delete files on the connected shell

The requirements for delete are: - The connected shell must be a POSIX shell. - rm must be installed in the
remote shell.

Parameters

• shell (ShellCommandExecutor) -- The shell from which a file should be downloaded.

• files (list[PurePosixPath]) -- The "paths" of the files that should be deleted.

• force (bool) -- If True, enforce removal, if possible. For example, the command could
change the permissions of the files to be deleted to ensure their removal.

• check (bool, optional, default: False) -- If True, raise a CommandError if the
remote operation does not exit with a 0 as return code.

Raises
CommandError: -- If the remote operation does not exit with a 0 as return code, and check is
True, a CommandError is raised. It will contain the exit code and the last (up to chunk_size
(defined by the chunk_size keyword argument to shell())) bytes of stderr output.

datalad_next.shell.shell(shell_cmd: list[str], *, credential: str | None = None, chunk_size: int = 65536,
zero_command_rg_class: type[VariableLengthResponseGenerator] = <class 'data-
lad_next.shell.response_generators.VariableLengthResponseGeneratorPosix'>)→
Generator[ShellCommandExecutor, None, None]

Context manager that provides an interactive connection to a shell

This context manager uses the provided argument shell_cmd to start a shell-subprocess. Usually the commands
provided in shell_cmd will start a client for a remote shell, e.g. ssh.

shell() returns an instance of ShellCommandExecutor in the as-variable. This instance can be used to
interact with the shell. That means, it can be used to execute commands in the shell, receive the data that
the commands write to their stdout and stderr, and retrieve the return code of the executed commands. All
commands that are executed via the returned instance of ShellCommandExecutor are executed in the same
shell instance.

Simple example that invokes a single command:

>>> from datalad_next.shell import shell
>>> with shell(['ssh', 'localhost']) as ssh:
... result = ssh(b'ls -l /etc/passwd')
... print(result.stdout)
... print(result.returncode)
...
b'-rw-r--r-- 1 root root 2773 Nov 14 10:05 /etc/passwd\n'
0

Example that invokes two commands, the second of which exits with a non-zero return code. The error output
is retrieved from result.stderr, which contains all stderr data that was written since the last command was
executed:

2.3. Python tooling 199

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

>>> from datalad_next.shell import shell
>>> with shell(['ssh', 'localhost']) as ssh:
... print(ssh(b'head -1 /etc/passwd').stdout)
... result = ssh(b'ls /no-such-file')
... print(result.stdout)
... print(result.returncode)
... print(result.stderr)
...
b'root:x:0:0:root:/root:/bin/bash\n'
b''
2
b"Pseudo-terminal will not be allocated because stdin is not a terminal.\r\nls:␣
→˓cannot access '/no-such-file': No such file or directory\n"

The following example demonstrates how to use the check-parameter to raise a CommandError-exception if the
return code of the command is not zero. This delegates error handling to the calling code and help to keep the
code clean:

>>> from datalad_next.shell import shell
>>> with shell(['ssh', 'localhost']) as ssh:
... print(ssh(b'ls /no-such-file', check=True).stdout)
...
Traceback (most recent call last):
File "<stdin>", line 2, in <module>
File "/home/cristian/Develop/datalad-next/datalad_next/shell/shell.py", line 279,␣

→˓in __call__
return create_result(

File "/home/cristian/Develop/datalad-next/datalad_next/shell/shell.py", line 349,␣
→˓in create_result

result.to_exception(command, error_message)
File "/home/cristian/Develop/datalad-next/datalad_next/shell/shell.py", line 52,␣

→˓in to_exception
raise CommandError(

datalad.runner.exception.CommandError: CommandError: 'ls /no-such-file' failed with␣
→˓exitcode 2 [err: 'cannot access '/no-such-file': No such file or directory']

Manual checking of the return code:

>>> from datalad_next.shell import shell
>>> def file_exists(file_name):
... with shell(['ssh', 'localhost']) as ssh:
... result = ssh(f'ls {file_name}')
... return result.returncode == 0
... print(file_exists('/etc/passwd'))
True
... print(file_exists('/no-such-file'))
False

An example for result content checking:

>>> from datalad_next.shell import shell
>>> with shell(['ssh', 'localhost']) as ssh:
... result = ssh(f'grep root /etc/passwd', check=True).stdout

(continues on next page)

200 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

(continued from previous page)

... if len(result.splitlines()) != 1:

... raise ValueError('Expected exactly one line')

For long running commands a generator-based result fetching can be used. To use generator-based output the
command has to be executed with the method ShellCommandExecutor.start(). This method returns a gen-
erator that provides command output as soon as it is available:

>>> import time
>>> from datalad_next.shell import shell
>>> with shell(['ssh', 'localhost']) as ssh:
... result_generator = ssh.start(b'c=0; while [$c -lt 6]; do head -2 /etc/
→˓passwd; sleep 2; c=$(($c + 1)); done')
... for result in result_generator:
... print(time.time(), result)
... assert result_generator.returncode == 0
1713358098.82588 b'root:x:0:0:root:/root:/bin/bash\nsystemd-
→˓timesync:x:497:497:systemd Time Synchronization:/:/usr/sbin/nologin\n'
1713358100.8315682 b'root:x:0:0:root:/root:/bin/bash\nsystemd-
→˓timesync:x:497:497:systemd Time Synchronization:/:/usr/sbin/nologin\n'
1713358102.8402972 b'root:x:0:0:root:/root:/bin/bash\nsystemd-
→˓timesync:x:497:497:systemd Time Synchronization:/:/usr/sbin/nologin\n'
1713358104.8490314 b'root:x:0:0:root:/root:/bin/bash\nsystemd-
→˓timesync:x:497:497:systemd Time Synchronization:/:/usr/sbin/nologin\n'
1713358106.8577306 b'root:x:0:0:root:/root:/bin/bash\nsystemd-
→˓timesync:x:497:497:systemd Time Synchronization:/:/usr/sbin/nologin\n'
1713358108.866439 b'root:x:0:0:root:/root:/bin/bash\nsystemd-
→˓timesync:x:497:497:systemd Time Synchronization:/:/usr/sbin/nologin\n'

(The exact output of the above example might differ, depending on the length of the first two entries in the
/etc/passwd-file.)

Parameters

• shell_cmd (list[str]) -- The command to execute the shell. It should be a list of
strings that is given to iter_subproc() as args-parameter. For example: ['ssh', '-p',
'2222', 'localhost'].

• chunk_size (int, optional) -- The size of the chunks that are read from the shell's
stdout and stderr. This also defines the size of stored stderr-content.

• zero_command_rg_class (type[VariableLengthResponseGenerator],
optional, default: 'VariableLengthResponseGeneratorPosix') -- Shell
uses an instance of the specified response generator class to execute the zero command
("zero command" is the command used to skip the login messages of the shell). This class
will also be used as the default response generator for all further commands executed in the
ShellCommandExecutor-instances that is returned by shell(). Currently, the following
concrete subclasses of VariableLengthResponseGenerator exist:

– VariableLengthResponseGeneratorPosix: compatible with POSIX-compliant
shells, e.g. sh or bash.

– VariableLengthResponseGeneratorPowerShell: compatible with PowerShell.

Yields
ShellCommandExecutor

2.3. Python tooling 201

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

2.3.15 datalad_next.tests

Tooling for test implementations

BasicGitTestRepo([path, puke_if_exists]) Creates a basic test git repository.
DEFAULT_BRANCH str(object='') -> str str(bytes_or_buffer[, encoding[, er-

rors]]) -> str
DEFAULT_REMOTE str(object='') -> str str(bytes_or_buffer[, encoding[, er-

rors]]) -> str
assert_in(first, second[, msg])

assert_in_results(results, **kwargs) Verify that the particular combination of keys and values
is found in one of the results

assert_result_count(results, n, **kwargs) Verify specific number of results (matching criteria, if
any)

assert_status(label, results) Verify that each status dict in the results has a given sta-
tus label

create_tree(path, tree[, ...]) Given a list of tuples (name, load) create such a tree
eq_(first, second[, msg])

get_deeply_nested_structure(path) Here is what this does (assuming UNIX, locked): | .
ok_(expr[, msg])

ok_good_symlink(path)

ok_broken_symlink(path)

run_main(args[, exit_code, expect_stderr]) Run main() of the datalad, do basic checks and provide
outputs

skip_if_on_windows([func]) Skip test completely under Windows
skip_if_root([func]) Skip test if uid == 0.
skip_wo_symlink_capability(func) Skip test when environment does not support symlinks
swallow_logs([new_level, file_, name]) Context manager to consume all logs.
skipif_no_network A decorator for applying a mark on test functions and

classes.

datalad_next.tests.BasicGitTestRepo

class datalad_next.tests.BasicGitTestRepo(path=None, puke_if_exists=True)
Bases: TestRepo

Creates a basic test git repository.

REPO_CLASS

alias of GitRepo

create_info_file()

populate()

202 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.tests.DEFAULT_BRANCH

datalad_next.tests.DEFAULT_BRANCH = 'master'

str(object='') -> str str(bytes_or_buffer[, encoding[, errors]]) -> str

Create a new string object from the given object. If encoding or errors is specified, then the object must expose
a data buffer that will be decoded using the given encoding and error handler. Otherwise, returns the result of
object.__str__() (if defined) or repr(object). encoding defaults to sys.getdefaultencoding(). errors defaults to
'strict'.

datalad_next.tests.DEFAULT_REMOTE

datalad_next.tests.DEFAULT_REMOTE = 'origin'

str(object='') -> str str(bytes_or_buffer[, encoding[, errors]]) -> str

Create a new string object from the given object. If encoding or errors is specified, then the object must expose
a data buffer that will be decoded using the given encoding and error handler. Otherwise, returns the result of
object.__str__() (if defined) or repr(object). encoding defaults to sys.getdefaultencoding(). errors defaults to
'strict'.

datalad_next.tests.assert_in

datalad_next.tests.assert_in(first, second, msg=None)

datalad_next.tests.assert_in_results

datalad_next.tests.assert_in_results(results, **kwargs)
Verify that the particular combination of keys and values is found in one of the results

datalad_next.tests.assert_result_count

datalad_next.tests.assert_result_count(results, n, **kwargs)
Verify specific number of results (matching criteria, if any)

datalad_next.tests.assert_status

datalad_next.tests.assert_status(label, results)
Verify that each status dict in the results has a given status label

label can be a sequence, in which case status must be one of the items in this sequence.

2.3. Python tooling 203

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.tests.create_tree

datalad_next.tests.create_tree(path: str, tree: Tuple[Tuple[str | File, str | bytes | TreeSpec], ...] |
List[Tuple[str | File, str | bytes | TreeSpec]] | Dict[str | File, str | bytes |
TreeSpec], archives_leading_dir: bool = True, remove_existing: bool =
False)→ None

Given a list of tuples (name, load) create such a tree

if load is a tuple itself -- that would create either a subtree or an archive with that content and place it into the
tree if name ends with .tar.gz

datalad_next.tests.eq_

datalad_next.tests.eq_(first, second, msg=None)

datalad_next.tests.get_deeply_nested_structure

datalad_next.tests.get_deeply_nested_structure(path)
Here is what this does (assuming UNIX, locked): | . | directory_untracked | link2dir -> ../subdir |
OBSCURE_FILENAME_file_modified | link2dir -> subdir | link2subdsdir -> subds_modified/subdir
| link2subdsroot -> subds_modified | subdir | annexed_file.txt -> ../.git/annex/objects/... |

file_modified | git_file.txt | link2annex_files.txt -> annexed_file.txt | subds_modified
| link2superdsdir -> ../subdir | subdir | annexed_file.txt -> ../.git/annex/objects/... |
subds_lvl1_modified | OBSCURE_FILENAME_directory_untracked | untracked_file

When a system has no symlink support, the link2... components are not included.

datalad_next.tests.ok_

datalad_next.tests.ok_(expr, msg=None)

datalad_next.tests.ok_good_symlink

datalad_next.tests.ok_good_symlink(path)

datalad_next.tests.ok_broken_symlink

datalad_next.tests.ok_broken_symlink(path)

datalad_next.tests.run_main

datalad_next.tests.run_main(args, exit_code=0, expect_stderr=False)
Run main() of the datalad, do basic checks and provide outputs

Parameters

• args (list) -- List of string cmdline arguments to pass

• exit_code (int) -- Expected exit code. Would raise AssertionError if differs

• expect_stderr (bool or string) -- Whether to expect stderr output. If string -- match

204 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Returns
Output produced

Return type
stdout, stderr strings

datalad_next.tests.skip_if_on_windows

datalad_next.tests.skip_if_on_windows(func=None)
Skip test completely under Windows

datalad_next.tests.skip_if_root

datalad_next.tests.skip_if_root(func=None)
Skip test if uid == 0.

Note that on Windows (or anywhere else os.geteuid is not available) the test is _not_ skipped.

datalad_next.tests.skip_wo_symlink_capability

datalad_next.tests.skip_wo_symlink_capability(func)
Skip test when environment does not support symlinks

Perform a behavioral test instead of top-down logic, as on windows this could be on or off on a case-by-case
basis.

datalad_next.tests.swallow_logs

datalad_next.tests.swallow_logs(new_level: str | int | None = None, file_: str | Path | None = None, name:
str = 'datalad')→ Iterator[SwallowLogsAdapter]

Context manager to consume all logs.

datalad_next.tests.skipif_no_network

datalad_next.tests.skipif_no_network = MarkDecorator(mark=Mark(name='skipif',
args=(False,), kwargs={'reason': 'DATALAD_TESTS_NONETWORK is set'}))

A decorator for applying a mark on test functions and classes.

MarkDecorators are created with pytest.mark:

mark1 = pytest.mark.NAME # Simple MarkDecorator
mark2 = pytest.mark.NAME(name1=value) # Parametrized MarkDecorator

and can then be applied as decorators to test functions:

@mark2
def test_function():

pass

When a MarkDecorator is called, it does the following:

2.3. Python tooling 205

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

1. If called with a single class as its only positional argument and no additional keyword arguments, it attaches
the mark to the class so it gets applied automatically to all test cases found in that class.

2. If called with a single function as its only positional argument and no additional keyword arguments,
it attaches the mark to the function, containing all the arguments already stored internally in the
MarkDecorator.

3. When called in any other case, it returns a new MarkDecorator instance with the original
MarkDecorator's content updated with the arguments passed to this call.

Note: The rules above prevent a MarkDecorator from storing only a single function or class reference as its
positional argument with no additional keyword or positional arguments. You can work around this by using
with_args().

2.3.16 datalad_next.tests.fixtures

Collection of fixtures for facilitation test implementations

datalad_next.tests.fixtures.check_gitconfig_global()

No test must modify a user's global Git config.

If such modifications are needed, a custom configuration setup limited to the scope of the test requiring it must
be arranged.

datalad_next.tests.fixtures.check_plaintext_keyring()

No test must modify a user's keyring.

If such modifications are needed, a custom keyring setup limited to the scope of the test requiring it must be
arranged. The tmp_keyring fixture can be employed in such cases.

datalad_next.tests.fixtures.credman(datalad_cfg, tmp_keyring)
Provides a temporary credential manager

It comes with a temporary global datalad config and a temporary keyring as well.

This manager can be used to deploy or manipulate credentials within the scope of a single test.

datalad_next.tests.fixtures.datalad_cfg()

Temporarily alter configuration to use a plain "global" configuration

The global configuration manager at datalad.cfg is reloaded after adjusting GIT_CONFIG_GLOBAL to point to
a new temporary .gitconfig file.

After test execution the file is removed, and the global ConfigManager is reloaded once more.

Any test using this fixture will be skipped for Git versions earlier than 2.32, because the GIT_CONFIG_GLOBAL
environment variable used here was only introduced with that version.

datalad_next.tests.fixtures.datalad_interactive_ui(monkeypatch)
Yields a UI replacement to query for operations and stage responses

No output will be written to STDOUT/ERR by this UI.

A standard usage pattern is to stage one or more responses, run the to-be-tested code, and verify that the desired
user interaction took place:

> datalad_interactive_ui.staged_responses.append('skip')
> ...
> assert ... datalad_interactive_ui.log

206 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.tests.fixtures.datalad_noninteractive_ui(monkeypatch)
Yields a UI replacement to query for operations

No output will be written to STDOUT/ERR by this UI.

A standard usage pattern is to run the to-be-tested code, and verify that the desired user messaging took place:

> ...
> assert ... datalad_interactive_ui.log

datalad_next.tests.fixtures.dataset(datalad_cfg, tmp_path_factory)
Provides a Dataset instance for a not-yet-existing repository

The instance points to an existing temporary path, but create() has not been called on it yet.

datalad_next.tests.fixtures.existing_dataset(dataset)
Provides a Dataset instance pointing to an existing dataset/repo

This fixture uses an instance provided by the dataset fixture and calls create() on it, before it yields the
Dataset instance.

datalad_next.tests.fixtures.existing_noannex_dataset(dataset)
just like existing_dataset, but created with annex=False

datalad_next.tests.fixtures.http_credential()

Provides the HTTP Basic authentication credential necessary to access the HTTP server provided by the
http_server_with_basicauth fixture.

datalad_next.tests.fixtures.http_server(tmp_path_factory)
Provides an HTTP server, serving a temporary directory

The fixtures yields an instance of HTTPPath, providing the following essential attributes:

• path: Path instance of the served temporary directory

• url: HTTP URL to access the HTTP server

datalad_next.tests.fixtures.http_server_with_basicauth(tmp_path_factory, http_credential)
Like http_server but requiring authentication via http_credential

datalad_next.tests.fixtures.httpbin(httpbin_service)
Does the same thing as httpbin_service, but skips on function-scope

httpbin_service always returns access URLs for HTTPBIN. However, in some cases it is simply not desir-
able to run a test. For example, the appveyor workers are more or less constantly unable to access the public
service. This fixture is evaluated at function-scope and skips the test whenever any of these undesired conditions
is detected. Otherwise it just relays httpbin_service.

datalad_next.tests.fixtures.httpbin_service()

Return canonical access URLs for the HTTPBIN service

This fixture tries to spin up a httpbin Docker container at localhost:8765; if successful, it returns this URL as the
'standard' URL. If the attempt fails, a URL pointing to the canonical instance is returned.

For tests that need to have the service served via a specific protocol (https vs http), the corresponding URLs are
returned too. They always point to the canonical deployment, as some tests require both protocols simultaneously
and a local deployment generally won't have https.

2.3. Python tooling 207

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.tests.fixtures.modified_dataset(tmp_path_factory)
Produces a dataset with various modifications

The fixture is module-scope, aiming to be reused by many tests focused on reporting. It does not support any
further modification. The fixture will fail, if any such modification is detected.

git status will report:

git status -uall
On branch dl-test-branch
Changes to be committed:
(use "git restore --staged <file>..." to unstage)

new file: dir_m/file_a
new file: file_a
new file: file_am

Changes not staged for commit:
(use "git add/rm <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
(commit or discard the untracked or modified content in submodules)

deleted: dir_d/file_d
deleted: dir_m/file_d
modified: dir_m/file_m
deleted: dir_sm/sm_d
modified: dir_sm/sm_m (modified content)
modified: dir_sm/sm_mu (modified content, untracked content)
modified: dir_sm/sm_n (new commits)
modified: dir_sm/sm_nm (new commits, modified content)
modified: dir_sm/sm_nmu (new commits, modified content, untracked content)
modified: dir_sm/sm_u (untracked content)
modified: file_am
deleted: file_d
modified: file_m

Untracked files:
(use "git add <file>..." to include in what will be committed)

dir_m/dir_u/file_u
dir_m/file_u
dir_u/file_u
file_u

Suffix indicates the ought-to state (multiple possible):

a - added c - clean d - deleted n - new commits m - modified u - untracked content

Prefix indicated the item type:

file - file sm - submodule dir - directory

datalad_next.tests.fixtures.no_result_rendering(monkeypatch)
Disable datalad command result rendering for all command calls

This is achieved by forcefully supplying result_renderer='disabled' to any command call via a patch to internal
argument normalizer get_allargs_as_kwargs().

datalad_next.tests.fixtures.reduce_logging()

Reduce the logging output during test runs

208 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

DataLad emits a large amount of repetitive INFO log messages that only clutter the test output, and hardly ever
help to identify an issue. This fixture modifies the standard logger to throw away all INFO level log messages.

With this approach, such messages are still fed to and processes by the logger (in contrast to an apriori level
setting).

datalad_next.tests.fixtures.sshserver(sshserver_setup, datalad_cfg, monkeypatch)

datalad_next.tests.fixtures.sshserver_setup(tmp_path_factory)

datalad_next.tests.fixtures.tmp_keyring()

Patch plaintext keyring to temporarily use a different storage

No credential read or write actions will impact any existing credential store of any configured backend.

The patched backend is yielded by the fixture.

datalad_next.tests.fixtures.webdav_credential()

Provides HTTP Basic authentication credential necessary to access the server provided by the webdav_server
fixture.

datalad_next.tests.fixtures.webdav_server(tmp_path_factory, webdav_credential)
Provides a WebDAV server, serving a temporary directory

The fixtures yields an instance of WebDAVPath, providing the following essential attributes:

• path: Path instance of the served temporary directory

• url: HTTP URL to access the WebDAV server

Server access requires HTTP Basic authentication with the credential provided by the webdav_credential
fixture.

2.3.17 datalad_next.types

Custom types and dataclasses

AnnexKey(name, backend[, size, mtime, ...]) Representation of a git-annex key
ArchivistLocator(akey, member[, size, atype]) Representation of a dl+archive: archive member lo-

cator
ArchiveType(value) Enumeration of archive types

datalad_next.types.AnnexKey

class datalad_next.types.AnnexKey(name: str, backend: str, size: int | None = None, mtime: int | None =
None, chunksize: int | None = None, chunknumber: int | None = None)

Bases: object

Representation of a git-annex key

https://git-annex.branchable.com/internals/key_format/

backend: str

chunknumber: int | None = None

chunksize: int | None = None

2.3. Python tooling 209

https://git-annex.branchable.com/internals/key_format/

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

classmethod from_str(key: str)
Return an AnnexKey instance from a key string

mtime: int | None = None

name: str

size: int | None = None

datalad_next.types.ArchivistLocator

class datalad_next.types.ArchivistLocator(akey: AnnexKey, member: PurePosixPath, size: int | None =
None, atype: ArchiveType | None = None)

Bases: object

Representation of a dl+archive: archive member locator

These locators are used by the datalad-archives and archivist git-annex special remotes. They identify a
member of a archive that is itself identified by an annex key.

Each member is annotated with its size (in bytes). Optionally, the file format type of the archive can be annotated
too.

Syntax of dl+archives: locators

The locators the following minimal form:

dl+archive:<archive-key>#path=<path-in-archive>

where <archive-key> is a regular git-annex key of an archive file, and <path-in-archive> is a POSIX-style
relative path pointing to a member within the archive.

Two optional, additional attributes size and atype are recognized (only size is also understood by the
datalad-archives special remote).

size declares the size of the (extracted) archive member in bytes:

dl+archive:<archive-key>#path=<path-in-archive>&size=<size-in-bytes>

atype declares the type of the containing archive using a label. Currently recognized labels are tar (a TAR
archive, compressed or not), and zip (a ZIP archive). See ArchiveType for all recognized labels.

If no type information is given, ArchivistLocator.from_str() will try to determine the archive type from
the archive key (via *E-type git-annex backends, such as DataLad's default MD5E).

The order in the fragment part of the URL (after #) is significant. path must come first, followed by size or
atype. If both size and atype are present, size must be declared first. A complete example of a URL is:

dl+archive:MD5-s389--e9f624eb778e6f945771c543b6e9c7b2#path=dir/file.csv&size=234&
→˓atype=tar

akey: AnnexKey

atype: ArchiveType | None = None

classmethod from_str(url: str)
Return ArchivistLocator from str form

210 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

member: PurePosixPath

size: int | None = None

datalad_next.types.ArchiveType

class datalad_next.types.ArchiveType(value)
Bases: Enum

Enumeration of archive types

Each one should have an associated ArchiveOperations handler.

tar = 'tar'

zip = 'zip'

2.3.18 datalad_next.uis

UI abstractions for user communication

ansi_colors Definitions for ansi colors etc
ui_switcher Poor man helper to switch between different backends at

run-time.

datalad_next.uis.ansi_colors

Definitions for ansi colors etc

datalad_next.uis.ui_switcher

datalad_next.uis.ui_switcher = <datalad.ui._UI_Switcher object>

Poor man helper to switch between different backends at run-time.

2.3.19 datalad_next.url_operations

Handlers for operations on various URL types and protocols

Available handlers:

2.3. Python tooling 211

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

UrlOperations(*[, cfg]) Abstraction for operations on URLs
AnyUrlOperations([cfg]) Handler for operations on any supported URLs
FileUrlOperations(*[, cfg]) Handler for operations on file:// URLs
HttpUrlOperations([cfg, headers]) Handler for operations on http(s):// URLs
SshUrlOperations(*[, cfg]) Handler for operations on ssh:// URLs
UrlOperationsRemoteError(url[, message, ...])

UrlOperationsResourceUnknown(url[, message, ...]) A connection request succeeded in principle, but target
was not found

UrlOperationsInteractionError(url[, ...])

UrlOperationsAuthenticationError(url[, ...])

UrlOperationsAuthorizationError(url[, ...])

datalad_next.url_operations.UrlOperations

class datalad_next.url_operations.UrlOperations(*, cfg: ConfigManager | None = None)
Bases: object

Abstraction for operations on URLs

Support for specific URL schemes can be implemented via sub-classes. Such classes must comply with the
following conditions:

• Any configuration look-up must be performed with the self.cfg property, which is guaranteed to be a Con-
figManager instance.

• When downloads are to be supported, implement the download() method and comply with the behavior
described in its documentation.

This class provides a range of helper methods to aid computation of hashes and progress reporting.

property cfg: ConfigManager

delete(url: str, *, credential: str | None = None, timeout: float | None = None)→ Dict
Delete a resource identified by a URL

Parameters

• url (str) -- Valid URL with any scheme supported by a particular implementation.

• credential (str, optional) -- The name of a dedicated credential to be used for au-
thentication in order to perform the deletion. Particular implementations may or may not
require or support authentication. They also may or may not support automatic credential
lookup.

• timeout (float, optional) -- If given, specifies a timeout in seconds. If the operation
is not completed within this time, it will raise a TimeoutError-exception. If timeout is
None, the operation will never timeout.

Returns
A mapping of property names to values for the deletion.

Return type
dict

212 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Raises

• UrlOperationsRemoteError -- This exception is raised on any deletion-related error on
the remote side, with a summary of the underlying issues as its message. It may carry a
status code (e.g. HTTP status code) as its status_code property. Any underlying excep-
tion must be linked via the __cause__ property (e.g. raise UrlOperationsRemoteError(...)
from ...).

• UrlOperationsInteractionError --

• UrlOperationsAuthenticationError --

• UrlOperationsAuthorizationError --

• UrlOperationsResourceUnknown -- Implementations that can distinguish sev-
eral remote error types beyond indication a general UrlOperationsRemoteError:
UrlOperationsInteractionError general issues in communicating with the re-
mote side; UrlOperationsAuthenticationError for errors related to (failed)
authentication at the remote; UrlOperationsAuthorizationError for (lack
of) authorizating to access a particular resource of perform a particular operation;
UrlOperationsResourceUnknown if the target of an operation does not exist.

• TimeoutError -- If timeout is given and the operation does not complete within the num-
ber of seconds that a specified by timeout.

download(from_url: str, to_path: Path | None, *, credential: str | None = None, hash: list[str] | None =
None, timeout: float | None = None)→ Dict

Download from a URL to a local file or stream to stdout

Parameters

• from_url (str) -- Valid URL with any scheme supported by a particular implementation.

• to_path (Path or None) -- A local platform-native path or None. If None the down-
loaded data is written to stdout, otherwise it is written to a file at the given path. The path
is assumed to not exist. Any existing file will be overwritten.

• credential (str, optional) -- The name of a dedicated credential to be used for au-
thentication in order to perform the download. Particular implementations may or may not
require or support authentication. They also may or may not support automatic credential
lookup.

• hash (list(algorithm_names), optional) -- If given, must be a list of hash algo-
rithm names supported by the hashlib module. A corresponding hash will be computed
simultaenous to the download (without reading the data twice), and included in the return
value.

• timeout (float, optional) -- If given, specifies a timeout in seconds. If the operation
is not completed within this time, it will raise a TimeoutError-exception. If timeout is
None, the operation will never timeout.

Returns
A mapping of property names to values for the completed download. If hash algorithm names
are provided, a corresponding key for each algorithm is included in this mapping, with the
hexdigest of the corresponding checksum as the value.

Return type
dict

Raises

2.3. Python tooling 213

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• UrlOperationsRemoteError -- This exception is raised on any deletion-related error on
the remote side, with a summary of the underlying issues as its message. It may carry a
status code (e.g. HTTP status code) as its status_code property. Any underlying excep-
tion must be linked via the __cause__ property (e.g. raise UrlOperationsRemoteError(...)
from ...).

• UrlOperationsInteractionError --

• UrlOperationsAuthenticationError --

• UrlOperationsAuthorizationError --

• UrlOperationsResourceUnknown -- Implementations that can distinguish sev-
eral remote error types beyond indication a general UrlOperationsRemoteError:
UrlOperationsInteractionError general issues in communicating with the re-
mote side; UrlOperationsAuthenticationError for errors related to (failed)
authentication at the remote; UrlOperationsAuthorizationError for (lack
of) authorizating to access a particular resource of perform a particular operation;
UrlOperationsResourceUnknown if the target of an operation does not exist.

• TimeoutError -- If timeout is given and the operation does not complete within the num-
ber of seconds that a specified by timeout.

stat(url: str, *, credential: str | None = None, timeout: float | None = None)→ Dict
Gather information on a URL target, without downloading it

Returns
A mapping of property names to values of the URL target. The particular composition of
properties depends on the specific URL. A standard property is 'content-length', indicating
the size of a download.

Return type
dict

Raises

• UrlOperationsRemoteError -- This exception is raised on any access-related error on
the remote side, with a summary of the underlying issues as its message. It may carry a
status code (e.g. HTTP status code) as its status_code property. Any underlying excep-
tion must be linked via the __cause__ property (e.g. raise UrlOperationsRemoteError(...)
from ...).

• UrlOperationsInteractionError --

• UrlOperationsAuthenticationError --

• UrlOperationsAuthorizationError --

• UrlOperationsResourceUnknown -- Implementations that can distinguish sev-
eral remote error types beyond indication a general UrlOperationsRemoteError:
UrlOperationsInteractionError general issues in communicating with the re-
mote side; UrlOperationsAuthenticationError for errors related to (failed)
authentication at the remote; UrlOperationsAuthorizationError for (lack
of) authorizating to access a particular resource of perform a particular operation;
UrlOperationsResourceUnknown if the target of an operation does not exist.

• TimeoutError -- If timeout is given and the operation does not complete within the num-
ber of seconds that a specified by timeout.

upload(from_path: Path | None, to_url: str, *, credential: str | None = None, hash: list[str] | None = None,
timeout: float | None = None)→ Dict

214 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Upload from a local file or stream to a URL

Parameters

• from_path (Path or None) -- A local platform-native path or None. If None the upload
data is read from stdin, otherwise it is read from a file at the given path.

• to_url (str) -- Valid URL with any scheme supported by a particular implementation.
The target is assumed to not conflict with existing content, and may be overwritten.

• credential (str, optional) -- The name of a dedicated credential to be used for au-
thentication in order to perform the upload. Particular implementations may or may not
require or support authentication. They also may or may not support automatic credential
lookup.

• hash (list(algorithm_names), optional) -- If given, must be a list of hash algo-
rithm names supported by the hashlib module. A corresponding hash will be computed
simultaenous to the upload (without reading the data twice), and included in the return
value.

• timeout (float, optional) -- If given, specifies a timeout in seconds. If the operation
is not completed within this time, it will raise a TimeoutError-exception. If timeout is
None, the operation will never timeout.

Returns
A mapping of property names to values for the completed upload. If hash algorithm names
are provided, a corresponding key for each algorithm is included in this mapping, with the
hexdigest of the corresponding checksum as the value.

Return type
dict

Raises

• FileNotFoundError -- If the source file cannot be found.

• UrlOperationsRemoteError -- This exception is raised on any deletion-related error on
the remote side, with a summary of the underlying issues as its message. It may carry a
status code (e.g. HTTP status code) as its status_code property. Any underlying excep-
tion must be linked via the __cause__ property (e.g. raise UrlOperationsRemoteError(...)
from ...).

• UrlOperationsInteractionError --

• UrlOperationsAuthenticationError --

• UrlOperationsAuthorizationError --

• UrlOperationsResourceUnknown -- Implementations that can distinguish sev-
eral remote error types beyond indication a general UrlOperationsRemoteError:
UrlOperationsInteractionError general issues in communicating with the re-
mote side; UrlOperationsAuthenticationError for errors related to (failed)
authentication at the remote; UrlOperationsAuthorizationError for (lack
of) authorizating to access a particular resource of perform a particular operation;
UrlOperationsResourceUnknown if the target of an operation does not exist.

• TimeoutError -- If timeout is given and the operation does not complete within the num-
ber of seconds that a specified by timeout.

2.3. Python tooling 215

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.url_operations.AnyUrlOperations

class datalad_next.url_operations.AnyUrlOperations(cfg: ConfigManager | None = None)
Bases: UrlOperations

Handler for operations on any supported URLs

The methods inspect a given URL and call the corresponding methods for the UrlOperations implementation
that matches the URL best. The "best match" is the match expression of a registered URL handler that yields the
longest match against the given URL.

Parameter identity and semantics are unchanged with respect to the underlying implementations. See their doc-
umentation for details.

An instance retains and reuses URL scheme handler instances for subsequent operations, such that held connec-
tions or cached credentials can be reused efficiently.

delete(url: str, *, credential: str | None = None, timeout: float | None = None)→ Dict
Call *UrlOperations.delete() for the respective URL scheme

download(from_url: str, to_path: Path | None, *, credential: str | None = None, hash: list[str] | None =
None, timeout: float | None = None)→ Dict

Call *UrlOperations.download() for the respective URL scheme

is_supported_url(url)→ bool

stat(url: str, *, credential: str | None = None, timeout: float | None = None)→ Dict
Call *UrlOperations.stat() for the respective URL scheme

upload(from_path: Path | None, to_url: str, *, credential: str | None = None, hash: list[str] | None = None,
timeout: float | None = None)→ Dict

Call *UrlOperations.upload() for the respective URL scheme

datalad_next.url_operations.FileUrlOperations

class datalad_next.url_operations.FileUrlOperations(*, cfg: ConfigManager | None = None)
Bases: UrlOperations

Handler for operations on file:// URLs

Access to local data via file-scheme URLs is supported with the same API and feature set as other URL-schemes
(simultaneous content hashing and progress reporting.

delete(url: str, *, credential: str | None = None, timeout: float | None = None)→ Dict
Delete the target of a file:// URL

The target can be a file or a directory. If it is a directory, it has to be empty.

See datalad_next.url_operations.UrlOperations.delete() for parameter documentation and
exception behavior.

Raises
UrlOperationsResourceUnknown -- For deletion targets found absent.

download(from_url: str, to_path: Path | None, *, credential: str | None = None, hash: list[str] | None =
None, timeout: float | None = None)→ Dict

Copy a file:// URL target to a local path

See datalad_next.url_operations.UrlOperations.download() for parameter documentation and
exception behavior.

216 Chapter 2. Functionality provided by DataLad NEXT

file://
file://

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Raises
UrlOperationsResourceUnknown -- For download targets found absent.

stat(url: str, *, credential: str | None = None, timeout: float | None = None)→ Dict
Gather information on a URL target, without downloading it

See datalad_next.url_operations.UrlOperations.stat() for parameter documentation and ex-
ception behavior.

Raises
UrlOperationsResourceUnknown -- For access targets found absent.

upload(from_path: Path | None, to_url: str, *, credential: str | None = None, hash: list[str] | None = None,
timeout: float | None = None)→ Dict

Copy a local file to a file:// URL target

Any missing parent directories of the URL target are created as necessary.

See datalad_next.url_operations.UrlOperations.upload() for parameter documentation and
exception behavior.

Raises
FileNotFoundError -- If the source file cannot be found.

datalad_next.url_operations.HttpUrlOperations

class datalad_next.url_operations.HttpUrlOperations(cfg=None, headers: Dict | None = None)
Bases: UrlOperations

Handler for operations on http(s):// URLs

This handler is built on the requests package. For authentication, it employes datalad_next.utils.
requests_auth.DataladAuth , an adaptor that consults the DataLad credential system in order to fulfill HTTP
authentication challenges.

download(from_url: str, to_path: Path | None, *, credential: str | None = None, hash: list[str] | None =
None, timeout: float | None = None)→ Dict

Download via HTTP GET request

See datalad_next.url_operations.UrlOperations.download() for parameter documentation and
exception behavior.

Raises
UrlOperationsResourceUnknown -- For download targets found absent.

get_headers(headers: Dict | None = None)→ Dict

probe_url(url, timeout=10.0, headers=None)
Probe a HTTP(S) URL for redirects and authentication needs

This functions performs a HEAD request against the given URL, while waiting at most for the given timeout
duration for a server response.

Parameters

• url (str) -- URL to probe

• timeout (float, optional) -- Maximum time to wait for a server response to the probe

2.3. Python tooling 217

file://

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• headers (dict, optional) -- Any custom headers to use for the probe request. If none
are provided, or the provided headers contain no 'user-agent' field, the default DataLad user
agent is added automatically.

Returns

The first value is the URL against the final request was performed, after following any redirects
and applying normalizations.

The second value is a mapping with a particular set of properties inferred from probing the
webserver. The following key-value pairs are supported:

• 'is_redirect' (bool), True if any redirection occurred. This boolean property is a more ac-
curate test than comparing input and output URL

• 'status_code' (int), HTTP response code (of the final request in case of redirection).

• 'auth' (dict), present if the final server response contained any 'www-authenticate' head-
ers, typically the case for 401 responses. The dict contains a mapping of server-reported
authentication scheme names (e.g., 'basic', 'bearer') to their respective properties (dict).
These can be any nature and number, depending on the respective authentication scheme.
Most notably, they may contain a 'realm' property that can be used to determine suitable
credentials for authentication.

Return type
str or None, dict

Raises
requests.RequestException -- May raise any exception of the requests package, most
notably ConnectionError, Timeout, TooManyRedirects, etc.

stat(url: str, *, credential: str | None = None, timeout: float | None = None)→ Dict
Gather information on a URL target, without downloading it

See datalad_next.url_operations.UrlOperations.stat() for parameter documentation and ex-
ception behavior.

Raises
UrlOperationsResourceUnknown -- For access targets found absent.

datalad_next.url_operations.SshUrlOperations

class datalad_next.url_operations.SshUrlOperations(*, cfg: ConfigManager | None = None)
Bases: UrlOperations

Handler for operations on ssh:// URLs

For downloading files, only servers that support execution of the commands 'printf', 'ls -nl', 'awk', and 'cat' are
supported. This includes a wide range of operating systems, including devices that provide these commands via
the 'busybox' software.

Note: The present implementation does not support SSH connection multiplexing, (re-)authentication is per-
formed for each request. This limitation is likely to be removed in the future, and connection multiplexing
supported where possible (non-Windows platforms).

download(from_url: str, to_path: Path | None, *, credential: str | None = None, hash: list[str] | None =
None, timeout: float | None = None)→ Dict

218 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Download a file by streaming it through an SSH connection.

On the server-side, the file size is determined and sent. Afterwards the file content is sent via cat to the
SSH client.

See datalad_next.url_operations.UrlOperations.download() for parameter documentation and
exception behavior.

stat(url: str, *, credential: str | None = None, timeout: float | None = None)→ Dict
Gather information on a URL target, without downloading it

See datalad_next.url_operations.UrlOperations.stat() for parameter documentation and ex-
ception behavior.

upload(from_path: Path | None, to_url: str, *, credential: str | None = None, hash: list[str] | None = None,
timeout: float | None = None)→ Dict

Upload a file by streaming it through an SSH connection.

It, more or less, runs ssh <host> 'cat > <path>'.

See datalad_next.url_operations.UrlOperations.upload() for parameter documentation and
exception behavior.

datalad_next.url_operations.UrlOperationsRemoteError

exception datalad_next.url_operations.UrlOperationsRemoteError(url, message=None, status_code:
Any | None = None)

datalad_next.url_operations.UrlOperationsResourceUnknown

exception datalad_next.url_operations.UrlOperationsResourceUnknown(url, message=None,
status_code: Any | None =
None)

A connection request succeeded in principle, but target was not found

Equivalent of an HTTP404 response.

datalad_next.url_operations.UrlOperationsInteractionError

exception datalad_next.url_operations.UrlOperationsInteractionError(url, message=None,
status_code: Any | None =
None)

datalad_next.url_operations.UrlOperationsAuthenticationError

exception datalad_next.url_operations.UrlOperationsAuthenticationError(url: str, credential: dict
| None = None,
message: str | None =
None, status_code: Any
= None)

2.3. Python tooling 219

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.url_operations.UrlOperationsAuthorizationError

exception datalad_next.url_operations.UrlOperationsAuthorizationError(url: str, credential: dict |
None = None, message:
str | None = None,
status_code: Any | None
= None)

2.3.20 datalad_next.utils

Assorted utility functions

DataladAuth (cfg[, credential]) Requests-style authentication handler using DataLad
credentials

MultiHash (algorithms) Compute any number of hashes as if computing just one
check_symlink_capability(path, target) helper similar to data-

lad.tests.utils_pytest.has_symlink_capability
chpwd(path[, mkdir, logsuffix]) Wrapper around os.chdir which also adjusts envi-

ron['PWD']
ensure_list(s[, copy, iterate]) Given not a list, would place it into a list.
external_versions Helper to figure out/use versions of the externals (mod-

ules, cmdline tools, etc).
log_progress(lgrcall, pid, *args, **kwargs) Emit progress log messages
parse_www_authenticate(hdr) Parse HTTP www-authenticate header
patched_env(**env) Context manager for patching the process environment
rmtree(path[, chmod_files, children_only]) To remove git-annex .git it is needed to make all files and

directories writable again first
get_specialremote_param_dict(params)

param params

get_specialremote_credential_properties(params)Determine properties of credentials special remote con-
figuration

update_specialremote_credential(srtype, ...)
param srtype

needs_specialremote_credential_envpatch (...) Returns whether the environment needs to be patched
with credentials

get_specialremote_credential_envpatch (...) Create an environment path for a particular remote type
and credential

datalad_next.utils.DataladAuth

class datalad_next.utils.DataladAuth(cfg: ConfigManager, credential: str | None = None)
Bases: AuthBase

Requests-style authentication handler using DataLad credentials

Similar to request_toolbelt's AuthHandler, this is a meta implementation that can be used with different actual
authentication schemes. In contrast to AuthHandler, a credential can not only be specified directly, but credentials
can be looked up based on the target URL and the server-supported authentication schemes.

220 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

In addition to programmatic specification and automated lookup, manual credential entry using interactive
prompts is also supported.

At present, this implementation is not thread-safe.

handle_401(r, **kwargs)
Callback that received any response to a request

Any non-4xx response or a response lacking a 'www-authenticate' header is ignored.

Server-provided 'www-authenticated' challenges are inspected, and corresponding credentials are looked-
up (if needed) and subsequently tried in a re-request to the original URL after performing any necessary
actions to meet a given challenge. Such a re-request is then using the same connection as the original
request.

Particular challenges are implemented in dedicated classes, e.g. requests.auth.HTTPBasicAuth.

Credential look-up or entry is performed by datalad_next.requests_auth.DataladAuth.
_get_credential().

handle_redirect(r, **kwargs)
Callback that received any response to a request

Any non-redirect response is ignore.

This callback drops an explicitly set credential whenever the redirect causes a non-encrypted connection to
be used after the original request was encrypted, or when the netloc of the redirect differs from the original
target.

save_entered_credential(suggested_name: str | None = None, context: str | None = None)→ Dict | None
Utility method to save a pending credential in the store

Pending credentials have been entered manually, and were subsequently used successfully for authentica-
tion.

Saving a credential will prompt for entering a name to identify the credentials.

datalad_next.utils.MultiHash

class datalad_next.utils.MultiHash(algorithms: list[str])
Bases: object

Compute any number of hashes as if computing just one

Supports any hash algorithm supported by the hashlib module of the standard library.

get_hexdigest()→ Dict[str, str]
Returns a mapping of algorithm name to hexdigest for all algorithms

update(data: ByteString)→ None
Updates all configured digests

2.3. Python tooling 221

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.utils.check_symlink_capability

datalad_next.utils.check_symlink_capability(path: Path, target: Path)→ bool
helper similar to datalad.tests.utils_pytest.has_symlink_capability

However, for use in a datalad command context, we shouldn't assume to be able to write to tmpfile and also not
import a whole lot from datalad's test machinery. Finally, we want to know, whether we can create a symlink at a
specific location, not just somewhere. Therefore use arbitrary path to test-build a symlink and delete afterwards.
Suitable location can therefore be determined by high lever code.

Parameters

• path (Path)

• target (Path)

Return type
bool

datalad_next.utils.chpwd

class datalad_next.utils.chpwd(path: str | Path | None, mkdir: bool = False, logsuffix: str = '')
Bases: object

Wrapper around os.chdir which also adjusts environ['PWD']

The reason is that otherwise PWD is simply inherited from the shell and we have no ability to assess directory
path without dereferencing symlinks.

If used as a context manager it allows to temporarily change directory to the given path

datalad_next.utils.ensure_list

datalad_next.utils.ensure_list(s: Any, copy: bool = False, iterate: bool = True)→ list
Given not a list, would place it into a list. If None - empty list is returned

Parameters

• s (list or anything)

• copy (bool, optional) -- If list is passed, it would generate a shallow copy of the list

• iterate (bool, optional) -- If it is not a list, but something iterable (but not a str) iterate
over it.

datalad_next.utils.external_versions

datalad_next.utils.external_versions =
<datalad.support.external_versions.ExternalVersions object>

Helper to figure out/use versions of the externals (modules, cmdline tools, etc).

To avoid collision between names of python modules and command line tools, prepend names for command line
tools with cmd:.

It maintains a dictionary of distuil.version.LooseVersion`s to make comparisons easy. Note that even if version
string conform the StrictVersion "standard", LooseVersion will be used. If version can't be deduced for the
external, `UnknownVersion() is assigned. If external is not present (can't be imported, or custom check throws
exception), None is returned without storing it, so later call will re-evaluate fully.

222 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.utils.log_progress

datalad_next.utils.log_progress(lgrcall, pid, *args, **kwargs)
Emit progress log messages

This helper can be used to handle progress reporting without having to maintain display mode specific code.

Typical progress reporting via this function involves three types of calls:

1. Start reporting progress about a process

2. Update progress information about a process

3. Report completion of a process

In order to be able to associate all three steps with a particular process, the pid identifier is used. This is an arbi-
trary string that must be chosen to be unique across all different, but simultaneously running progress reporting
activities within a Python session. For many practical purposes this can be achieved by, for example, including
path information in the identifier.

To initialize a progress report this function is called without an update parameter. To report a progress update,
this function is called with an update parameter. To finish a reporting on a particular activity a final call without
an update parameter is required.

Parameters

• lgrcall (callable) -- Something like lgr.debug or lgr.info

• pid (str) -- Some kind of ID for the process the progress is reported on.

• *args (str) -- Log message, and potential arguments

• total (int) -- Max progress quantity of the process.

• label (str) -- Process description. Should be very brief, goes in front of progress bar on
the same line.

• unit (str) -- Progress report unit. Should be very brief, goes after the progress bar on the
same line.

• update (int) -- To (or by) which quantity to advance the progress. Also see increment.

• increment (bool) -- If set, update is interpreted as an incremental value, not absolute.

• initial (int) -- If set, start value for progress bar

• noninteractive_level (int, optional) -- In a non-interactive session where progress
bars are not displayed, only log a progress report, if a logger's effective level includes the
specified level. This can be useful logging all progress is inappropriate or too noisy for a
log.

• maint ({'clear', 'refresh'}) -- This is a special attribute that can be used by callers that
are not actually reporting progress, but need to ensure that their (console) output does not
interfere with any possibly ongoing progress reporting. Setting this attribute to 'clear' will
cause the central ProgressHandler to temporarily stop the display of any active progress bars.
With 'refresh', all active progress bars will be redisplayed. After a 'clear' individual progress
bars would be reactivated upon the next update log message, even without an explicit 'refresh'.

2.3. Python tooling 223

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.utils.parse_www_authenticate

datalad_next.utils.parse_www_authenticate(hdr: str)→ dict
Parse HTTP www-authenticate header

This helper uses requests utilities to parse the www-authenticate header as represented in a requests.
Response instance. The header may contain any number of challenge specifications.

The implementation follows RFC7235, where a challenge parameters set is specified as: either a comma-
separated list of parameters, or a single sequence of characters capable of holding base64-encoded information,
and parameters are name=value pairs, where the name token is matched case-insensitively, and each parameter
name MUST only occur once per challenge.

Returns
Keys are casefolded challenge labels (e.g., 'basic', 'digest'). Values are: None (no parameter), str
(a token68), or dict (name/value mapping of challenge parameters)

Return type
dict

datalad_next.utils.patched_env

datalad_next.utils.patched_env(**env)
Context manager for patching the process environment

Any number of kwargs can be given. Keys represent environment variable names, and values their values. A
value of None indicates that the respective variable should be unset, i.e., removed from the environment.

datalad_next.utils.rmtree

datalad_next.utils.rmtree(path: str | Path, chmod_files: bool | Literal['auto'] = 'auto', children_only: bool =
False, *args: Any, **kwargs: Any)→ None

To remove git-annex .git it is needed to make all files and directories writable again first

Parameters

• path (Path or str) -- Path to remove

• chmod_files (string or bool, optional) -- Whether to make files writable also be-
fore removal. Usually it is just a matter of directories to have write permissions. If 'auto' it
would chmod files on windows by default

• children_only (bool, optional) -- If set, all files and subdirectories would be removed
while the path itself (must be a directory) would be preserved

• *args

• **kwargs -- Passed into shutil.rmtree call

224 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.utils.get_specialremote_param_dict

datalad_next.utils.get_specialremote_param_dict(params)

Parameters
params (list)

Return type
dict

datalad_next.utils.get_specialremote_credential_properties

datalad_next.utils.get_specialremote_credential_properties(params)
Determine properties of credentials special remote configuration

The input is a parameterization as it would be given to git annex initremote|enableremote <name> ..., or as stored
in remote.log. These parameters are inspected and a dictionary of credential properties, suitable for Credential-
Manager.query() is returned. This inspection may involve network activity, e.g. HTTP requests.

Parameters
params (list or dict) -- Either a list of strings of the format 'param=value', or a dictionary
with parameter names as keys.

Returns
Credential property name-value mapping. This mapping can be passed to CredentialMan-
ager.query(). If no credential properties could be inferred, for example, because the special
remote type is not recognized None is returned.

Return type
dict or None

datalad_next.utils.update_specialremote_credential

datalad_next.utils.update_specialremote_credential(srtype, credman, credname, credprops,
credtype_hint=None, duplicate_hint=None)

Parameters

• srtype (str)

• credman (CredentialManager)

• credname (str or Name)

• credprops (dict)

datalad_next.utils.needs_specialremote_credential_envpatch

datalad_next.utils.needs_specialremote_credential_envpatch(remote_type)
Returns whether the environment needs to be patched with credentials

Returns
False, if the special remote type is not recognized as one needing credentials, or if there are
credentials already present. True, otherwise.

Return type
bool

2.3. Python tooling 225

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.utils.get_specialremote_credential_envpatch

datalad_next.utils.get_specialremote_credential_envpatch(remote_type, cred)
Create an environment path for a particular remote type and credential

Returns
A dict with all required items to patch the environment, or None if not enough information is
available, or nothing needs to be patched.

Return type
dict or None

class datalad_next.utils.ParamDictator(params: Dict)
Bases: object

Parameter dict access helper

This class can be used to wrap a dict containing function parameter name-value mapping, and get/set values by
parameter name attribute rather than via the __getitem__ dict API.

2.4 Git-remote helpers

datalad_annex git-remote-datalad-annex to fetch/push via any git-annex
special remote

2.4.1 datalad_next.gitremotes.datalad_annex

git-remote-datalad-annex to fetch/push via any git-annex special remote

In essence, this Git remote helper bootstraps a utility repository in order to push/fetch the state of a repository to any
location accessible by any git-annex special remote implementation. All information necessary for this bootstrapping
is taken from the remote URL specification. The internal utility repository is removed again after every invocation.
Therefore changes to the remote access configuration can be made any time by simply modifying the configured remote
URL.

When installed, this remote helper is invoked for any "URLs" that start with the prefix datalad-annex::. Following
this prefix, two types of specifications are support.

1. Plain parameters list:

datalad-annex::?type=<special-remote-type>&[...][exporttree=yes]

In this case the prefix is followed by a URL query string that comprises all necessary (and optional) parameters
that would be normally given to the git annex initremote command. It is required to specify the special
remote type, and it is possible to request "export" mode for any special remote that supports it. Depending
on the chosen special remote additional parameters may be required or supported. Please consult the git-annex
documentation at https://git-annex.branchable.com/special_remotes/

2. URL:

datalad-annex::<url>[?...]

Alternatively, an actual URL can be given after the prefix. In this case, the, now optional, URL query string
can still be used to specify arbitrary parameters for special remote initialization. In addition, the query string

226 Chapter 2. Functionality provided by DataLad NEXT

https://git-annex.branchable.com/special_remotes/

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

specification can use Python-format-style placeholder to reference particular URL components as parameters
values, in order to avoid double-specification.

The list of supported placeholders is scheme, netloc, path, fragment, username, password, hostname,
port, corresponding to the respective URL components. In addition, a noquery placeholder is supported,
which resolves to the entire URL except any query string. An example of such a URL specification is:

datalad-annex::file:///tmp/example?type=directory&directory={path}&encryption=none'

which would initialize a type=directory special remote pointing at /tmp/example.

Caution with collaborative workflows

There is no protection against simultaneous, conflicting repository state uploads from two different locations! Similar
to git-annex's "export" feature, this feature is most appropriately used as a dataset deposition mechanism, where uploads
are conducted from a single site only -- deposited for consumption by any number of parties.

If this Git remote helper is to be used for multi-way collaboration, with two or more parties contributing updates, it is ad-
visable to employ a separate datalad-annex:: target site for each contributor, such that only one site is pushing to any
given location. Updates are exchanged by the remaining contributors adding the respective other datalad-annex::
sites as additional Git remotes, analog to forks of a repository.

Special remote type support

In addition to the regular list of special remotes, plain http(s) access via URLs is also supported via the 'web' special
remote. For such cases, only the base URL and the 'type=web' parameter needs to be given, e.g:

git clone 'datalad-annex::https://example.com?type=web&url={noquery}'

When a plain URL is given, with no parameter specification in a query string, the parameters type=web and
exporttree=yes are added automatically by default. This means that this remote helper can clone from any remote
deposit accessible via http(s) that matches the layout depicted in the next section.

Remote layout

The representation of a repository at a remote depends on the chosen type of special remote. In general, two files will
be deposited. One text file containing a list of Git refs contained in the deposit, and one ZIP file with a (compressed)
archive of a bare Git repository. Beside the idiosyncrasies of particular special remotes, to major modes determine
the layout of a remote deposit. In "normal" mode, two annex keys (XDLRA--refs, XDLRA--repo-export) will be
deposited. In "export" mode, a directory tree is created that is designed to blend with arbitrary repository content, such
that a git remote and a git-annex export can be pushed to the same location without conflicting with each other. The
aforementioned files will be represented like this:

.datalad
dotgit # named to not be confused with an actual Git repository

refs
repo.zip

The default LZMA-compression of the ZIP file (in both export and normal mode) can be turned off with the
dladotgit=uncompressed URL parameter.

Credential handling

Some git-annex special remotes require the specification of credentials via environment variables. With the URL
parameter dlacredential=<name> it is possible to query DataLad for a user/password credential to be used for this
purpose. This convenience functionality is supported for the special remotes glacier, s3, and webdav.

When a credential of the given name does not exist, or no credential name was specified, an attempt is made to determine
a suitable credential based on, for example, a detected HTTP authentication realm. If no matching credential could

2.4. Git-remote helpers 227

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

be found, the user will be prompted to enter a credential. After having successfully established access, the entered
credential will be saved in the local credential store.

DataLad-based credentials are only utilized, when the native git-annex credential setup via environment variables is
not in use (see the documentation of a particular special remote implementation for more information).

Implementation details

This Git remote implementation uses two extra repositories, besides the repository (R) it is used with, to do its work:

(A) A tiny repository that is entirely bootstrapped from the remote URL, and is used to retrieve/deposit a complete
state of the actual repo an a remote site, via a git-annex special remote setup.

(B) A local, fully functional mirror repo of the remotely stored repository state.

On fetch/push the existence of both additional repositories is ensured. The remote state of retrieved via repo (A), and
unpacked to repo (B). The actual fetch/push Git operations are performed locally between the repo (R) and repo (B).
On push, repo (B) is then packed up again, and deposited on the remote site via git-annex transfer in repo (A).

Due to a limitation of this implementation, it is possible that when the last upload step fails, Git nevertheless advances
the pushed refs, making it appear as if the push was completely successful. That being said, Git will still issue a mes-
sage (error: failed to push some refs to..) and the git-push process will also exit with a non-zero status.
In addition, all of the remote's refs will be annotated with an additional ref named refs/dlra-upload-failed/
<remote-name>/<ref-name> to indicate the upload failure. These markers will be automatically removed after the
next successful upload.

Note: Confirmed to work with git-annex version 8.20211123 onwards.

Todo:

• At the moment, only one format for repository deposition is supported (a ZIP archive of a working bare reposi-
tory). However this is not a good format for the purpose of long-term archiving, because it require a functional
Git installation to work with. It would be fairly doable to make the deposited format configurable, and support
additional formats. An interesting one would be a fast-export stream, basically a plain text serialization of an
entire repository.

• recognize that a different repo is being pushed over an existing one at the remote

• think about adding additional information into the header of refs maybe give it some kind of stamp that also
makes it easier to validate by the XDLRA backend

• think about preventing duplication between the repo and its local mirror could they safely share git objects? If
so, in which direction?

class datalad_next.gitremotes.datalad_annex.RepoAnnexGitRemote(gitdir: str, remote: str, url: str,
instream: ~typing.IO =
<_io.TextIOWrapper
name='<stdin>' mode='r'
encoding='utf-8'>, outstream:
~typing.IO = <_io.TextIOWrapper
name='<stdout>' mode='w'
encoding='utf-8'>, errstream:
~typing.IO = <_io.TextIOWrapper
name='<stderr>' mode='w'
encoding='utf-8'>)

Bases: object

228 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

git-remote-helper implementation

communicate() is the entrypoint.

communicate()→ None
Implement the necessary pieces of the git-remote-helper protocol

Uses the input, output and error streams configured for the class instance.

get_mirror_refs()→ str
Return the refs of the current mirror repo

Return type
str

get_remote_refs(raise_on_error: bool = False)→ str | None
Report remote refs

The underlying special remote is asked whether it has the key containing the refs list for the remote. If it
does, it is retrieved and reported.

Returns
If the remote has a refs record, it is returned as a string, formatted like a refs file in a Git
directory. Otherwise, None is returned.

Return type
str or None

internal_parameters = ('dladotgit=uncompressed', 'dlacredential=')

log(*args, level: int = 2)→ None
Send log messages to the errstream

property mirrorrepo: GitRepo

Local remote mirror repository

If accessed when there is no local mirror repo, as new one is created automatically, either from the remote
state (if there is any), or an empty one.

Returns
This is always only a plain Git repository (bare).

Return type
GitRepo

refs_key = 'XDLRA--refs'

replace_mirrorrepo_from_remote_deposit()→ None
Replaces the local mirror repo with one obtained from the remote

This method assumes that the remote does have one. This should be checked by inspecting
get_remote_refs() before calling this method.

replace_mirrorrepo_from_remote_deposit_if_needed()→ tuple[str | None, str]
Replace the mirror if the remote has refs and they differ

replace_remote_deposit_from_mirrorrepo()→ None
Package the local mirrorrepo up, and copy to the special remote

The mirror is assumed to be ready/complete. It will be cleaned with gc to minimize the upload size. The
mirrorrepo is then compressed into an LZMA ZIP archive, and a separate refs list for it is created in addition.
Both are then copied to the special remote.

2.4. Git-remote helpers 229

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

repo_export_key = 'XDLRA--repo-export'

property repoannex: AnnexRepo

Repo annex repository

If accessed when there is no repo annex, as new one is created automatically. It is bootstrapped entirely
from the parameters encoded in the remote URL.

Returns
This is always an annex repository. It is configured with a single special remote, parameter-
ized from the Git repo URL.

Return type
AnnexRepo

Raises

• CommandError --

• ValueError --

safe_content = ['branches', 'hooks', 'info', 'objects', 'refs', 'config',
'packed-refs', 'description', 'HEAD']

send(msg: str)→ None
Communicate with Git

support_githelper_options = {'verbosity': EnsureInt()}

xdlra_key_locations = {'XDLRA--refs': {'loc': '.datalad/dotgit/refs', 'prefix':
'3f7/4a3'}, 'XDLRA--repo-export': {'loc': '.datalad/dotgit/repo.zip', 'prefix':
'eb3/ca0'}}

2.5 Git-annex backends

base Interface and essential utilities to implement external git-
annex backends

xdlra git-annex external backend XDLRA for git-remote-
datalad-annex

2.5.1 datalad_next.annexbackends.base

Interface and essential utilities to implement external git-annex backends

exception datalad_next.annexbackends.base.AnnexError

Bases: Exception

Common base class for all annexbackend exceptions.

class datalad_next.annexbackends.base.Backend(annex)
Bases: object

Metaclass for backends.

It implements the communication with git-annex via the external backend protocol. More information on the
protocol is available at https://git-annex.branchable.com/design/external_backend_protocol/

230 Chapter 2. Functionality provided by DataLad NEXT

https://git-annex.branchable.com/design/external_backend_protocol/

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

External backends can be built by implementing the abstract methods defined in this class.

annex

The Master object to which this backend is linked. Master acts as an abstraction layer for git-annex.

Type
Master

abstract can_verify()

Returns whether the backend can verify the content of files match a key it generated. The verification does
not need to be cryptographically secure, but should catch data corruption.

Return type
bool

error(error_msg)
Communicate a generic error.

Can be sent at any time if things get too messed up to continue. If the program receives an error() from
git-annex, it can exit with its own error(). Eg.: self.annex.error("Error received. Exiting.") raise SystemExit

Parameters
error_msg (str) -- The error message received from git-annex

abstract gen_key(local_file)
Examine the content of local_file and from it generate a key.

While it is doing this, it can send any number of PROGRESS messages indication the position in the file
that it's gotten to.

Parameters
local_file (str) -- Path for which to generate a key. Note that in some cases, local_file
may contain whitespace.

Returns
The generated key.

Return type
str

Raises
BackendError -- If the file could not be received from the backend.

abstract is_cryptographically_secure()

Returns whether keys it generates are verified using a cryptographically secure hash.

Note that sha1 is not a cryptographically secure hash any longer. A program can change its answer to this
question as the state of the art advances, and should aim to stay ahead of the state of the art by a reasonable
amount of time.

Return type
bool

abstract is_stable()

Returns whether a key it has generated will always have the same content. The answer to this is almost
always yes; URL keys are an example of a type of key that may have different content at different times.

Return type
bool

2.5. Git-annex backends 231

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

abstract verify_content(key, content_file)
Examine a file and verify it has the content expected given a key

While it is doing this, it can send any number of PROGRESS messages indicating the position in the file
that it's gotten to.

If can_verify() == False, git-annex not ask to do this.

Return type
bool

exception datalad_next.annexbackends.base.BackendError

Bases: AnnexError

Must be raised by the backend when a request did not succeed.

class datalad_next.annexbackends.base.Master(output=<_io.TextIOWrapper name='<stdout>' mode='w'
encoding='utf-8'>)

Bases: object

Metaclass for backends.

input

Where to listen for git-annex request messages. Default: sys.stdin

Type
io.TextIOBase

output

Where to send replies and backend messages Default: sys.stdout

Type
io.TextIOBase

backend

A class implementing the Backend interface to which this master is linked.

Type
Backend

LinkBackend(backend)
Link the Master to a backend. This must be done before calling Listen()

Parameters
backend (Backend) -- A class implementing Backend interface to which this master will be
linked.

Listen(input=<_io.TextIOWrapper name='<stdin>' mode='r' encoding='utf-8'>)
Listen on input for messages from git annex.

Parameters
input (io.TextIOBase) -- Where to listen for git-annex request messages. Default:
sys.stdin

Raises
NotLinkedError -- If there is no backend linked to this master.

debug(*args)
Tells git-annex to display the message if --debug is enabled.

Parameters
message (str) -- The message to be displayed to the user

232 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

error(*args)
Generic error. Can be sent at any time if things get too messed up to continue. When possible, raise
a BackendError inside the respective functions. The backend program should exit after sending this, as
git-annex will not talk to it any further.

Parameters
error_msg (str) -- The error message to be sent to git-annex

progress(progress)
Indicates the current progress of the transfer (in bytes). May be repeated any number of times during the
transfer process, but it's wasteful to update the progress until at least another 1% of the file has been sent.
This is highly recommended for *_store(). (It is optional but good for *_retrieve().)

Parameters
progress (int) -- The current progress of the transfer in bytes.

exception datalad_next.annexbackends.base.NotLinkedError

Bases: AnnexError

Will be raised when a Master instance is accessed without being linked to a Backend instance

class datalad_next.annexbackends.base.Protocol(backend)
Bases: object

Helper class handling the receiving part of the protocol (git-annex to backend) It parses the requests coming from
git-annex and calls the respective method of the backend object.

command(line)

do_CANVERIFY()

do_ERROR(message)

do_GENKEY(*arg)

do_GETVERSION()

do_ISCRYPTOGRAPHICALLYSECURE()

do_ISSTABLE()

do_VERIFYKEYCONTENT(*arg)

lookupMethod(command)

exception datalad_next.annexbackends.base.ProtocolError

Bases: AnnexError

Base class for protocol errors

exception datalad_next.annexbackends.base.UnexpectedMessage

Bases: ProtocolError

Raised when git-annex sends a message which is not expected at the moment

exception datalad_next.annexbackends.base.UnsupportedRequest

Bases: ProtocolError

Must be raised when an optional request is not supported by the backend.

2.5. Git-annex backends 233

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

2.5.2 datalad_next.annexbackends.xdlra

git-annex external backend XDLRA for git-remote-datalad-annex

class datalad_next.annexbackends.xdlra.DataladRepoAnnexBackend(annex)
Bases: Backend

Implementation of an external git-annex backend

This backend is tightly coupled to the git-remote-datalad-annex and hardly of any general utility. It is essentially
aiming to be the leanest possible implementation to get git-annex to transport the content of two distinct files
to and from a special remote. This backend is unlike most backends, because there is no fixed association of
a particular file content to a particular key. In other words, the key content is expected to change without any
change in the key name.

Only two keys are supported:

• XDLRA--refs

• XDLRA--repo-export

XDLRA--refs contains a "refs" list of a Git repository, similar to the output of git for-each-ref.
XDLRA--repo-export hold a ZIP archive of a bare Git repository.

can_verify()

Returns whether the backend can verify the content of files match a key it generated. The verification does
not need to be cryptographically secure, but should catch data corruption.

Return type
bool

gen_key(local_file)
Examine the content of local_file and from it generate a key.

While it is doing this, it can send any number of PROGRESS messages indication the position in the file
that it's gotten to.

Parameters
local_file (str) -- Path for which to generate a key. Note that in some cases, local_file
may contain whitespace.

Returns
The generated key.

Return type
str

Raises
BackendError -- If the file could not be received from the backend.

is_cryptographically_secure()

Returns whether keys it generates are verified using a cryptographically secure hash.

Note that sha1 is not a cryptographically secure hash any longer. A program can change its answer to this
question as the state of the art advances, and should aim to stay ahead of the state of the art by a reasonable
amount of time.

Return type
bool

234 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

is_stable()

Returns whether a key it has generated will always have the same content. The answer to this is almost
always yes; URL keys are an example of a type of key that may have different content at different times.

Return type
bool

verify_content(key, content_file)
Examine a file and verify it has the content expected given a key

While it is doing this, it can send any number of PROGRESS messages indicating the position in the file
that it's gotten to.

If can_verify() == False, git-annex not ask to do this.

Return type
bool

datalad_next.annexbackends.xdlra.main()

Entry point for the backend utility

2.6 Git-annex special remotes

SpecialRemote(annex) Base class of all datalad-next git-annex special remotes
archivist git-annex special remote archivist for obtaining files

from archives
uncurl uncurl git-annex external special remote

2.6.1 datalad_next.annexremotes.SpecialRemote

class datalad_next.annexremotes.SpecialRemote(annex)
Bases: SpecialRemote

Base class of all datalad-next git-annex special remotes

get_remote_gitcfg(remotetypename: str, name: str, default: Any | None = None, **kwargs)
Get a particular Git configuration item for the special remote

This target configuration here is not the git-annex native special remote configuration that is provided or
altered with initremote and enableremote, and is committed to the git-annex branch. Instead this is
a clone and remote specific configuration, declared in Git's configuration system.

The configuration items queried have the naming scheme:

remote.<remotename>.<remotetypename>-<name>
datalad.<remotetypename>.<name>

where <remotename> is the name of the Git remote, the special remote is operating under,
<remotetypename> is the name of the special remote implementation (e.g., uncurl), and <name> is the
name of a particular configuration flavor.

Parameters

• remotetypename (str) -- Name of the special remote implementation configuration is
requested for.

2.6. Git-annex special remotes 235

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• name (str) -- The name of the "naked" configuration item, without any sub/sections. Must
be a valid git-config variable name, i.e., case-insensitive, only alphanumeric characters and
-, and must start with an alphabetic character.

• default -- A default value to be returned if there is no configuration.

• **kwargs -- Passed on to datalad_next.config.ConfigManager.get()

Returns
If a remote-specific configuration exists, it is reported. Otherwise a remote-type specific
configuration is reported, or the default provided with the method call, if no configuration is
found at all.

Return type
Any

property remotename: str

Name of the (git) remote the special remote is operating under

property repo: LeanAnnexRepo

Returns a representation of the underlying git-annex repository

An instance of LeanAnnexRepo is returned, which intentionally provides a restricted API only. In order to
limit further proliferation of the AnnexRepo API.

2.6.2 datalad_next.annexremotes.archivist

git-annex special remote archivist for obtaining files from archives

class datalad_next.annexremotes.archivist.ArchivistRemote(annex)
Bases: SpecialRemote

git-annex special remote archivist for obtaining files from archives

Successor of the datalad-archive special remote. It claims and acts on particular archive locator "URLs", regis-
tered for individual annex keys (see datalad_next.types.archivist.ArchivistLocator). These locators
identify another annex key that represents an archive (e.g., a tarball or a zip files) that contains the respective
annex key as a member. This special remote trigger the extraction of such members from any candidate archive
when retrieval of a key is requested.

This special remote cannot store or remove content. The desired usage is to register a locator "URL" for any
relevant key via git annex addurl|registerurl or datalad addurls.

Configuration

The behavior of this special remote can be tuned via a number of configuration settings.

datalad.archivist.legacy-mode=yes|[no]
If enabled, all special remote operations fall back onto the legacy datalad-archives special remote
implementation. This mode is only provided for backward-compatibility. This legacy implementation un-
conditionally downloads archive files completely, and keeps an internal cache of the full extracted archive
around. The implied 200% (or more) storage cost overhead for obtaining a complete dataset can be pro-
hibitive for datasets tracking large amount of data (in archive files).

236 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Implementation details

CHECKPRESENT

When performing a non-download test for the (continued) presence of an annex key (as triggered via git annex
fsck --fast or git annex checkpresentkey), the underlying archive containing a key will NOT be in-
spected. Instead, only the continued availability of the annex key for the containing archive will be tested. In
other words: this implementation trust the archive member annotation to be correct/valid, and it also trusts the
archive content to be unchanged. The latter will be generally the case, but may no with URL-style keys.

Not implementing such a trust-approach would have a number of consequences. Depending on where the archive
is located (local/remote) and what format it is (fsspec-inspectable or not), we would need to download it com-
pletely in order to verify a matching archive member. Moreover, an archive might also reference another archive
as a source, leading to a multiplication of transfer demands.

__getattribute__(name: str)
Redirect top-level API calls to legacy implementation, if needed

checkpresent(key: str)→ bool
Verifies continued availability of the archive referenced by the key

No content verification of the archive, or of the particular archive member is performed. See "Implemen-
tation details" of this class for a rational.

Returns
True if the referenced archive key is present on any remote. False if not.

Return type
bool

checkurl(url: str)→ bool
Parses ArchivistLocator-style URLs

Returns True for any syntactically correct URL with all required properties.

The implementation is identical to claimurl().

claimurl(url: str)→ bool
Returns True for ArchivistLocator-style URLs

Only a lexical check is performed. Any other URL will result in False to be returned.

initremote()

This method does nothing, because the special remote requires no particular setup.

prepare()

Prepare the special remote for requests by git-annex

If the special remote is instructed to run in "legacy mode", all subsequent operations will be processed by
the datalad-archives special remote implementation!

remove(key: str)
Raises UnsupportedRequest. This operation is not supported.

transfer_retrieve(key: str, localfilename: str)
Retrieve an archive member from a (remote) archive

All registered locators for a requested key will be sorted by availability and size of the references archives.
For each archive the most suitable handler will be initialized, and extraction of the identified member will
be attempted. If that fails, the next handler is tried until all candidate handlers are exhausted. Depending
on the archive availability and type, archives may need to be retrieved from remote sources.

2.6. Git-annex special remotes 237

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

transfer_store(key: str, filename: str)
Raises UnsupportedRequest. This operation is not supported.

datalad_next.annexremotes.archivist.main()

CLI entry point installed as git-annex-remote-archivist

2.6.3 datalad_next.annexremotes.uncurl

uncurl git-annex external special remote

This implementation is a git-annex accessible interface to datalad-next's URL operations framework. It serves two
main purposes:

1. Combine git-annex's capabilities of registering and accessing file content via URLs with DataLad's access cre-
dential management and (additional or alternative) transport protocol implementations.

2. Minimize the maintenance effort for datasets (primarily) composed from content that is remotely accessible via
URLs from systems other than Datalad or git-annex in the event of an infrastructure transition (e.g. moving to a
different technical system or a different data organization on a storage system).

Requirements

This special remote implementation requires git-annex version 8.20210127 (or later) to be available.

Download helper

The simplest way to use this remote is to initialize it without any particular configuration:

$ git annex initremote uncurl type=external externaltype=uncurl encryption=none
initremote uncurl ok
(recording state in git...)

Once initialized, or later enabled in a clone, git-annex addurl will check with the uncurl remote whether it can
handle a particular URL, and will let the remote perform the download in case of positive response. By default,
the remote will claim any URLs with a scheme that the local datalad-next installation supports. This always includes
file://, http://, and https://, but is extensible, and a particular installation may also support ssh:// (by default
when openssh is installed), or other schemes.

This additional URL support is also available for other commands. Here is an example how datalad addurls can
be given any uncurl-supported URLs (here an SSH-URL) directly, provided that the uncurl remote was initialized for
a dataset (as shown above):

$ echo '[{"url":"ssh://my.server.org/home/me/file", "file":"dummy"}]' \
| datalad addurls - '{url}' '{file}'

This makes legacy commands (e.g., datalad download-url), unnecessary, and facilitates the use of more advanced
datalad addurls features (e.g., automatic creation of subdatasets) that are not provided by lower-level commands
like git annex addurl.

238 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Download helper with credential management support

With this setup, download requests now also use DataLad's credential system for authentication. DataLad will auto-
matically lookup matching credentials, prompt for manual entry if none are found, and offer to store them securely for
later use after having used them successfully:

$ git annex addurl http://httpbin.org/basic-auth/myuser/mypassword
Credential needed for access to http://httpbin.org/basic-auth/myuser/mypassword
user: myuser
password:
password (repeat):
Enter a name to save the credential
(for accessing http://httpbin.org/basic-auth/myuser/mypassword) securely for future
reuse, or 'skip' to not save the credential
name: httpbin-dummy

addurl http://httpbin.org/basic-auth/myuser/mypassword (from uncurl) (to ...)
ok
(recording state in git...)

By adding files via downloads from URLs in this fashion, datasets can be built that track information across a range of
locations/services, using a possibly heterogeneous set of access methods.

This feature is very similar to the datalad special remote implementation included in the core DataLad package. The
difference here is that alternative implementations of downloaders are employed and the datalad-next credential
system is used instead of the "providers" mechanism from DataLad's core package.

Transforming recorded URLs

The main benefit of using uncurl is, however, only revealed when the original snapshot of where data used to be
accessible becomes invalid, maybe because data were moved to a different storage system, or simply a different host.

This would typically require an update of each, now broken, access URL. For datasets with thousands or even millions
of files this can be an expensive operation. For data portal operators providing a large number of datasets it is even
more tedious.

uncurl enables programmatic, on-access URL rewriting. This is similar, in spirit, to Git's url.<base>.insteadOf
URL modification feature. However, modification possibilities reach substantially beyond replacing a base URL.

This feature is based on two customizable settings: 1) a URL template; and 2) a set of match expressions that extract
additional identifiers from any recorded access URL for an annex key.

Here is an example: Let's say a file in a dataset has a recorded access URL of:

https://data.example.org/c542/s7612_figure1.pdf

We can let uncurl know that c542 is actually an identifier for a particular collection of items in this data store. Likewise
s7612 is an identifier of a particular item in that collection, and figure1.pdf is the name of a component in that
collection item. The following Python regular expression can be used to "decompose" the above URL into these
semantic components:

(?P<site>https://[^/]+)/(?P<collection>c[^/]+)/(?P<item>s[^/]+)_(?P<component>.*)$

This expression is not the most readable, but it basically chunks the URL into segments of (?P<name>...), so-called
named groups (see a live demo of this expression).

2.6. Git-annex special remotes 239

https://www.debuggex.com/r/Aa1yua-awXBuqZ39

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

This expression, and additional ones like it, can set as a configuration parameter of an uncurl remote setup. Extending
the configuration established by the initremote call above:

$ git annex enableremote uncurl \
'match=(?P<site>https://[^/]+)/(?P<collection>c[^/]+)/(?P<item>s[^/]+)_(?P<component>

→˓.*)$'

The last argument is quoted to prevent it from being processed by the shell.

With the match expression configured, URL rewriting can be enabled by declaring a URL template as another con-
figuration item. The URL template uses the Python Format String Syntax. If the new URL for the file above is now
http://newsite.net/ex-archive/c542_s7612_figure1.pdf, we can declare the following URL template to
have uncurl go to the new site:

http://newsite.net/ex-archive/{collection}_{item}_{component}

This template references the identifiers of the named groups we defined in the match expression. Again, the URL
template can be set via git annex enableremote:

$ git annex enableremote uncurl \
'url=http://newsite.net/ex-archive/{collection}_{item}_{component}'

There is no need to separate the enableremote calls. Both configuration can be given at the same time. In fact, they
can also be given to initremote immediately.

The three identifiers site, collection, item, and component are actually a custom addition to a standard set of
identifiers that are available for composing URLs via a template.

• datalad_dsid - the DataLad dataset ID (UUID)

• annex_dirhash - "mixed" variant of the two level hash for a particular key (uses POSIX directory separators,
and included a trailing separator)

• annex_dirhash_lower - "lower case" variant of the two level hash for a particular key (uses POSIX directory
separators, and included a trailing separator)

• annex_key - git-annex key name for a request

• annex_remoteuuid - UUID of the special remote (location) used by git-annex

• git_remotename - Name of the Git remote for the uncurl special remote

Note: The URL template must "resolve" to a complete and valid URL. This cannot be verified at configuration time,
because even the URL scheme could be a dynamic setting.

Uploading content

The uncurl special remote can upload file content or store annex keys via supported URL schemes whenever a URL
template is defined. At minimum, storing at file:// and ssh:// URLs are supported. But other URL scheme
handlers with upload support may be available at a local DataLad installation.

240 Chapter 2. Functionality provided by DataLad NEXT

https://docs.python.org/3/library/string.html#format-string-syntax

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Deleting content

As for uploading, deleting content is only permitted with a configured URL template. Moreover, it also depends on the
delete operation being supported for a particular URL scheme.

Configuration overrides

Both match expressions and the URL template can also be configured in a dataset's configuration (committed branch
configuration, or any Git configuration scope (local, global, system) using the following configuration item names:

• remote.<remotename>.uncurl-url

• remote.<remotename>.uncurl-match

where <remotename> is the name of the special remote in the dataset.

A URL template provided via configuration overrides one defined in the special remote setup via init/enableremote.

Match expressions defined as configuration items extend the set of match expressions that may be included in the special
remote setup via init/enableremote. The remote.<remotename>.uncurl-match configuration item can be set
as often as necessary (which one match expression each).

Tips

When multiple match expressions are defined, it is recommended to use unique names for each match-group to avoid
collisions.

class datalad_next.annexremotes.uncurl.UncurlRemote(annex: Master)
Bases: SpecialRemote

checkpresent(key: str)→ bool
Requests the remote to check if a key is present in it.

Parameters
key (str)

Returns
True if the key is present in the remote. False if the key is not present.

Return type
bool

Raises
RemoteError -- If the presence of the key couldn't be determined, eg. in case of connection
error.

checkurl(url: str)→ bool
When running git-annex addurl, this is called after CLAIMURL indicated that we could handle a URL. It
can return information on the URL target (e.g., size of the download, a target filename, or a sequence thereof
with additional URLs pointing to individual components that would jointly make up the full download from
the given URL. However, all of that is optional, and a simple True returned is sufficient to make git-annex
call TRANSFER RETRIEVE.

claimurl(url: str)→ bool
Needs to check if want to handle a given URL

If match expressions are configured, matches the URL against all known URL expressions, and returns
True if there is any match, or False otherwise.

2.6. Git-annex special remotes 241

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

If no match expressions are configured, return True of the URL scheme is supported, or False otherwise.

extract_tmpl_props(tmpl: str, *, urls: list[str] | None = None, key: str | None = None)→ dict[str, str]

get_key_urls(key: str)→ list[str]

get_mangled_url(fallback_url: str | None, tmpl: str, tmpl_props: dict[str, str])→ str | None

initremote()→ None
Gets called when git annex initremote or git annex enableremote are run. This is where any one-time setup
tasks can be done, for example creating the remote folder. Note: This may be run repeatedly over time,
as a remote is initialized in different repositories, or as the configuration of a remote is changed. So any
one-time setup tasks should be done idempotently.

Raises
RemoteError -- If the remote could not be initialized.

is_recognized_url(url: str)→ bool

prepare()→ None
Tells the remote that it's time to prepare itself to be used. Gets called whenever git annex is about to access
any of the below methods, so it shouldn't be too expensive. Otherwise it will slow down operations like git
annex whereis or git annex info.

Internet connection can be established here, though it's recommended to defer this until it's actually needed.

Raises
RemoteError -- If the remote could not be prepared.

remove(key: str)→ None
Requests the remote to remove a key's contents.

Parameters
key (str)

Raises
RemoteError -- If the key couldn't be deleted from the remote.

transfer_retrieve(key: str, filename: str)→ None
Get the file identified by key from the remote and store it in local_file.

While the transfer is running, the remote can repeatedly call annex.progress(size) to indicate the number
of bytes already stored. This will influence the progress shown to the user.

Parameters

• key (str) -- The Key to get from the remote.

• local_file (str) -- Path where to store the file. Note that in some cases, local_file may
contain whitespace.

Raises
RemoteError -- If the file could not be received from the remote.

transfer_store(key: str, filename: str)→ None
Store the file in local_file to a unique location derived from key.

It's important that, while a Key is being stored, checkpresent(key) not indicate it's present until all the data
has been transferred. While the transfer is running, the remote can repeatedly call annex.progress(size) to
indicate the number of bytes already stored. This will influence the progress shown to the user.

Parameters

242 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• key (str) -- The Key to be stored in the remote. In most cases, this is going to be the
remote file name. It should be at least be unambiguously derived from it.

• local_file (str) -- Path to the file to upload. Note that in some cases, local_file may
contain whitespace. Note that local_file should not influence the filename used on the
remote.

Raises
RemoteError -- If the file could not be stored to the remote.

datalad_next.annexremotes.uncurl.main()

cmdline entry point

2.7 DataLad patches

Patches that are automatically applied to DataLad when loading the datalad-next extension package.

annexrepo Credential support for AnnexRepo.enable_remote()
and siblings enable

cli_configoverrides Post DataLad config overrides CLI/ENV as
GIT_CONFIG items in process ENV

commanderror Improve CommandError rendering and add
returncode alias for code

common_cfg Change the default of datalad.annex.retry to 1
configuration Enable configuration() to query global scope with-

out a dataset
create_sibling_ghlike Improved credential handling for

create_sibling_<github-like>()
create_sibling_gitlab Streamline user experience
customremotes_main Connect log_progress-style progress reporting to git-

annex, add close()
distribution_dataset DatasetParameter support for resolve_path()
interface_utils Uniform pre-execution parameter validation for com-

mands
push_optimize Make push avoid refspec handling for special remote

push targets
push_to_export_remote Add support for export to WebDAV remotes to push()
run Enhance run() placeholder substitutions to honor con-

figuration defaults
siblings Auto-deploy credentials when enabling special remotes
test_keyring Recognize DATALAD_TESTS_TMP_KEYRING_PATH

to set alternative secret storage
update Robustify update() target detection for adjusted mode

datasets

2.7. DataLad patches 243

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

2.7.1 datalad_next.patches.annexrepo

Credential support for AnnexRepo.enable_remote() and siblings enable

Supported targets for automatic credential deployments are determined by needs_specialremote_credential_envpatch().
At the time of this writing this includes the git-annex built-in remote types webdav, s3, and glacier.

This patch also changes the function to raise its custom exception with the context of an original underlying exception
for better error reporting.

datalad_next.patches.annexrepo.annexRepo__enable_remote(self , name, options=None, env=None)
Enables use of an existing special remote

Parameters

• name (str) -- name, the special remote was created with

• options (list, optional)

2.7.2 datalad_next.patches.cli_configoverrides

Post DataLad config overrides CLI/ENV as GIT_CONFIG items in process ENV

This enables their propagation to any subprocess. This includes the specification of overrides via the datalad -c
... option of the main CLI entrypoint.

datalad_next.patches.cli_configoverrides.parse_overrides_from_cmdline(cmdlineargs)

2.7.3 datalad_next.patches.commanderror

Improve CommandError rendering and add returncode alias for code

This patch does two things:

It overwrites __repr__, otherwise CommandError` would use ``RuntimeError's variant and ignore all addi-
tional structured information except for .msg -- which is frequently empty and confuses with a CommandError('')
display.

It adds a returncode alias for code. This unifies return code access between CommandError and Popen`-like objects,
which usually have a returncode attribute.

datalad_next.patches.commanderror.commanderror_getattr(self , item)

datalad_next.patches.commanderror.commanderror_repr(self)→ str

datalad_next.patches.commanderror.commanderror_setattr(self , key, value)

2.7.4 datalad_next.patches.common_cfg

Change the default of datalad.annex.retry to 1

This prevents unconditional retries, and thereby improves the legibility of errors (now only one error instead of three
identical errors).

This change does not override user-settings, only the default.

244 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

2.7.5 datalad_next.patches.configuration

Enable configuration() to query global scope without a dataset

class datalad_next.patches.configuration.Configuration

Bases: Configuration

static __call__(action='dump', spec=None, *, scope=None, dataset=None, recursive=False,
recursion_limit=None)

Get and set dataset, dataset-clone-local, or global configuration

This command works similar to git-config, but some features are not supported (e.g., modifying system
configuration), while other features are not available in git-config (e.g., multi-configuration queries).

Query and modification of three distinct configuration scopes is supported:

• 'branch': the persistent configuration in .datalad/config of a dataset branch

• 'local': a dataset clone's Git repository configuration in .git/config

• 'global': non-dataset-specific configuration (usually in $USER/.gitconfig)

Modifications of the persistent 'branch' configuration will not be saved by this command, but have to be
committed with a subsequent save call.

Rules of precedence regarding different configuration scopes are the same as in Git, with two exceptions:
1) environment variables can be used to override any datalad configuration, and have precedence over any
other configuration scope (see below). 2) the 'branch' scope is considered in addition to the standard git
configuration scopes. Its content has lower precedence than Git configuration scopes, but it is committed
to a branch, hence can be used to ship (default and branch-specific) configuration with a dataset.

Besides storing configuration settings statically via this command or git config, DataLad also reads any
DATALAD_* environment on process startup or import, and maps it to a configuration item. Their values
take precedence over any other specification. In variable names _ encodes a . in the configuration name,
and __ encodes a -, such that DATALAD_SOME__VAR is mapped to datalad.some-var. Additionally, a
DATALAD_CONFIG_OVERRIDES_JSON environment variable is queried, which may contain configu-
ration key-value mappings as a JSON-formatted string of a JSON-object:

DATALAD_CONFIG_OVERRIDES_JSON='{"datalad.credential.example_com.user": "jane", .
→˓..}'

This is useful when characters are part of the configuration key that cannot be encoded into an environment
variable name. If both individual configuration variables and JSON-overrides are used, the former take
precedent over the latter, overriding the respective individual settings from configurations declared in the
JSON-overrides.

This command supports recursive operation for querying and modifying configuration across a hierarchy
of datasets.

2.7. DataLad patches 245

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Examples

Dump the effective configuration, including an annotation for common items:

> configuration()

Query two configuration items:

> configuration('get', ['user.name', 'user.email'])

Recursively set configuration in all (sub)dataset repositories:

> configuration('set', [('my.config.name', 'value')], recursive=True)

Modify the persistent branch configuration (changes are not committed):

> configuration('set', [('my.config.name', 'value')], scope='branch')

Parameters

• action ({'dump', 'get', 'set', 'unset'}, optional) -- which action to perform. [De-
fault: 'dump']

• spec -- configuration name (for actions 'get' and 'unset'), or name/value pair (for action
'set'). [Default: None]

• scope ({'global', 'local', 'branch', None}, optional) -- scope for getting or set-
ting configuration. If no scope is declared for a query, all configuration sources (including
overrides via environment variables) are considered according to the normal rules of prece-
dence. A 'get' action can be constrained to scope 'branch', otherwise 'global' is used when
not operating on a dataset, or 'local' (including 'global', when operating on a dataset. For ac-
tion 'dump', a scope selection is ignored and all available scopes are considered. [Default:
None]

• dataset (Dataset or None, optional) -- specify the dataset to query or to configure.
[Default: None]

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default:
False]

• recursion_limit (int or None, optional) -- limit recursion into subdatasets to the
given number of levels. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception
is raised. A failure is any result with status 'impossible' or 'error'. Raised exception is
an IncompleteResultsError that carries the result dictionaries of the failures in its failed
attribute. [Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned sta-
tus dictionary is passed to this callable, and is only returned if the callable's return value
does not evaluate to False or a ValueError exception is raised. If the given callable sup-
ports **kwargs it will additionally be passed the keyword arguments of the original API
call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there

246 Chapter 2. Functionality provided by DataLad NEXT

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an op-
tional message); 'json' a complete JSON line serialization of the full result record; 'json_pp'
like 'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties in any format indicated
by the template (e.g. '{path}', compare with JSON output for all key-value choices). The
template syntax follows the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'mu-
sic:Genre', ':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'.
[Default: 'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned
result status dictionary is passed to this callable, and its return value becomes the result
instead. This is different from result_filter, as it can perform arbitrary transformation of
the result value. This is mostly useful for top- level command invocations that need to
provide the results in a particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return
value list, or a list in case of multiple return values. None is return in case of an empty list.
[Default: 'list']

datalad_next.patches.configuration.configuration(action, scope, specs, res_kwargs, ds=None)

2.7.6 datalad_next.patches.create_sibling_ghlike

Improved credential handling for create_sibling_<github-like>()

This patch makes the storage of a newly entered credential conditional on a successful authorization, in the spirit of
datalad/datalad#3126.

Moreover, stored credentials now contain a realm property that identified the API endpoint. This makes it possible to
identify candidates of suitable credentials without having to specific their name, similar to a request context url used
by the old providers setup.

This automatic realm-based credential lookup is now also implemented. When no credential name is specified, the
most recently used credential matching the API realm will be used automatically. If determined like this, it will be
tested for successful authorization, and will then be stored again with an updated last-used timestamp.

2.7.7 datalad_next.patches.create_sibling_gitlab

Streamline user experience

Discontinue advertizing the hierarchy layout, and better explain limitations of the command.

2.7. DataLad patches 247

https://github.com/datalad/datalad/issues/3126

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

2.7.8 datalad_next.patches.customremotes_main

Connect log_progress-style progress reporting to git-annex, add close()

This patch introduces a dedicated progress log handler as a proxy between standard datalad progress logging and a
git-annex special remote as an approach to report (data transfer) progress to a git-annex parent process.

This functionality is only (to be) used in dedicated special remote processes.

This patch also adds a standard close() handler to special remotes, and calls that handler in a context manager to
ensure releasing any resources. This replaces the custom stop() method, which is undocumented and only used by the
datalad-archive special remote.

class datalad_next.patches.customremotes_main.AnnexProgressLogHandler(annexremote:
SpecialRemote)

Bases: Handler

Log handler to funnel progress logs to git-annex

For this purpose the handler wraps datalad_next.annexremotes.SpecialRemote instance. When it re-
ceives progress log messages, it converts any increment reports to absolute values, and then calls the special
remote's send_progress() method, which will cause the respective progress update protocol message to be
issued.

Note: Git-annex only supports "context-free" progress reporting. When a progress report is send, it is assumed
to be on a currently running transfer. Only a single integer value can be reported, and it corresponds to the
number of bytes transferred.

This approach implemented here cannot distinguish progress reports that corresponding to git-annex triggered
data transfers and other (potentially co-occurring) operations. The likelihood of unrelated operations reporting
progress is relatively low, because this handler is only supposed to be used in dedicated special remote processes,
but remains possible.

This implementation is set up to support tracking multiple processes, and could report one of them selectively.
However, at present any progress update is relayed to git-annex directly. This could lead to confusing and non-
linear progress reporting.

emit(record: LogRecord)
Process a log record

Any incoming log record, compliant with http://docs.datalad.org/design/progress_reporting.html is pro-
cessed. Increment reports are converted to absolute values, and each update is eventually passed on to
special remote, which issues a progress report to git-annex.

datalad_next.patches.customremotes_main.only_progress_logrecords(record: LogRecord)→ bool
Log filter to ignore any non-progress log message

datalad_next.patches.customremotes_main.patched_underscore_main(args: list, cls:
Type[SpecialRemote])

Full replacement for datalad.customremotes.main._main()

Its only purpose is to create a running instance of a SpecialRemote. The only difference to the original in datalad-
core is that once this instance exists, it is linked to a log handler that converts incoming progress log messages
to the equivalent annex protocol progress reports.

This additional log handler is a strict addition to the log handling setup established at this point. There should
be no interference with any other log message processing.

248 Chapter 2. Functionality provided by DataLad NEXT

http://docs.datalad.org/design/progress_reporting.html

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

See also:

AnnexProgressLogHandler

datalad_next.patches.customremotes_main.specialremote_defaultclose_noop(self)

2.7.9 datalad_next.patches.distribution_dataset

DatasetParameter support for resolve_path()

This is the standard result of EnsureDataset, which unlike the datalad-core version actually carries a Dataset in-
stance.

This patch ensure the traditional handling of "dataset instance from a string-type parameter in this context.

datalad_next.patches.distribution_dataset.resolve_path(path, ds=None, ds_resolved=None)
Resolve a path specification (against a Dataset location)

Any path is returned as an absolute path. If, and only if, a dataset object instance is given as ds, relative paths are
interpreted as relative to the given dataset. In all other cases, relative paths are treated as relative to the current
working directory.

Note however, that this function is not able to resolve arbitrarily obfuscated path specifications. All operations
are purely lexical, and no actual path resolution against the filesystem content is performed. Consequently,
common relative path arguments like '../something' (relative to PWD) can be handled properly, but things like
'down/../under' cannot, as resolving this path properly depends on the actual target of any (potential) symlink
leading up to '..'.

Parameters

• path (str or PathLike or list) -- Platform-specific path specific path specification.
Multiple path specifications can be given as a list

• ds (Dataset or PathLike or None) -- Dataset instance to resolve relative paths against.

• ds_resolved (Dataset or None) -- A dataset instance that was created from ds outside
can be provided to avoid multiple instantiation on repeated calls.

Returns
When a list was given as input a list is returned, a Path instance otherwise.

Return type
pathlib.Path object or list(Path)

2.7.10 datalad_next.patches.interface_utils

Uniform pre-execution parameter validation for commands

With this patch commands can now opt-in to receive fully validated parameters. This can substantially simplify the
implementation complexity of a command at the expense of a more elaborate specification of the structural and semantic
properties of the parameters.

For details on implementing validation for individual commands see datalad_next.commands.
ValidatedInterface.

datalad_next.patches.interface_utils.get_allargs_as_kwargs(call, args, kwargs)
Generate a kwargs dict from a call signature and *args, **kwargs

Basically resolving the argnames for all positional arguments, and resolving the defaults for all kwargs that are
not given in a kwargs dict

2.7. DataLad patches 249

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Returns
The first return value is a mapping of argument names to their respective values. The second
return value in the tuple is a set of argument names for which the effective value is identical to
the default declared in the signature of the callable. The third value is a set with names of all
mandatory arguments, whether or not they are included in the returned mapping.

Return type
(dict, set, set)

2.7.11 datalad_next.patches.push_optimize

Make push avoid refspec handling for special remote push targets

This change introduces a replacement for core's push.py:_push() with a more intelligible flow. It replaces the stalled
https://github.com/datalad/datalad/pull/6666

Importantly, it makes one behavior change, which is desirable IMHO. Instead of rejecting to git-push any refspec for
a repo with a detached HEAD, it will attempt to push a git-annex branch for an AnnexRepo. The respective test that
ensured this behavior beyond the particular conditions the original problem occurred in was adjusted accordingly.

All push tests from core are imported and executed to ensure proper functioning.

Summary of the original commits patching the core implementation.

• Consolidate publication dependency handling in one place

• Consolidate tracking of git-push-dryrun exec Make a failed attempt discriminable from no prior attempt.

• Factor out helper to determine refspecs-to-push for a target

• Consolidate more handling of git-pushed and make conditional on an actual git-remote target This change is
breaking behavior, because previously a source repository without an active branch would have been rejected for
a push attempt. However, this is a bit questionable, because the git-annex branch might well need a push.

• Simplify push-logic: no need for a fetch, if there is no git-push

• Factor out helper to sync a remote annex-branch

• Adjust test to constrain the evaluated conditions (replacement tests is included here) As per the reasoning recorded
in datalad#1811 (comment) the test ensuring the continue fix of datalad#1811 is actually verifying a situation
that is not fully desirable. It prevents pushing of thew 'git-annex' branch whenever a repo is on a detached HEAD.
This change let's the test run on a plain Git repo, where there is indeed nothing to push in this case.

2.7.12 datalad_next.patches.push_to_export_remote

Add support for export to WebDAV remotes to push()

This approach generally works for any special remote configured with exporttree=yes, but is only tested for
type=webdav. A smooth operation requires automatic deployment of credentials. Support for that is provide and
limited by the capabilities of needs_specialremote_credential_envpatch().

datalad_next.patches.push_to_export_remote.get_export_records(repo: AnnexRepo)→ Generator
Read exports that git-annex recorded in its 'export.log'-file

Interpret the lines in export.log. Each line has the following structure:

time-stamp " " source-annex-uuid ":" destination-annex-uuid " " treeish

Parameters
repo (AnnexRepo) -- The annex repo from which exports should be determined

250 Chapter 2. Functionality provided by DataLad NEXT

https://github.com/datalad/datalad/pull/6666

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Returns
Generator yielding one dictionary for each export entry in git-annex. Each dictionary contains the
keys: "timestamp", "source-annex-uuid", "destination-annex-uuid", "treeish". The timestamp-
value is a float, all other values are strings.

Return type
Generator

2.7.13 datalad_next.patches.run

Enhance run() placeholder substitutions to honor configuration defaults

Previously, run() would not recognize configuration defaults for placeholder substitution. This means that any place-
holders globally declared in datalad.interface.common_cfg, or via register_config() in DataLad extensions
would not be effective.

This patch makes run's format_command() helper include such defaults explicitly, and thereby enable the global
declaration of substitution defaults.

Moreoever a {python} placeholder is now defined via this mechanism, and points to the value of sys.executable by
default. This particular placeholder was found to be valuable for improving the portability of run-recording across (spe-
cific) Python versions, or across different (virtual) environments. See https://github.com/datalad/datalad-container/
issues/224 for an example use case.

https://github.com/datalad/datalad/pull/7509

datalad_next.patches.run.format_command(dset, command, **kwds)
Plug in placeholders in command.

Parameters

• dset (Dataset)

• command (str or list)

• converted (kwds is passed to the format call. inputs and outputs are)

• necessary. (to GlobbedPaths if)

Return type
formatted command (str)

2.7.14 datalad_next.patches.siblings

Auto-deploy credentials when enabling special remotes

This is the companion of the annexRepo__enable_remote patch, and simply removes the webdav-specific credential
handling in siblings(). It is no longer needed, because credential deployment moved to a lower layer, covering more
special remote types.

Manual credential entry on enableremote is not implemented here, but easily possible following the patterns from
datalad-annex:: and create_sibling_webdav()

2.7. DataLad patches 251

https://github.com/datalad/datalad-container/issues/224
https://github.com/datalad/datalad-container/issues/224
https://github.com/datalad/datalad/pull/7509

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

2.7.15 datalad_next.patches.test_keyring

Recognize DATALAD_TESTS_TMP_KEYRING_PATH to set alternative secret storage

Within pytest DataLad uses the plaintext keyring backend. This backend has no built-in way to configure a custom
file location for secret storage from the outside. This patch looks for a DATALAD_TESTS_TMP_KEYRING_PATH
environment variable, and uses its value as a file path for the storage.

This makes it possible to (temporarily) switch storage. This feature is used by the tmp_keyring pytest fixture. This
patch is needed in addition to the test fixture in order to apply such changes also to child processes, such as special
remotes and git remotes.

2.7.16 datalad_next.patches.update

Robustify update() target detection for adjusted mode datasets

The true cause of the problem is not well understood. https://github.com/datalad/datalad/issues/7507 documents that
it is not easy to capture the breakage in a test.

252 Chapter 2. Functionality provided by DataLad NEXT

https://github.com/datalad/datalad/issues/7507

CHAPTER

THREE

DEVELOPING WITH DATALAD NEXT

This extension package moves fast in comparison to the DataLad core package. Nevertheless, attention is paid to API
stability, adequate semantic versioning, and informative changelogs.

Besides the DataLad commands shipped with this extension package, a number of Python utilities are provided that
facilitate the implementation of workflows and additional functionality. An overview is available in the reference
manual.

3.1 Public vs internal Python API

Anything that can be imported directly from any of the top-level sub-packages in datalad_next is considered to be part
of the public API. Changes to this API determine the versioning, and development is done with the aim to keep this
API as stable as possible. This includes signatures and return value behavior.

As an example:

from datalad_next.runners import iter_git_subproc

imports a part of the public API, but:

from datalad_next.runners.git import iter_git_subproc

does not.

3.2 Use of the internal API

Developers can obviously use parts of the non-public API. However, this should only be done with the understanding
that these components may change from one release to another, with no guarantee of transition periods, deprecation
warnings, etc.

Developers are advised to never reuse any components with names starting with _ (underscore). Their use should be
limited to their individual sub-package.

253

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

254 Chapter 3. Developing with DataLad NEXT

CHAPTER

FOUR

CONTRIBUTOR INFORMATION

4.1 Developer Guide

This guide sheds light on new and reusable subsystems developed in datalad-next. The target audience are devel-
opers that intend to build up on or use functionality provided by this extension.

4.1.1 datalad-next's Constraint System

datalad_next.constraints implements a system to perform data validation, coercion, and parameter documenta-
tion for commands via a flexible set of "Constraints". You can find an overview of available Constraints in the respective
module overview of the Python tooling.

Adding parameter validation to a command

In order to equip an existing or new command with the constraint system, the following steps are required:

• Set the commands base class to ValidatedInterface:

from datalad_next.commands import ValidatedInterface

@build_doc
class MyCommand(ValidatedInterface):

"""Download from URLs"""

• Declare a _validator_ class member:

from datalad_next.commands import (
EnsureCommandParameterization,
ValidatedInterface,

)

@build_doc
class MyCommand(ValidatedInterface):

"""Download from URLs"""

validator = EnsureCommandParameterization(dict(
[...]

))

255

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

• Determine for each parameter of the command whether it has constraints, and what those constraints are. If
you're transitioning an existing command, remove any constraints= declaration in the _parameter_ class
member.

• Add a fitting Constraint declaration for each parameter into the _validator_ as a key-value pair where the key
is the parameter and its value is a Constraint. There does not need to be a Constraint per parameter; only add
entries for parameters that need validation.

from datalad_next.commands import (
EnsureCommandParameterization,
ValidatedInterface,

)
from datalad_next.constraints import EnsureChoice
from datalad_next.constraints import EnsureDataset

@build_doc
class Download(ValidatedInterface):

"""Download from URLs"""

validator = EnsureCommandParameterization(dict(
dataset=EnsureDataset(installed=True),
force=EnsureChoice('yes','no','maybe'),

))

Combining constraints

Constraints can be combined in different ways. The |, &, and () operators allow AND, OR, and grouping of Constraints.
The following example from the download command defines a chain of possible Constraints:

spec_item_constraint = url2path_constraint | (
(

EnsureJSON() | EnsureURLFilenamePairFromURL()
) & url2path_constraint)

Constrains can also be combined using AnyOf or AllOf MultiConstraints, which correspond almost entirely to | and
&. Here's another example from the download command:

spec_constraint = AnyOf(
spec_item_constraint,
EnsureListOf(spec_item_constraint),
EnsureGeneratorFromFileLike(

spec_item_constraint,
exc_mode='yield',

),

One can combine an arbitrary number of Constraints. They are evaluated in the order in which they were specified.
Logical OR constraints will return the value from the first constraint that does not raise an exception, and logical AND
constraints pass the return values of each constraint into the next.

256 Chapter 4. Contributor information

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

Implementing additional constraints

TODO

Parameter Documentation

TODO

4.1.2 Contributing to datalad-next

We're happy about contributions of any kind to this project - thanks for considering making one!

Please take a look at CONTRIBUTING.md for an overview of development principles and common questions, and get
in touch in case of questions or to discuss features, bugs, or other issues.

4.1. Developer Guide 257

https://github.com/datalad/datalad-next/blob/main/CONTRIBUTING.md
https://github.com/datalad/datalad-next/issues/new
https://github.com/datalad/datalad-next/issues/new

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

258 Chapter 4. Contributor information

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

259

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

260 Chapter 5. Indices and tables

PYTHON MODULE INDEX

d
datalad_next.annexbackends.base, 230
datalad_next.annexbackends.xdlra, 234
datalad_next.annexremotes.archivist, 236
datalad_next.annexremotes.uncurl, 238
datalad_next.archive_operations, 37
datalad_next.commands, 38
datalad_next.config, 41
datalad_next.constraints, 46
datalad_next.consts, 61
datalad_next.credman, 62
datalad_next.datasets, 67
datalad_next.exceptions, 164
datalad_next.gitremotes.datalad_annex, 226
datalad_next.iter_collections, 174
datalad_next.iterable_subprocess, 166
datalad_next.itertools, 166
datalad_next.patches.annexrepo, 244
datalad_next.patches.cli_configoverrides, 244
datalad_next.patches.commanderror, 244
datalad_next.patches.common_cfg, 244
datalad_next.patches.configuration, 245
datalad_next.patches.create_sibling_ghlike,

247
datalad_next.patches.create_sibling_gitlab,

247
datalad_next.patches.customremotes_main, 248
datalad_next.patches.distribution_dataset,

249
datalad_next.patches.interface_utils, 249
datalad_next.patches.push_optimize, 250
datalad_next.patches.push_to_export_remote,

250
datalad_next.patches.run, 251
datalad_next.patches.siblings, 251
datalad_next.patches.test_keyring, 252
datalad_next.patches.update, 252
datalad_next.repo_utils, 184
datalad_next.runners, 185
datalad_next.shell, 190
datalad_next.tests, 202
datalad_next.tests.fixtures, 206

datalad_next.types, 209
datalad_next.uis, 211
datalad_next.uis.ansi_colors, 211
datalad_next.url_operations, 211
datalad_next.utils, 220

261

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

262 Python Module Index

INDEX

Symbols
__call__() (datalad_next.constraints.EnsureCommandParameterization

method), 60
__call__() (datalad_next.patches.configuration.Configuration

static method), 245
__call__() (datalad_next.shell.ShellCommandExecutor

method), 192
__getattribute__() (data-

lad_next.annexremotes.archivist.ArchivistRemote
method), 237

__repr__() (datalad_next.constraints.Constraint
method), 48

__str__() (datalad_next.constraints.Constraint
method), 48

A
action (datalad_next.commands.CommandResult

attribute), 39
add() (datalad_next.config.ConfigManager method), 42
add_archive_content() (data-

lad_next.datasets.Dataset method), 67
add_modification_type() (data-

lad_next.iter_collections.GitDiffItem method),
183

add_readme() (datalad_next.datasets.Dataset method),
70

addition (datalad_next.iter_collections.GitDiffStatus
attribute), 183

addurls() (datalad_next.datasets.Dataset method), 71
akey (datalad_next.types.ArchivistLocator attribute), 210
align_pattern() (in module datalad_next.itertools),

167
AllOf (class in datalad_next.constraints), 49
annex (datalad_next.annexbackends.base.Backend

attribute), 231
AnnexError, 230
AnnexKey (class in datalad_next.types), 209
AnnexProgressLogHandler (class in data-

lad_next.patches.customremotes_main), 248
annexRepo__enable_remote() (in module data-

lad_next.patches.annexrepo), 244
AnyOf (class in datalad_next.constraints), 49

AnyUrlOperations (class in data-
lad_next.url_operations), 216

ArchiveType (class in datalad_next.types), 211
ArchivistLocator (class in datalad_next.types), 210
ArchivistRemote (class in data-

lad_next.annexremotes.archivist), 236
assert_in() (in module datalad_next.tests), 203
assert_in_results() (in module datalad_next.tests),

203
assert_result_count() (in module data-

lad_next.tests), 203
assert_status() (in module datalad_next.tests), 203
atype (datalad_next.types.ArchivistLocator attribute),

210

B
Backend (class in datalad_next.annexbackends.base),

230
backend (datalad_next.annexbackends.base.Master at-

tribute), 232
backend (datalad_next.types.AnnexKey attribute), 209
BackendError, 232
BasicGitTestRepo (class in datalad_next.tests), 202

C
call_git() (in module datalad_next.runners), 186
call_git_lines() (in module datalad_next.runners),

187
call_git_oneline() (in module data-

lad_next.runners), 187
call_git_success() (in module data-

lad_next.runners), 187
can_verify() (datalad_next.annexbackends.base.Backend

method), 231
can_verify() (datalad_next.annexbackends.xdlra.DataladRepoAnnexBackend

method), 234
CapturedException (class in datalad_next.exceptions),

165
cfg (datalad_next.url_operations.UrlOperations prop-

erty), 212
check_gitconfig_global() (in module data-

lad_next.tests.fixtures), 206

263

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

check_plaintext_keyring() (in module data-
lad_next.tests.fixtures), 206

check_symlink_capability() (in module data-
lad_next.utils), 222

checkpresent() (data-
lad_next.annexremotes.archivist.ArchivistRemote
method), 237

checkpresent() (data-
lad_next.annexremotes.uncurl.UncurlRemote
method), 241

checkurl() (datalad_next.annexremotes.archivist.ArchivistRemote
method), 237

checkurl() (datalad_next.annexremotes.uncurl.UncurlRemote
method), 241

chpwd (class in datalad_next.utils), 222
chunknumber (datalad_next.types.AnnexKey attribute),

209
chunksize (datalad_next.types.AnnexKey attribute), 209
claimurl() (datalad_next.annexremotes.archivist.ArchivistRemote

method), 237
claimurl() (datalad_next.annexremotes.uncurl.UncurlRemote

method), 241
clean() (datalad_next.datasets.Dataset method), 74
clone() (datalad_next.datasets.Dataset method), 76
close() (datalad_next.archive_operations.TarArchiveOperations

method), 37
close() (datalad_next.archive_operations.ZipArchiveOperations

method), 38
close() (datalad_next.datasets.Dataset method), 79
close() (datalad_next.shell.ShellCommandExecutor

method), 193
command() (datalad_next.annexbackends.base.Protocol

method), 233
command_zero() (data-

lad_next.shell.ShellCommandExecutor
method), 193

CommandError, 188
commanderror_getattr() (in module data-

lad_next.patches.commanderror), 244
commanderror_repr() (in module data-

lad_next.patches.commanderror), 244
commanderror_setattr() (in module data-

lad_next.patches.commanderror), 244
CommandParametrizationError, 51
CommandResult (class in datalad_next.commands), 39
CommandResultStatus (class in data-

lad_next.commands), 40
communicate() (data-

lad_next.gitremotes.datalad_annex.RepoAnnexGitRemote
method), 229

config (datalad_next.datasets.Dataset property), 79
ConfigManager (class in datalad_next.config), 42
Configuration (class in data-

lad_next.patches.configuration), 245

configuration() (datalad_next.datasets.Dataset
method), 79

configuration() (in module data-
lad_next.patches.configuration), 247

Constraint (class in datalad_next.constraints), 48
constraint (datalad_next.constraints.WithDescription

property), 50
ConstraintError, 51
copy (datalad_next.iter_collections.GitDiffStatus at-

tribute), 183
copy_file() (datalad_next.datasets.Dataset method),

81
create() (datalad_next.datasets.Dataset method), 83
create_info_file() (data-

lad_next.tests.BasicGitTestRepo method),
202

create_sibling() (datalad_next.datasets.Dataset
method), 85

create_sibling_gin() (data-
lad_next.datasets.Dataset method), 88

create_sibling_gitea() (data-
lad_next.datasets.Dataset method), 90

create_sibling_github() (data-
lad_next.datasets.Dataset method), 92

create_sibling_gitlab() (data-
lad_next.datasets.Dataset method), 95

create_sibling_gogs() (data-
lad_next.datasets.Dataset method), 98

create_sibling_ria() (data-
lad_next.datasets.Dataset method), 100

create_sibling_webdav() (data-
lad_next.datasets.Dataset method), 103

create_sibling_webdav() (in module datalad.api), 5
create_tree() (in module datalad_next.tests), 204
CredentialManager (class in datalad_next.credman),

62
credentials() (datalad_next.datasets.Dataset

method), 106
credentials() (in module datalad.api), 8
credman() (in module datalad_next.tests.fixtures), 206

D
datalad_cfg() (in module datalad_next.tests.fixtures),

206
datalad_interactive_ui() (in module data-

lad_next.tests.fixtures), 206
datalad_next.annexbackends.base

module, 230
datalad_next.annexbackends.xdlra

module, 234
datalad_next.annexremotes.archivist

module, 236
datalad_next.annexremotes.uncurl

module, 238

264 Index

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.archive_operations
module, 37

datalad_next.commands
module, 38

datalad_next.config
module, 41

datalad_next.constraints
module, 46

datalad_next.consts
module, 61

datalad_next.credman
module, 62

datalad_next.datasets
module, 67

datalad_next.exceptions
module, 164

datalad_next.gitremotes.datalad_annex
module, 226

datalad_next.iter_collections
module, 174

datalad_next.iterable_subprocess
module, 166

datalad_next.itertools
module, 166

datalad_next.patches.annexrepo
module, 244

datalad_next.patches.cli_configoverrides
module, 244

datalad_next.patches.commanderror
module, 244

datalad_next.patches.common_cfg
module, 244

datalad_next.patches.configuration
module, 245

datalad_next.patches.create_sibling_ghlike
module, 247

datalad_next.patches.create_sibling_gitlab
module, 247

datalad_next.patches.customremotes_main
module, 248

datalad_next.patches.distribution_dataset
module, 249

datalad_next.patches.interface_utils
module, 249

datalad_next.patches.push_optimize
module, 250

datalad_next.patches.push_to_export_remote
module, 250

datalad_next.patches.run
module, 251

datalad_next.patches.siblings
module, 251

datalad_next.patches.test_keyring
module, 252

datalad_next.patches.update
module, 252

datalad_next.repo_utils
module, 184

datalad_next.runners
module, 185

datalad_next.shell
module, 190

datalad_next.tests
module, 202

datalad_next.tests.fixtures
module, 206

datalad_next.types
module, 209

datalad_next.uis
module, 211

datalad_next.uis.ansi_colors
module, 211

datalad_next.url_operations
module, 211

datalad_next.utils
module, 220

datalad_noninteractive_ui() (in module data-
lad_next.tests.fixtures), 206

DataladAuth (class in datalad_next.utils), 220
DataladRepoAnnexBackend (class in data-

lad_next.annexbackends.xdlra), 234
Dataset (class in datalad_next.datasets), 67
dataset() (in module datalad_next.tests.fixtures), 207
DatasetParameter (class in datalad_next.constraints),

52
debug() (datalad_next.annexbackends.base.Master

method), 232
decode_bytes() (in module datalad_next.itertools), 168
DEFAULT_BRANCH (in module datalad_next.tests), 203
DEFAULT_REMOTE (in module datalad_next.tests), 203
delete() (datalad_next.url_operations.AnyUrlOperations

method), 216
delete() (datalad_next.url_operations.FileUrlOperations

method), 216
delete() (datalad_next.url_operations.UrlOperations

method), 212
delete() (in module data-

lad_next.shell.operations.posix), 199
deletion (datalad_next.iter_collections.GitDiffStatus

attribute), 183
description (datalad_next.constraints.ParameterConstraintContext

attribute), 51
diff() (datalad_next.datasets.Dataset method), 109
diff_state (datalad_next.commands.status.StatusResult

attribute), 40
directory (datalad_next.iter_collections.FileSystemItemType

attribute), 182

Index 265

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

directory (datalad_next.iter_collections.GitTreeItemType
attribute), 182

do_CANVERIFY() (data-
lad_next.annexbackends.base.Protocol
method), 233

do_ERROR() (datalad_next.annexbackends.base.Protocol
method), 233

do_GENKEY() (datalad_next.annexbackends.base.Protocol
method), 233

do_GETVERSION() (data-
lad_next.annexbackends.base.Protocol
method), 233

do_ISCRYPTOGRAPHICALLYSECURE() (data-
lad_next.annexbackends.base.Protocol
method), 233

do_ISSTABLE() (data-
lad_next.annexbackends.base.Protocol
method), 233

do_VERIFYKEYCONTENT() (data-
lad_next.annexbackends.base.Protocol
method), 233

download() (datalad_next.datasets.Dataset method),
111

download() (datalad_next.url_operations.AnyUrlOperations
method), 216

download() (datalad_next.url_operations.FileUrlOperations
method), 216

download() (datalad_next.url_operations.HttpUrlOperations
method), 217

download() (datalad_next.url_operations.SshUrlOperations
method), 218

download() (datalad_next.url_operations.UrlOperations
method), 213

download() (in module datalad.api), 11
download() (in module data-

lad_next.shell.operations.posix), 198
download_url() (datalad_next.datasets.Dataset

method), 113
DownloadResponseGenerator (class in data-

lad_next.shell), 196
DownloadResponseGeneratorPosix (class in data-

lad_next.shell), 197
drop() (datalad_next.datasets.Dataset method), 114

E
emit() (datalad_next.patches.customremotes_main.AnnexProgressLogHandler

method), 248
ensure_list() (in module datalad_next.utils), 222
EnsureBool (class in datalad_next.constraints), 53
EnsureCallable (class in datalad_next.constraints), 53
EnsureChoice (class in datalad_next.constraints), 53
EnsureCommandParameterization (class in data-

lad_next.constraints), 59
EnsureDataset (class in datalad_next.constraints), 52

EnsureDType (class in datalad_next.constraints), 54
EnsureFloat (class in datalad_next.constraints), 53
EnsureGeneratorFromFileLike (class in data-

lad_next.constraints), 57
EnsureGitRefName (class in datalad_next.constraints),

58
EnsureHashAlgorithm (class in data-

lad_next.constraints), 54
EnsureInt (class in datalad_next.constraints), 54
EnsureIterableOf (class in datalad_next.constraints),

56
EnsureJSON (class in datalad_next.constraints), 57
EnsureKeyChoice (class in datalad_next.constraints),

54
EnsureListOf (class in datalad_next.constraints), 56
EnsureMapping (class in datalad_next.constraints), 57
EnsureNone (class in datalad_next.constraints), 55
EnsureParsedURL (class in datalad_next.constraints),

58
EnsurePath (class in datalad_next.constraints), 55
EnsureRange (class in datalad_next.constraints), 56
EnsureRemoteName (class in datalad_next.constraints),

59
EnsureSiblingName (class in data-

lad_next.constraints), 59
EnsureStr (class in datalad_next.constraints), 55
EnsureStrPrefix (class in datalad_next.constraints),

55
EnsureTupleOf (class in datalad_next.constraints), 57
EnsureURL (class in datalad_next.constraints), 58
EnsureValue (class in datalad_next.constraints), 56
eq_() (in module datalad_next.tests), 204
error (datalad_next.commands.CommandResultStatus

attribute), 40
error() (datalad_next.annexbackends.base.Backend

method), 231
error() (datalad_next.annexbackends.base.Master

method), 233
error_message (data-

lad_next.commands.CommandResult at-
tribute), 39

exception (datalad_next.commands.CommandResult
attribute), 39

executablefile (data-
lad_next.iter_collections.GitTreeItemType
attribute), 182

existing_dataset() (in module data-
lad_next.tests.fixtures), 207

existing_noannex_dataset() (in module data-
lad_next.tests.fixtures), 207

export_archive() (datalad_next.datasets.Dataset
method), 117

export_archive_ora() (data-
lad_next.datasets.Dataset method), 118

266 Index

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

export_to_figshare() (data-
lad_next.datasets.Dataset method), 119

external_versions (in module datalad_next.utils), 222
extract_tmpl_props() (data-

lad_next.annexremotes.uncurl.UncurlRemote
method), 242

F
file (datalad_next.iter_collections.FileSystemItemType

attribute), 182
file (datalad_next.iter_collections.GitTreeItemType at-

tribute), 182
FileSystemItem (class in data-

lad_next.iter_collections), 181
FileSystemItemType (class in data-

lad_next.iter_collections), 182
FileUrlOperations (class in data-

lad_next.url_operations), 216
FixedLengthResponseGenerator (class in data-

lad_next.shell), 196
FixedLengthResponseGeneratorPosix (class in

datalad_next.shell), 196
FixedLengthResponseGeneratorPowerShell (class

in datalad_next.shell), 196
for_dataset() (datalad_next.constraints.Constraint

method), 48
for_dataset() (data-

lad_next.constraints.EnsureMapping method),
57

for_dataset() (datalad_next.constraints.EnsurePath
method), 55

for_dataset() (data-
lad_next.constraints.EnsureRemoteName
method), 59

for_dataset() (data-
lad_next.constraints.WithDescription method),
50

foreach_dataset() (datalad_next.datasets.Dataset
method), 120

format_command() (in module data-
lad_next.patches.run), 251

format_oneline_tb() (data-
lad_next.exceptions.CapturedException
method), 165

format_short() (data-
lad_next.exceptions.CapturedException
method), 165

format_standard() (data-
lad_next.exceptions.CapturedException
method), 165

format_with_cause() (data-
lad_next.exceptions.CapturedException
method), 165

fp (datalad_next.iter_collections.FileSystemItem at-
tribute), 181

from_path() (datalad_next.iter_collections.FileSystemItem
class method), 181

from_str() (datalad_next.types.AnnexKey class
method), 209

from_str() (datalad_next.types.ArchivistLocator class
method), 210

G
gen_key() (datalad_next.annexbackends.base.Backend

method), 231
gen_key() (datalad_next.annexbackends.xdlra.DataladRepoAnnexBackend

method), 234
get() (datalad_next.commands.CommandResult

method), 39
get() (datalad_next.config.ConfigManager method), 43
get() (datalad_next.credman.CredentialManager

method), 62
get() (datalad_next.datasets.Dataset method), 123
get_allargs_as_kwargs() (in module data-

lad_next.patches.interface_utils), 249
get_deeply_nested_structure() (in module data-

lad_next.tests), 204
get_export_records() (in module data-

lad_next.patches.push_to_export_remote),
250

get_final_command() (data-
lad_next.shell.DownloadResponseGeneratorPosix
method), 197

get_final_command() (data-
lad_next.shell.FixedLengthResponseGeneratorPosix
method), 196

get_final_command() (data-
lad_next.shell.FixedLengthResponseGeneratorPowerShell
method), 196

get_final_command() (data-
lad_next.shell.ShellCommandResponseGenerator
method), 194

get_final_command() (data-
lad_next.shell.VariableLengthResponseGeneratorPosix
method), 195

get_final_command() (data-
lad_next.shell.VariableLengthResponseGeneratorPowerShell
method), 195

get_from_source() (data-
lad_next.config.ConfigManager method),
43

get_headers() (data-
lad_next.url_operations.HttpUrlOperations
method), 217

get_hexdigest() (datalad_next.utils.MultiHash
method), 221

Index 267

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

get_key_urls() (data-
lad_next.annexremotes.uncurl.UncurlRemote
method), 242

get_label_with_parameter_values() (data-
lad_next.constraints.ParameterConstraintContext
method), 52

get_mangled_url() (data-
lad_next.annexremotes.uncurl.UncurlRemote
method), 242

get_mirror_refs() (data-
lad_next.gitremotes.datalad_annex.RepoAnnexGitRemote
method), 229

get_parameter_validator() (data-
lad_next.commands.ValidatedInterface class
method), 41

get_remote_gitcfg() (data-
lad_next.annexremotes.SpecialRemote
method), 235

get_remote_refs() (data-
lad_next.gitremotes.datalad_annex.RepoAnnexGitRemote
method), 229

get_specialremote_credential_envpatch() (in
module datalad_next.utils), 226

get_specialremote_credential_properties() (in
module datalad_next.utils), 225

get_specialremote_param_dict() (in module data-
lad_next.utils), 225

get_superdataset() (datalad_next.datasets.Dataset
method), 126

get_value() (datalad_next.config.ConfigManager
method), 43

get_worktree_head() (in module data-
lad_next.repo_utils), 184

getbool() (datalad_next.config.ConfigManager
method), 43

getfloat() (datalad_next.config.ConfigManager
method), 43

getint() (datalad_next.config.ConfigManager method),
43

gid (datalad_next.iter_collections.FileSystemItem
attribute), 181

GitContainerModificationType (class in data-
lad_next.iter_collections), 184

GitDiffItem (class in datalad_next.iter_collections),
183

GitDiffStatus (class in datalad_next.iter_collections),
183

GitRunner (in module datalad_next.runners), 188
gitsha (datalad_next.iter_collections.GitWorktreeFileSystemItem

attribute), 183
GitTreeItemType (class in data-

lad_next.iter_collections), 182
gittype (datalad_next.commands.status.StatusResult at-

tribute), 40

gittype (datalad_next.iter_collections.GitWorktreeFileSystemItem
attribute), 183

GitWorktreeFileSystemItem (class in data-
lad_next.iter_collections), 182

GitWorktreeItem (class in data-
lad_next.iter_collections), 182

H
handle_401() (datalad_next.utils.DataladAuth

method), 221
handle_redirect() (datalad_next.utils.DataladAuth

method), 221
hardlink (datalad_next.iter_collections.FileSystemItemType

attribute), 182
has_initialized_annex() (in module data-

lad_next.repo_utils), 185
has_option() (datalad_next.config.ConfigManager

method), 43
has_section() (datalad_next.config.ConfigManager

method), 43
http_credential() (in module data-

lad_next.tests.fixtures), 207
http_server() (in module datalad_next.tests.fixtures),

207
http_server_with_basicauth() (in module data-

lad_next.tests.fixtures), 207
httpbin() (in module datalad_next.tests.fixtures), 207
httpbin_service() (in module data-

lad_next.tests.fixtures), 207
HttpUrlOperations (class in data-

lad_next.url_operations), 217

I
id (datalad_next.datasets.Dataset property), 126
impossible (datalad_next.commands.CommandResultStatus

attribute), 40
IncompleteResultsError, 165
initremote() (datalad_next.annexremotes.archivist.ArchivistRemote

method), 237
initremote() (datalad_next.annexremotes.uncurl.UncurlRemote

method), 242
input (datalad_next.annexbackends.base.Master at-

tribute), 232
input_description (data-

lad_next.constraints.Constraint property),
48

input_description (data-
lad_next.constraints.WithDescription prop-
erty), 50

input_synopsis (datalad_next.constraints.Constraint
property), 48

input_synopsis (data-
lad_next.constraints.WithDescription prop-
erty), 50

268 Index

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

install() (datalad_next.datasets.Dataset method), 126
internal_parameters (data-

lad_next.gitremotes.datalad_annex.RepoAnnexGitRemote
attribute), 229

is_cryptographically_secure() (data-
lad_next.annexbackends.base.Backend
method), 231

is_cryptographically_secure() (data-
lad_next.annexbackends.xdlra.DataladRepoAnnexBackend
method), 234

is_installed() (datalad_next.datasets.Dataset
method), 129

is_recognized_url() (data-
lad_next.annexremotes.uncurl.UncurlRemote
method), 242

is_stable() (datalad_next.annexbackends.base.Backend
method), 231

is_stable() (datalad_next.annexbackends.xdlra.DataladRepoAnnexBackend
method), 234

is_supported_url() (data-
lad_next.url_operations.AnyUrlOperations
method), 216

item_constraint (data-
lad_next.constraints.EnsureIterableOf prop-
erty), 56

itemize() (in module datalad_next.itertools), 169
items() (datalad_next.commands.CommandResult

method), 39
items() (datalad_next.config.ConfigManager method),

43
iter_annexworktree() (in module data-

lad_next.iter_collections), 175
iter_dir() (in module datalad_next.iter_collections),

176
iter_git_subproc() (in module data-

lad_next.runners), 188
iter_gitdiff() (in module data-

lad_next.iter_collections), 176
iter_gitstatus() (in module data-

lad_next.iter_collections), 177
iter_gittree() (in module data-

lad_next.iter_collections), 178
iter_gitworktree() (in module data-

lad_next.iter_collections), 178
iter_submodules() (in module data-

lad_next.iter_collections), 179
iter_subproc() (in module datalad_next.runners), 185
iter_tar() (in module datalad_next.iter_collections),

179
iter_zip() (in module datalad_next.iter_collections),

180
iterable_subprocess() (in module data-

lad_next.iterable_subprocess), 166

J
joint_validation() (data-

lad_next.constraints.EnsureCommandParameterization
method), 60

K
keys() (datalad_next.config.ConfigManager method),

43
KillOutput (class in datalad_next.runners), 189

L
label (datalad_next.constraints.ParameterConstraintContext

property), 52
LeanAnnexRepo (class in datalad_next.datasets), 164
LeanGitRepo (in module datalad_next.datasets), 164
LegacyAnnexRepo (in module datalad_next.datasets),

164
LegacyGitRepo (in module datalad_next.datasets), 164
link_target (datalad_next.iter_collections.FileSystemItem

attribute), 181
link_target (datalad_next.iter_collections.TarfileItem

attribute), 180
link_target_path (data-

lad_next.iter_collections.TarfileItem property),
180

link_target_path() (data-
lad_next.iter_collections.FileSystemItem
method), 181

LinkBackend() (data-
lad_next.annexbackends.base.Master method),
232

Listen() (datalad_next.annexbackends.base.Master
method), 232

load_json() (in module datalad_next.itertools), 170
load_json_with_flag() (in module data-

lad_next.itertools), 171
log() (datalad_next.gitremotes.datalad_annex.RepoAnnexGitRemote

method), 229
log_progress() (in module datalad_next.utils), 223
logger (datalad_next.commands.CommandResult

attribute), 39
long_description() (datalad_next.constraints.AllOf

method), 49
long_description() (datalad_next.constraints.AnyOf

method), 49
long_description() (data-

lad_next.constraints.Constraint method),
48

long_description() (data-
lad_next.constraints.EnsureBool method),
53

long_description() (data-
lad_next.constraints.EnsureCallable method),
53

Index 269

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

long_description() (data-
lad_next.constraints.EnsureChoice method),
53

long_description() (data-
lad_next.constraints.EnsureDType method),
54

long_description() (data-
lad_next.constraints.EnsureKeyChoice
method), 54

long_description() (data-
lad_next.constraints.EnsureRange method),
56

long_description() (data-
lad_next.constraints.EnsureStr method),
55

long_description() (data-
lad_next.constraints.EnsureStrPrefix method),
55

long_description() (data-
lad_next.constraints.EnsureValue method),
56

long_description() (data-
lad_next.constraints.WithDescription method),
50

lookupMethod() (data-
lad_next.annexbackends.base.Protocol
method), 233

ls_file_collection() (in module datalad.api), 13

M
main() (in module datalad_next.annexbackends.xdlra),

235
main() (in module datalad_next.annexremotes.archivist),

238
main() (in module datalad_next.annexremotes.uncurl),

243
Master (class in datalad_next.annexbackends.base), 232
member (datalad_next.types.ArchivistLocator attribute),

210
message (datalad_next.commands.CommandResult at-

tribute), 39
message (datalad_next.exceptions.CapturedException

property), 165
mirrorrepo (datalad_next.gitremotes.datalad_annex.RepoAnnexGitRemote

property), 229
mode (datalad_next.iter_collections.FileSystemItem at-

tribute), 181
modification (datalad_next.iter_collections.GitDiffStatus

attribute), 183
modification_types (data-

lad_next.commands.status.StatusResult at-
tribute), 40

modification_types (data-
lad_next.iter_collections.GitDiffItem attribute),

183
modified_content (data-

lad_next.iter_collections.GitContainerModificationType
attribute), 184

modified_dataset() (in module data-
lad_next.tests.fixtures), 207

module
datalad_next.annexbackends.base, 230
datalad_next.annexbackends.xdlra, 234
datalad_next.annexremotes.archivist, 236
datalad_next.annexremotes.uncurl, 238
datalad_next.archive_operations, 37
datalad_next.commands, 38
datalad_next.config, 41
datalad_next.constraints, 46
datalad_next.consts, 61
datalad_next.credman, 62
datalad_next.datasets, 67
datalad_next.exceptions, 164
datalad_next.gitremotes.datalad_annex,

226
datalad_next.iter_collections, 174
datalad_next.iterable_subprocess, 166
datalad_next.itertools, 166
datalad_next.patches.annexrepo, 244
datalad_next.patches.cli_configoverrides,

244
datalad_next.patches.commanderror, 244
datalad_next.patches.common_cfg, 244
datalad_next.patches.configuration, 245
datalad_next.patches.create_sibling_ghlike,

247
datalad_next.patches.create_sibling_gitlab,

247
datalad_next.patches.customremotes_main,

248
datalad_next.patches.distribution_dataset,

249
datalad_next.patches.interface_utils, 249
datalad_next.patches.push_optimize, 250
datalad_next.patches.push_to_export_remote,

250
datalad_next.patches.run, 251
datalad_next.patches.siblings, 251
datalad_next.patches.test_keyring, 252
datalad_next.patches.update, 252
datalad_next.repo_utils, 184
datalad_next.runners, 185
datalad_next.shell, 190
datalad_next.tests, 202
datalad_next.tests.fixtures, 206
datalad_next.types, 209
datalad_next.uis, 211
datalad_next.uis.ansi_colors, 211

270 Index

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

datalad_next.url_operations, 211
datalad_next.utils, 220

mtime (datalad_next.iter_collections.FileSystemItem at-
tribute), 181

mtime (datalad_next.types.AnnexKey attribute), 210
MultiHash (class in datalad_next.utils), 221

N
name (datalad_next.exceptions.CapturedException prop-

erty), 165
name (datalad_next.iter_collections.GitWorktreeFileSystemItem

attribute), 183
name (datalad_next.iter_collections.GitWorktreeItem at-

tribute), 182
name (datalad_next.iter_collections.TarfileItem at-

tribute), 180
name (datalad_next.iter_collections.ZipfileItem at-

tribute), 181
name (datalad_next.types.AnnexKey attribute), 210
needs_specialremote_credential_envpatch() (in

module datalad_next.utils), 225
new_commits (datalad_next.iter_collections.GitContainerModificationType

attribute), 184
next_status() (datalad_next.datasets.Dataset

method), 129
next_status() (in module datalad.api), 15
no_annex() (datalad_next.datasets.Dataset method),

131
no_result_rendering() (in module data-

lad_next.tests.fixtures), 208
NoCapture (class in datalad_next.runners), 189
NoConstraint (class in datalad_next.constraints), 49
NoDatasetFound, 166
NotLinkedError, 233
notneeded (datalad_next.commands.CommandResultStatus

attribute), 40

O
obtain() (datalad_next.config.ConfigManager method),

43
obtain() (datalad_next.credman.CredentialManager

method), 63
ok (datalad_next.commands.CommandResultStatus at-

tribute), 40
ok_() (in module datalad_next.tests), 204
ok_broken_symlink() (in module datalad_next.tests),

204
ok_good_symlink() (in module datalad_next.tests), 204
only_progress_logrecords() (in module data-

lad_next.patches.customremotes_main), 248
open() (datalad_next.archive_operations.TarArchiveOperations

method), 37
open() (datalad_next.archive_operations.ZipArchiveOperations

method), 38

options() (datalad_next.config.ConfigManager
method), 44

other (datalad_next.iter_collections.GitDiffStatus
attribute), 184

output (datalad_next.annexbackends.base.Master
attribute), 232

P
ParamDictator (class in datalad_next.utils), 226
ParameterConstraintContext (class in data-

lad_next.constraints), 51
parameters (datalad_next.constraints.ParameterConstraintContext

attribute), 52
parse_overrides_from_cmdline() (in module data-

lad_next.patches.cli_configoverrides), 244
parse_www_authenticate() (in module data-

lad_next.utils), 224
patched_env() (in module datalad_next.utils), 224
patched_underscore_main() (in module data-

lad_next.patches.customremotes_main), 248
path (datalad_next.commands.CommandResult at-

tribute), 39
path (datalad_next.datasets.Dataset property), 132
path (datalad_next.iter_collections.TarfileItem prop-

erty), 180
path (datalad_next.iter_collections.ZipfileItem prop-

erty), 181
pathobj (datalad_next.datasets.Dataset property), 132
percentage (datalad_next.iter_collections.GitDiffItem

attribute), 183
pipe_data_received() (data-

lad_next.runners.KillOutput method), 189
pop() (datalad_next.commands.CommandResult

method), 39
populate() (datalad_next.tests.BasicGitTestRepo

method), 202
prepare() (datalad_next.annexremotes.archivist.ArchivistRemote

method), 237
prepare() (datalad_next.annexremotes.uncurl.UncurlRemote

method), 242
prev_gitsha (datalad_next.iter_collections.GitDiffItem

attribute), 183
prev_gittype (datalad_next.commands.status.StatusResult

attribute), 40
prev_gittype (datalad_next.iter_collections.GitDiffItem

attribute), 183
prev_name (datalad_next.iter_collections.GitDiffItem

attribute), 183
prev_path (datalad_next.iter_collections.GitDiffItem

property), 183
prev_type (datalad_next.commands.status.StatusResult

property), 40
probe_url() (datalad_next.url_operations.HttpUrlOperations

method), 217

Index 271

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

proc_err (datalad_next.runners.KillOutput attribute),
189

proc_err (datalad_next.runners.StdErrCapture at-
tribute), 190

proc_err (datalad_next.runners.StdOutErrCapture at-
tribute), 190

proc_out (datalad_next.runners.KillOutput attribute),
189

proc_out (datalad_next.runners.StdOutCapture at-
tribute), 189

proc_out (datalad_next.runners.StdOutErrCapture at-
tribute), 190

progress() (datalad_next.annexbackends.base.Master
method), 233

Protocol (class in datalad_next.annexbackends.base),
233

ProtocolError, 233
push() (datalad_next.datasets.Dataset method), 133

Q
query() (datalad_next.credman.CredentialManager

method), 64
query_() (datalad_next.credman.CredentialManager

method), 65

R
raise_for() (datalad_next.constraints.Constraint

method), 48
recall_state() (datalad_next.datasets.Dataset

method), 134
reduce_logging() (in module data-

lad_next.tests.fixtures), 208
refds (datalad_next.commands.CommandResult at-

tribute), 39
refs_key (datalad_next.gitremotes.datalad_annex.RepoAnnexGitRemote

attribute), 229
reload() (datalad_next.config.ConfigManager method),

44
remotename (datalad_next.annexremotes.SpecialRemote

property), 236
remove() (datalad_next.annexremotes.archivist.ArchivistRemote

method), 237
remove() (datalad_next.annexremotes.uncurl.UncurlRemote

method), 242
remove() (datalad_next.credman.CredentialManager

method), 65
remove() (datalad_next.datasets.Dataset method), 134
remove_section() (data-

lad_next.config.ConfigManager method),
44

rename (datalad_next.iter_collections.GitDiffStatus at-
tribute), 184

rename_section() (data-
lad_next.config.ConfigManager method),

45
replace_mirrorrepo_from_remote_deposit()

(datalad_next.gitremotes.datalad_annex.RepoAnnexGitRemote
method), 229

replace_mirrorrepo_from_remote_deposit_if_needed()
(datalad_next.gitremotes.datalad_annex.RepoAnnexGitRemote
method), 229

replace_remote_deposit_from_mirrorrepo()
(datalad_next.gitremotes.datalad_annex.RepoAnnexGitRemote
method), 229

repo (datalad_next.annexremotes.SpecialRemote prop-
erty), 236

repo (datalad_next.datasets.Dataset property), 137
REPO_CLASS (datalad_next.tests.BasicGitTestRepo

attribute), 202
repo_export_key (data-

lad_next.gitremotes.datalad_annex.RepoAnnexGitRemote
attribute), 229

repoannex (datalad_next.gitremotes.datalad_annex.RepoAnnexGitRemote
property), 230

RepoAnnexGitRemote (class in data-
lad_next.gitremotes.datalad_annex), 228

rerun() (datalad_next.datasets.Dataset method), 137
resolve_path() (in module data-

lad_next.patches.distribution_dataset), 249
rewrite_url() (datalad_next.config.ConfigManager

method), 45
rmtree() (in module datalad_next.utils), 224
route_in() (in module datalad_next.itertools), 173
route_out() (in module datalad_next.itertools), 171
run() (datalad_next.datasets.Dataset method), 139
run_main() (in module datalad_next.tests), 204
run_procedure() (datalad_next.datasets.Dataset

method), 142
Runner (in module datalad_next.runners), 188

S
safe_content (datalad_next.gitremotes.datalad_annex.RepoAnnexGitRemote

attribute), 230
save() (datalad_next.datasets.Dataset method), 145
save_entered_credential() (data-

lad_next.utils.DataladAuth method), 221
secret_names (datalad_next.credman.CredentialManager

attribute), 65
sections() (datalad_next.config.ConfigManager

method), 45
send() (datalad_next.gitremotes.datalad_annex.RepoAnnexGitRemote

method), 230
send() (datalad_next.shell.DownloadResponseGenerator

method), 196
send() (datalad_next.shell.FixedLengthResponseGenerator

method), 196
send() (datalad_next.shell.ShellCommandResponseGenerator

method), 194

272 Index

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

send() (datalad_next.shell.VariableLengthResponseGenerator
method), 195

set() (datalad_next.config.ConfigManager method), 45
set() (datalad_next.credman.CredentialManager

method), 65
shell() (in module datalad_next.shell), 199
ShellCommandExecutor (class in datalad_next.shell),

192
ShellCommandResponseGenerator (class in data-

lad_next.shell), 194
short_description() (datalad_next.constraints.AllOf

method), 49
short_description() (data-

lad_next.constraints.AnyOf method), 49
short_description() (data-

lad_next.constraints.Constraint method),
48

short_description() (data-
lad_next.constraints.EnsureBool method),
53

short_description() (data-
lad_next.constraints.EnsureCallable method),
53

short_description() (data-
lad_next.constraints.EnsureChoice method),
53

short_description() (data-
lad_next.constraints.EnsureDataset method),
52

short_description() (data-
lad_next.constraints.EnsureDType method),
54

short_description() (data-
lad_next.constraints.EnsureGeneratorFromFileLike
method), 57

short_description() (data-
lad_next.constraints.EnsureGitRefName
method), 58

short_description() (data-
lad_next.constraints.EnsureIterableOf
method), 56

short_description() (data-
lad_next.constraints.EnsureJSON method),
57

short_description() (data-
lad_next.constraints.EnsureKeyChoice
method), 54

short_description() (data-
lad_next.constraints.EnsureListOf method),
56

short_description() (data-
lad_next.constraints.EnsureMapping method),
57

short_description() (data-

lad_next.constraints.EnsurePath method),
55

short_description() (data-
lad_next.constraints.EnsureRange method),
56

short_description() (data-
lad_next.constraints.EnsureRemoteName
method), 59

short_description() (data-
lad_next.constraints.EnsureStr method),
55

short_description() (data-
lad_next.constraints.EnsureStrPrefix method),
55

short_description() (data-
lad_next.constraints.EnsureTupleOf method),
57

short_description() (data-
lad_next.constraints.EnsureURL method),
58

short_description() (data-
lad_next.constraints.EnsureValue method),
56

short_description() (data-
lad_next.constraints.NoConstraint method),
49

short_description() (data-
lad_next.constraints.WithDescription method),
50

siblings() (datalad_next.datasets.Dataset method),
147

size (datalad_next.iter_collections.FileSystemItem at-
tribute), 181

size (datalad_next.types.AnnexKey attribute), 210
size (datalad_next.types.ArchivistLocator attribute), 211
skip_if_on_windows() (in module datalad_next.tests),

205
skip_if_root() (in module datalad_next.tests), 205
skip_wo_symlink_capability() (in module data-

lad_next.tests), 205
skipif_no_network (in module datalad_next.tests), 205
specialfile (datalad_next.iter_collections.FileSystemItemType

attribute), 182
SpecialRemote (class in datalad_next.annexremotes),

235
specialremote_defaultclose_noop() (in module

datalad_next.patches.customremotes_main),
249

sshserver() (in module datalad_next.tests.fixtures),
209

sshserver_setup() (in module data-
lad_next.tests.fixtures), 209

SshUrlOperations (class in data-
lad_next.url_operations), 218

Index 273

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

start() (datalad_next.shell.ShellCommandExecutor
method), 193

stat() (datalad_next.url_operations.AnyUrlOperations
method), 216

stat() (datalad_next.url_operations.FileUrlOperations
method), 217

stat() (datalad_next.url_operations.HttpUrlOperations
method), 218

stat() (datalad_next.url_operations.SshUrlOperations
method), 219

stat() (datalad_next.url_operations.UrlOperations
method), 214

state (datalad_next.commands.status.StatusResult prop-
erty), 40

status (datalad_next.commands.CommandResult
attribute), 39

status (datalad_next.iter_collections.GitDiffItem
attribute), 183

status() (datalad_next.datasets.Dataset method), 149
StatusResult (class in datalad_next.commands.status),

40
StdErrCapture (class in datalad_next.runners), 190
StdOutCapture (class in datalad_next.runners), 189
StdOutErrCapture (class in datalad_next.runners), 190
subdatasets() (datalad_next.datasets.Dataset

method), 152
submodule (datalad_next.iter_collections.GitTreeItemType

attribute), 182
support_githelper_options (data-

lad_next.gitremotes.datalad_annex.RepoAnnexGitRemote
attribute), 230

swallow_logs() (in module datalad_next.tests), 205
symlink (datalad_next.iter_collections.FileSystemItemType

attribute), 182
symlink (datalad_next.iter_collections.GitTreeItemType

attribute), 182

T
tar (datalad_next.types.ArchiveType attribute), 211
TarArchiveOperations (class in data-

lad_next.archive_operations), 37
tarfile (datalad_next.archive_operations.TarArchiveOperations

property), 37
TarfileItem (class in datalad_next.iter_collections),

180
throw() (datalad_next.shell.ShellCommandResponseGenerator

method), 194
tmp_keyring() (in module datalad_next.tests.fixtures),

209
transfer_retrieve() (data-

lad_next.annexremotes.archivist.ArchivistRemote
method), 237

transfer_retrieve() (data-
lad_next.annexremotes.uncurl.UncurlRemote

method), 242
transfer_store() (data-

lad_next.annexremotes.archivist.ArchivistRemote
method), 237

transfer_store() (data-
lad_next.annexremotes.uncurl.UncurlRemote
method), 242

tree() (datalad_next.datasets.Dataset method), 155
tree() (in module datalad.api), 17
type (datalad_next.commands.CommandResult at-

tribute), 39
type (datalad_next.commands.status.StatusResult prop-

erty), 40
type (datalad_next.iter_collections.FileSystemItem at-

tribute), 181
type_src (datalad_next.commands.status.StatusResult

property), 40
typechange (datalad_next.iter_collections.GitDiffStatus

attribute), 184

U
ui_switcher (in module datalad_next.uis), 211
uid (datalad_next.iter_collections.FileSystemItem

attribute), 181
UncurlRemote (class in data-

lad_next.annexremotes.uncurl), 241
UnexpectedMessage, 233
uninstall() (datalad_next.datasets.Dataset method),

158
unknown (datalad_next.iter_collections.GitDiffStatus at-

tribute), 184
unlock() (datalad_next.datasets.Dataset method), 159
unmerged (datalad_next.iter_collections.GitDiffStatus

attribute), 184
unset() (datalad_next.config.ConfigManager method),

46
UnsupportedRequest, 233
untracked_content (data-

lad_next.iter_collections.GitContainerModificationType
attribute), 184

update() (datalad_next.datasets.Dataset method), 160
update() (datalad_next.utils.MultiHash method), 221
update_specialremote_credential() (in module

datalad_next.utils), 225
upload() (datalad_next.url_operations.AnyUrlOperations

method), 216
upload() (datalad_next.url_operations.FileUrlOperations

method), 217
upload() (datalad_next.url_operations.SshUrlOperations

method), 219
upload() (datalad_next.url_operations.UrlOperations

method), 214
upload() (in module data-

lad_next.shell.operations.posix), 197

274 Index

Datalad Next, Release 1.3.0+90.g9b9984e.dirty

UrlOperations (class in datalad_next.url_operations),
212

UrlOperationsAuthenticationError, 219
UrlOperationsAuthorizationError, 220
UrlOperationsInteractionError, 219
UrlOperationsRemoteError, 219
UrlOperationsResourceUnknown, 219

V
valid_property_names_regex (data-

lad_next.credman.CredentialManager at-
tribute), 66

ValidatedInterface (class in data-
lad_next.commands), 40

VariableLengthResponseGenerator (class in data-
lad_next.shell), 195

VariableLengthResponseGeneratorPosix (class in
datalad_next.shell), 195

VariableLengthResponseGeneratorPowerShell
(class in datalad_next.shell), 195

verify_content() (data-
lad_next.annexbackends.base.Backend
method), 231

verify_content() (data-
lad_next.annexbackends.xdlra.DataladRepoAnnexBackend
method), 235

verify_property_names() (in module data-
lad_next.credman), 67

W
webdav_credential() (in module data-

lad_next.tests.fixtures), 209
webdav_server() (in module data-

lad_next.tests.fixtures), 209
WithDescription (class in datalad_next.constraints),

50
wtf() (datalad_next.datasets.Dataset method), 162

X
xdlra_key_locations (data-

lad_next.gitremotes.datalad_annex.RepoAnnexGitRemote
attribute), 230

Z
zero_command (datalad_next.shell.VariableLengthResponseGenerator

property), 195
zero_command (datalad_next.shell.VariableLengthResponseGeneratorPosix

property), 195
zero_command (datalad_next.shell.VariableLengthResponseGeneratorPowerShell

property), 195
zip (datalad_next.types.ArchiveType attribute), 211
ZipArchiveOperations (class in data-

lad_next.archive_operations), 38

zipfile (datalad_next.archive_operations.ZipArchiveOperations
property), 38

ZipfileItem (class in datalad_next.iter_collections),
181

Index 275

	Installation and usage
	Functionality provided by DataLad NEXT
	High-level API commands
	datalad.api.create_sibling_webdav
	datalad.api.credentials
	datalad.api.download
	datalad.api.ls_file_collection
	datalad.api.next_status
	datalad.api.tree

	Command line reference
	datalad create-sibling-webdav
	Synopsis
	Description
	Options
	URL
	-h, --help, --help-np
	-d DATASET, --dataset DATASET
	-s NAME, --name NAME
	--storage-name NAME
	--mode MODE
	--credential NAME
	--existing EXISTING
	-r, --recursive
	-R LEVELS, --recursion-limit LEVELS
	--version

	Authors

	datalad credentials
	Synopsis
	Description
	Options
	action
	[name] [:]property[=value]
	-h, --help, --help-np
	--prompt PROMPT
	-d DATASET, --dataset DATASET
	--version

	Authors

	datalad download
	Synopsis
	Description
	Options
	<path>|<url>|<url-path-pair>
	-h, --help, --help-np
	-d DATASET, --dataset DATASET
	--force {overwrite-existing}
	--credential NAME
	--hash ALGORITHM
	--version

	Authors

	datalad ls-file-collection
	Synopsis
	Description
	Options
	{directory,tarfile,zipfile,gittree,gitworktree,annexworktree}
	ID/LOCATION
	-h, --help, --help-np
	--hash ALGORITHM
	--version

	Authors

	datalad next-status
	Synopsis
	Description
	Options
	-h, --help, --help-np
	-d DATASET, --dataset DATASET
	--untracked {no,whole-dir,no-empty-dir,normal,all}
	-r [{no,repository,datasets,mono}], --recursive [{no,repository,datasets,mono}]
	-e {no,commit,full}, --eval-subdataset-state {no,commit,full}
	--version

	Authors

	datalad tree
	Synopsis
	Description
	Options
	path
	-h, --help, --help-np
	-L DEPTH, --depth DEPTH
	-r, --recursive
	-R LEVELS, --recursion-limit LEVELS
	--include-files
	--include-hidden
	--version

	Authors

	Python tooling
	datalad_next.archive_operations
	datalad_next.archive_operations.TarArchiveOperations
	datalad_next.archive_operations.ZipArchiveOperations

	datalad_next.commands
	datalad_next.commands.CommandResult
	datalad_next.commands.CommandResultStatus
	datalad_next.commands.status.StatusResult

	datalad_next.config
	datalad_next.config.ConfigManager

	datalad_next.constraints
	datalad_next.constraints.Constraint
	datalad_next.constraints.AllOf
	datalad_next.constraints.AnyOf
	datalad_next.constraints.NoConstraint
	datalad_next.constraints.WithDescription
	datalad_next.constraints.ConstraintError
	datalad_next.constraints.CommandParametrizationError
	datalad_next.constraints.ParameterConstraintContext
	datalad_next.constraints.EnsureDataset
	datalad_next.constraints.DatasetParameter
	datalad_next.constraints.EnsureBool
	datalad_next.constraints.EnsureCallable
	datalad_next.constraints.EnsureChoice
	datalad_next.constraints.EnsureFloat
	datalad_next.constraints.EnsureHashAlgorithm
	datalad_next.constraints.EnsureDType
	datalad_next.constraints.EnsureInt
	datalad_next.constraints.EnsureKeyChoice
	datalad_next.constraints.EnsureNone
	datalad_next.constraints.EnsurePath
	datalad_next.constraints.EnsureStr
	datalad_next.constraints.EnsureStrPrefix
	datalad_next.constraints.EnsureRange
	datalad_next.constraints.EnsureValue
	datalad_next.constraints.EnsureIterableOf
	datalad_next.constraints.EnsureListOf
	datalad_next.constraints.EnsureTupleOf
	datalad_next.constraints.EnsureMapping
	datalad_next.constraints.EnsureGeneratorFromFileLike
	datalad_next.constraints.EnsureJSON
	datalad_next.constraints.EnsureURL
	datalad_next.constraints.EnsureParsedURL
	datalad_next.constraints.EnsureGitRefName
	datalad_next.constraints.EnsureRemoteName
	datalad_next.constraints.EnsureSiblingName
	datalad_next.constraints.EnsureCommandParameterization

	datalad_next.consts
	datalad_next.credman
	datalad_next.credman.CredentialManager
	datalad_next.credman.verify_property_names

	datalad_next.datasets
	datalad_next.datasets.Dataset
	datalad_next.datasets.LeanGitRepo
	datalad_next.datasets.LeanAnnexRepo
	datalad_next.datasets.LegacyGitRepo
	datalad_next.datasets.LegacyAnnexRepo

	datalad_next.exceptions
	datalad_next.exceptions.CapturedException
	datalad_next.exceptions.IncompleteResultsError
	datalad_next.exceptions.NoDatasetFound

	datalad_next.iterable_subprocess
	datalad_next.iterable_subprocess.iterable_subprocess

	datalad_next.itertools
	datalad_next.itertools.align_pattern
	datalad_next.itertools.decode_bytes
	datalad_next.itertools.itemize
	datalad_next.itertools.load_json
	datalad_next.itertools.load_json_with_flag
	datalad_next.itertools.route_out
	datalad_next.itertools.route_in

	datalad_next.iter_collections
	datalad_next.iter_collections.iter_annexworktree
	datalad_next.iter_collections.iter_dir
	datalad_next.iter_collections.iter_gitdiff
	datalad_next.iter_collections.iter_gitstatus
	datalad_next.iter_collections.iter_gittree
	datalad_next.iter_collections.iter_gitworktree
	datalad_next.iter_collections.iter_submodules
	datalad_next.iter_collections.iter_tar
	datalad_next.iter_collections.iter_zip
	datalad_next.iter_collections.TarfileItem
	datalad_next.iter_collections.ZipfileItem
	datalad_next.iter_collections.FileSystemItem
	datalad_next.iter_collections.FileSystemItemType
	datalad_next.iter_collections.GitTreeItemType
	datalad_next.iter_collections.GitWorktreeItem
	datalad_next.iter_collections.GitWorktreeFileSystemItem
	datalad_next.iter_collections.GitDiffItem
	datalad_next.iter_collections.GitDiffStatus
	datalad_next.iter_collections.GitContainerModificationType

	datalad_next.repo_utils
	datalad_next.repo_utils.get_worktree_head
	datalad_next.repo_utils.has_initialized_annex

	datalad_next.runners
	datalad_next.runners.iter_subproc
	datalad_next.runners.call_git
	datalad_next.runners.call_git_lines
	datalad_next.runners.call_git_oneline
	datalad_next.runners.call_git_success
	datalad_next.runners.iter_git_subproc
	datalad_next.runners.CommandError
	Low-level tooling from datalad-core
	datalad_next.runners.GitRunner
	datalad_next.runners.Runner
	datalad_next.runners.KillOutput
	datalad_next.runners.NoCapture
	datalad_next.runners.StdOutCapture
	datalad_next.runners.StdErrCapture
	datalad_next.runners.StdOutErrCapture

	datalad_next.shell
	datalad_next.shell.ShellCommandExecutor
	datalad_next.shell.ShellCommandResponseGenerator
	datalad_next.shell.VariableLengthResponseGenerator
	datalad_next.shell.VariableLengthResponseGeneratorPosix
	datalad_next.shell.VariableLengthResponseGeneratorPowerShell
	datalad_next.shell.FixedLengthResponseGenerator
	datalad_next.shell.FixedLengthResponseGeneratorPosix
	datalad_next.shell.FixedLengthResponseGeneratorPowerShell
	datalad_next.shell.DownloadResponseGenerator
	datalad_next.shell.DownloadResponseGeneratorPosix
	datalad_next.shell.operations.posix.upload
	datalad_next.shell.operations.posix.download
	datalad_next.shell.operations.posix.delete

	datalad_next.tests
	datalad_next.tests.BasicGitTestRepo
	datalad_next.tests.DEFAULT_BRANCH
	datalad_next.tests.DEFAULT_REMOTE
	datalad_next.tests.assert_in
	datalad_next.tests.assert_in_results
	datalad_next.tests.assert_result_count
	datalad_next.tests.assert_status
	datalad_next.tests.create_tree
	datalad_next.tests.eq_
	datalad_next.tests.get_deeply_nested_structure
	datalad_next.tests.ok_
	datalad_next.tests.ok_good_symlink
	datalad_next.tests.ok_broken_symlink
	datalad_next.tests.run_main
	datalad_next.tests.skip_if_on_windows
	datalad_next.tests.skip_if_root
	datalad_next.tests.skip_wo_symlink_capability
	datalad_next.tests.swallow_logs
	datalad_next.tests.skipif_no_network

	datalad_next.tests.fixtures
	datalad_next.types
	datalad_next.types.AnnexKey
	datalad_next.types.ArchivistLocator
	Syntax of dl+archives: locators

	datalad_next.types.ArchiveType

	datalad_next.uis
	datalad_next.uis.ansi_colors
	datalad_next.uis.ui_switcher

	datalad_next.url_operations
	datalad_next.url_operations.UrlOperations
	datalad_next.url_operations.AnyUrlOperations
	datalad_next.url_operations.FileUrlOperations
	datalad_next.url_operations.HttpUrlOperations
	datalad_next.url_operations.SshUrlOperations
	datalad_next.url_operations.UrlOperationsRemoteError
	datalad_next.url_operations.UrlOperationsResourceUnknown
	datalad_next.url_operations.UrlOperationsInteractionError
	datalad_next.url_operations.UrlOperationsAuthenticationError
	datalad_next.url_operations.UrlOperationsAuthorizationError

	datalad_next.utils
	datalad_next.utils.DataladAuth
	datalad_next.utils.MultiHash
	datalad_next.utils.check_symlink_capability
	datalad_next.utils.chpwd
	datalad_next.utils.ensure_list
	datalad_next.utils.external_versions
	datalad_next.utils.log_progress
	datalad_next.utils.parse_www_authenticate
	datalad_next.utils.patched_env
	datalad_next.utils.rmtree
	datalad_next.utils.get_specialremote_param_dict
	datalad_next.utils.get_specialremote_credential_properties
	datalad_next.utils.update_specialremote_credential
	datalad_next.utils.needs_specialremote_credential_envpatch
	datalad_next.utils.get_specialremote_credential_envpatch

	Git-remote helpers
	datalad_next.gitremotes.datalad_annex

	Git-annex backends
	datalad_next.annexbackends.base
	datalad_next.annexbackends.xdlra

	Git-annex special remotes
	datalad_next.annexremotes.SpecialRemote
	datalad_next.annexremotes.archivist
	Configuration
	Implementation details

	datalad_next.annexremotes.uncurl
	uncurl git-annex external special remote
	Requirements
	Download helper
	Download helper with credential management support
	Transforming recorded URLs
	Uploading content
	Deleting content
	Configuration overrides
	Tips

	DataLad patches
	datalad_next.patches.annexrepo
	datalad_next.patches.cli_configoverrides
	datalad_next.patches.commanderror
	datalad_next.patches.common_cfg
	datalad_next.patches.configuration
	datalad_next.patches.create_sibling_ghlike
	datalad_next.patches.create_sibling_gitlab
	datalad_next.patches.customremotes_main
	datalad_next.patches.distribution_dataset
	datalad_next.patches.interface_utils
	datalad_next.patches.push_optimize
	datalad_next.patches.push_to_export_remote
	datalad_next.patches.run
	datalad_next.patches.siblings
	datalad_next.patches.test_keyring
	datalad_next.patches.update

	Developing with DataLad NEXT
	Public vs internal Python API
	Use of the internal API

	Contributor information
	Developer Guide
	datalad-next's Constraint System
	Adding parameter validation to a command
	Combining constraints

	Implementing additional constraints
	Parameter Documentation

	Contributing to datalad-next

	Indices and tables
	Python Module Index
	Index

