
Datalad Extension for deprecated
functionality

Release 0.3.0+6.g4f29653.dirty

DataLad team

Mar 19, 2024

CONTENTS

1 API 1
1.1 High-level API commands . 1
1.2 Command line reference . 14
1.3 Miscellaneous functionality . 29

2 Indices and tables 31

Index 33

i

ii

CHAPTER

ONE

API

1.1 High-level API commands

ls(loc[, recursive, fast, all_, long_, ...]) List summary information about URLs and dataset(s)
publish ([path, dataset, to, since, missing, ...]) Publish a dataset to a known sibling.
metadata([path, dataset, get_aggregates, ...]) Metadata reporting for files and entire datasets
search ([query, dataset, force_reindex, ...]) Search dataset metadata
extract_metadata(types[, files, dataset]) Run one or more of DataLad's metadata extractors on a

dataset or file.
aggregate_metadata([path, dataset, ...]) Aggregate metadata of one or more datasets for later

query.

1.1.1 datalad.api.ls

datalad.api.ls(loc, recursive=False, fast=False, all_=False, long_=False, config_file=None, list_content=False,
json=None)

List summary information about URLs and dataset(s)

ATM only s3:// URLs and datasets are supported

Examples

$ datalad ls s3://openfmri/tarballs/ds202 # to list S3 bucket $ datalad ls # to list current dataset

Parameters

• loc (sequence of str or None) -- URL or path to list, e.g. s3://...

• recursive (bool, optional) -- recurse into subdirectories. [Default: False]

• fast (bool, optional) -- only perform fast operations. Would be overridden by --all.
[Default: False]

• all (bool, optional) -- list all (versions of) entries, not e.g. only latest entries in case of
S3. [Default: False]

• long (bool, optional) -- list more information on entries (e.g. acl, urls in s3, annex sizes
etc). [Default: False]

• config_file (str or None, optional) -- path to config file which could help the 'ls'.
E.g. for s3:// URLs could be some ~/.s3cfg file which would provide credentials. [Default:
None]

1

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

• list_content -- list also the content or only first 10 bytes (first10), or md5 checksum of
an entry. Might require expensive transfer and dump binary output to your screen. Do not
enable unless you know what you are after. [Default: False]

• json -- metadata json of dataset for creating web user interface. display: prints jsons to
stdout or file: writes each subdir metadata to json file in subdir of dataset or delete: deletes
all metadata json files in dataset. [Default: None]

1.1.2 datalad.api.publish

datalad.api.publish(path=None, dataset=None, to=None, since=None, missing='fail', force=False,
transfer_data='auto', recursive=False, recursion_limit=None, git_opts=None,
annex_opts=None, annex_copy_opts=None, jobs=None)

Publish a dataset to a known sibling.

This makes the last saved state of a dataset available to a sibling or special remote data store of a dataset. Any
target sibling must already exist and be known to the dataset.

Optionally, it is possible to limit publication to change sets relative to a particular point in the version history of a
dataset (e.g. a release tag). By default, the state of the local dataset is evaluated against the last known state of the
target sibling. Actual publication is only attempted if there was a change compared to the reference state, in order
to speed up processing of large collections of datasets. Evaluation with respect to a particular "historic" state
is only supported in conjunction with a specified reference dataset. Change sets are also evaluated recursively,
i.e. only those subdatasets are published where a change was recorded that is reflected in to current state of the
top-level reference dataset. See "since" option for more information.

Only publication of saved changes is supported. Any unsaved changes in a dataset (hierarchy) have to be saved
before publication.

Note: Power-user info: This command uses git push, and git annex copy to publish a dataset. Publication targets
are either configured remote Git repositories, or git-annex special remotes (if they support data upload).

Note: This command is deprecated. It will be removed from DataLad eventually, but no earlier than the 0.15
release. The push command (new in 0.13.0) provides an alternative interface. Critical differences are that push
transfers annexed data by default and does not handle sibling creation (i.e. it does not have a --missing option).

Parameters

• path (sequence of str or None, optional) -- path(s), that may point to file han-
dle(s) to publish including their actual content or to subdataset(s) to be published. If a file
handle is published with its data, this implicitly means to also publish the (sub)dataset it be-
longs to. '.' as a path is treated in a special way in the sense, that it is passed to subdatasets
in case recursive is also given. [Default: None]

• dataset (Dataset or None, optional) -- specify the (top-level) dataset to be pub-
lished. If no dataset is given, the datasets are determined based on the input arguments.
[Default: None]

• to (str or None, optional) -- name of the target sibling. If no name is given an attempt
is made to identify the target based on the dataset's configuration (i.e. a configured tracking
branch, or a single sibling that is configured for publication). [Default: None]

• since (str or None, optional) -- specifies commit-ish (tag, shasum, etc.) from which
to look for changes to decide whether pushing is necessary. If '^' is given, the last state of

2 Chapter 1. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

the current branch at the sibling is taken as a starting point. An empty string ('') for the same
effect is still supported). [Default: None]

• missing ({'fail', 'inherit', 'skip'}, optional) -- action to perform, if a sibling does
not exist in a given dataset. By default it would fail the run ('fail' setting). With 'inherit' a
'create-sibling' with '--inherit-settings' will be used to create sibling on the remote. With
'skip' - it simply will be skipped. [Default: 'fail']

• force (bool, optional) -- enforce doing publish activities (git push etc) regardless of the
analysis if they seemed needed. [Default: False]

• transfer_data ({'auto', 'none', 'all'}, optional) -- ADDME. [Default: 'auto']

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default: False]

• recursion_limit (int or None, optional) -- limit recursion into subdatasets to the
given number of levels. [Default: None]

• git_opts (str or None, optional) -- option string to be passed to git calls. [Default:
None]

• annex_opts (str or None, optional) -- option string to be passed to git annex calls.
[Default: None]

• annex_copy_opts (str or None, optional) -- option string to be passed to git annex
copy calls. [Default: None]

• jobs (int or None or {'auto'}, optional) -- how many parallel jobs (where possi-
ble) to use. "auto" corresponds to the number defined by 'datalad.runtime.max-annex-jobs'
configuration item NOTE: This option can only parallelize input retrieval (get) and output
recording (save). DataLad does NOT parallelize your scripts for you. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception is
raised. A failure is any result with status 'impossible' or 'error'. Raised exception is an In-
completeResultsError that carries the result dictionaries of the failures in its failed attribute.
[Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned status
dictionary is passed to this callable, and is only returned if the callable's return value does not
evaluate to False or a ValueError exception is raised. If the given callable supports **kwargs
it will additionally be passed the keyword arguments of the original API call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an optional
message); 'json' a complete JSON line serialization of the full result record; 'json_pp' like
'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering entirely;
'<template>' reports any value(s) of any result properties in any format indicated by the tem-
plate (e.g. '{path}', compare with JSON output for all key-value choices). The template
syntax follows the Python "format() language". It is possible to report individual dictionary
values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'music:Genre',
':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'. [Default:
'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned result

1.1. High-level API commands 3

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

status dictionary is passed to this callable, and its return value becomes the result instead.
This is different from result_filter, as it can perform arbitrary transformation of the result
value. This is mostly useful for top- level command invocations that need to provide
the results in a particular format. Instead of a callable, a label for a pre-crafted result
transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return value
list, or a list in case of multiple return values. None is return in case of an empty list. [Default:
'list']

1.1.3 datalad.api.metadata

datalad.api.metadata(path=None, *, dataset=None, get_aggregates=False, reporton='all', recursive=False)
Metadata reporting for files and entire datasets

Two types of metadata are supported:

1. metadata describing a dataset as a whole (dataset-global metadata), and

2. metadata for files in a dataset (content metadata).

Both types can be accessed with this command.

Examples

Report the metadata of a single file, as aggregated into the closest locally available dataset, containing the query
path:

% datalad metadata somedir/subdir/thisfile.dat

Sometimes it is helpful to get metadata records formatted in a more accessible form, here as pretty-printed JSON:

% datalad -f json_pp metadata somedir/subdir/thisfile.dat

Same query as above, but specify which dataset to query (must be containing the query path):

% datalad metadata -d . somedir/subdir/thisfile.dat

Report any metadata record of any dataset known to the queried dataset:

% datalad metadata --recursive --reporton datasets

Get a JSON-formatted report of aggregated metadata in a dataset, incl. information on enabled metadata extrac-
tors, dataset versions, dataset IDs, and dataset paths:

% datalad -f json metadata --get-aggregates

Parameters

• path (sequence of str or None, optional) -- path(s) to query metadata for. [De-
fault: None]

• dataset (Dataset or None, optional) -- dataset to query. If given, metadata will be
reported as stored in this dataset. Otherwise, the closest available dataset containing a query
path will be consulted. [Default: None]

4 Chapter 1. API

https://docs.python.org/3/library/stdtypes.html#str

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

• get_aggregates (bool, optional) -- if set, yields all (sub)datasets for which aggregate
metadata are available in the dataset. No other action is performed, even if other arguments
are given. The reported results contain a datasets's ID, the commit hash at which metadata
aggregation was performed, and the location of the object file(s) containing the aggregated
metadata. [Default: False]

• reporton ({'all', 'datasets', 'files', 'none'}, optional) -- choose on what type
result to report on: 'datasets', 'files', 'all' (both datasets and files), or 'none' (no report). [De-
fault: 'all']

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default: False]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception is
raised. A failure is any result with status 'impossible' or 'error'. Raised exception is an In-
completeResultsError that carries the result dictionaries of the failures in its failed attribute.
[Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned status
dictionary is passed to this callable, and is only returned if the callable's return value does not
evaluate to False or a ValueError exception is raised. If the given callable supports **kwargs
it will additionally be passed the keyword arguments of the original API call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an optional
message); 'json' a complete JSON line serialization of the full result record; 'json_pp' like
'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering entirely;
'<template>' reports any value(s) of any result properties in any format indicated by the tem-
plate (e.g. '{path}', compare with JSON output for all key-value choices). The template
syntax follows the Python "format() language". It is possible to report individual dictionary
values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'music:Genre',
':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'. [Default:
'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned result
status dictionary is passed to this callable, and its return value becomes the result instead.
This is different from result_filter, as it can perform arbitrary transformation of the result
value. This is mostly useful for top- level command invocations that need to provide
the results in a particular format. Instead of a callable, a label for a pre-crafted result
transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return value
list, or a list in case of multiple return values. None is return in case of an empty list. [Default:
'list']

1.1. High-level API commands 5

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

1.1.4 datalad.api.search

datalad.api.search(query=None, *, dataset=None, force_reindex=False, max_nresults=None, mode=None,
full_record=False, show_keys=None, show_query=False, metadata_source='legacy')

Search dataset metadata

DataLad can search metadata extracted from a dataset and/or aggregated into a superdataset (see the aggregate-
metadata command). This makes it possible to discover datasets, or individual files in a dataset even when they
are not available locally.

Ultimately DataLad metadata are a graph of linked data structures. However, this command does not (yet) support
queries that can exploit all information stored in the metadata. At the moment the following search modes are
implemented that represent different trade-offs between the expressiveness of a query and the computational and
storage resources required to execute a query.

• egrep (default)

• egrepcs [case-sensitive egrep]

• textblob

• autofield

An alternative default mode can be configured by tuning the configuration variable 'datalad.search.default-mode':

[datalad "search"]
default-mode = egrepcs

Each search mode has its own default configuration for what kind of documents to query. The respective default
can be changed via configuration variables:

[datalad "search"]
index-<mode_name>-documenttype = (all|datasets|files)

Mode: egrep/egrepcs

These search modes are largely ignorant of the metadata structure, and simply perform matching of a search
pattern against a flat string-representation of metadata. This is advantageous when the query is simple and the
metadata structure is irrelevant, or precisely known. Moreover, it does not require a search index, hence results
can be reported without an initial latency for building a search index when the underlying metadata has changed
(e.g. due to a dataset update). By default, these search modes only consider datasets and do not investigate records
for individual files for speed reasons. Search results are reported in the order in which they were discovered.

Queries can make use of Python regular expression syntax (https://docs.python.org/3/library/re.html). In egrep
mode, matching is case-insensitive when the query does not contain upper case characters, but is case-sensitive
when it does. In egrepcs mode, matching is always case-sensitive. Expressions will match anywhere in a meta-
data string, not only at the start.

When multiple queries are given, all queries have to match for a search hit (AND behavior).

It is possible to search individual metadata key/value items by prefixing the query with a metadata key name,
separated by a colon (':'). The key name can also be a regular expression to match multiple keys. A query match
happens when any value of an item with a matching key name matches the query (OR behavior). See examples
for more information.

6 Chapter 1. API

https://docs.python.org/3/library/re.html

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

Examples

Query for (what happens to be) an author:

% datalad search haxby

Queries are case-INsensitive when the query contains no upper case characters, and can be regular expressions.
Use egrepcs mode when it is desired to perform a case-sensitive lowercase match:

% datalad search --mode egrepcs halchenko.*haxby

This search mode performs NO analysis of the metadata content. Therefore queries can easily fail to match.
For example, the above query implicitly assumes that authors are listed in alphabetical order. If that is the case
(which may or may not be true), the following query would yield NO hits:

% datalad search Haxby.*Halchenko

The textblob search mode represents an alternative that is more robust in such cases.

For more complex queries multiple query expressions can be provided that all have to match to be considered
a hit (AND behavior). This query discovers all files (non-default behavior) that match 'bids.type=T1w' AND
'nifti1.qform_code=scanner':

% datalad -c datalad.search.index-egrep-documenttype=all search bids.type:T1w␣
→˓nifti1.qform_code:scanner

Key name selectors can also be expressions, which can be used to select multiple keys or construct "fuzzy"
queries. In such cases a query matches when any item with a matching key matches the query (OR behavior).
However, multiple queries are always evaluated using an AND conjunction. The following query extends the
example above to match any files that have either 'nifti1.qform_code=scanner' or 'nifti1.sform_code=scanner':

% datalad -c datalad.search.index-egrep-documenttype=all search bids.type:T1w␣
→˓nifti1.(q|s)form_code:scanner

Mode: textblob

This search mode is very similar to the egrep mode, but with a few key differences. A search index is built
from the string-representation of metadata records. By default, only datasets are included in this index, hence
the indexing is usually completed within a few seconds, even for hundreds of datasets. This mode uses its own
query language (not regular expressions) that is similar to other search engines. It supports logical conjunc-
tions and fuzzy search terms. More information on this is available from the Whoosh project (search engine
implementation):

• Description of the Whoosh query language: http://whoosh.readthedocs.io/en/latest/querylang.html)

• Description of a number of query language customizations that are enabled in DataLad, such as, fuzzy term
matching: http://whoosh.readthedocs.io/en/latest/parsing.html#common-customizations

Importantly, search hits are scored and reported in order of descending relevance, hence limiting the number of
search results is more meaningful than in the 'egrep' mode and can also reduce the query duration.

1.1. High-level API commands 7

http://whoosh.readthedocs.io/en/latest/querylang.html
http://whoosh.readthedocs.io/en/latest/parsing.html#common-customizations

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

Examples

Search for (what happens to be) two authors, regardless of the order in which those names appear in the metadata:

% datalad search --mode textblob halchenko haxby

Fuzzy search when you only have an approximate idea what you are looking for or how it is spelled:

% datalad search --mode textblob haxbi~

Very fuzzy search, when you are basically only confident about the first two characters and how it sounds ap-
proximately (or more precisely: allow for three edits and require matching of the first two characters):

% datalad search --mode textblob haksbi~3/2

Combine fuzzy search with logical constructs:

% datalad search --mode textblob 'haxbi~ AND (hanke OR halchenko)'

Mode: autofield

This mode is similar to the 'textblob' mode, but builds a vastly more detailed search index that represents indi-
vidual metadata variables as individual fields. By default, this search index includes records for datasets and
individual fields, hence it can grow very quickly into a huge structure that can easily take an hour or more to
build and require more than a GB of storage. However, limiting it to documents on datasets (see above) retains
the enhanced expressiveness of queries while dramatically reducing the resource demands.

Examples

List names of search index fields (auto-discovered from the set of indexed datasets) which either have a field
starting with "age" or "gender":

% datalad search --mode autofield --show-keys name '\.age' '\.gender'

Fuzzy search for datasets with an author that is specified in a particular metadata field:

% datalad search --mode autofield bids.author:haxbi~ type:dataset

Search for individual files that carry a particular description prefix in their 'nifti1' metadata:

% datalad search --mode autofield nifti1.description:FSL* type:file

Reporting

Search hits are returned as standard DataLad results. On the command line the '--output-format' (or '-f') option
can be used to tweak results for further processing.

8 Chapter 1. API

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

Examples

Format search hits as a JSON stream (one hit per line):

% datalad -f json search haxby

Custom formatting: which terms matched the query of particular results. Useful for investigating fuzzy search
results:

$ datalad -f '{path}: {query_matched}' search --mode autofield bids.author:haxbi~

Parameters

• query -- query string, supported syntax and features depends on the selected search mode
(see documentation). [Default: None]

• dataset (Dataset or None, optional) -- specify the dataset to perform the query op-
eration on. If no dataset is given, an attempt is made to identify the dataset based on the
current working directory and/or the path given. [Default: None]

• force_reindex (bool, optional) -- force rebuilding the search index, even if no change
in the dataset's state has been detected, for example, when the index documenttype configu-
ration has changed. [Default: False]

• max_nresults (int or None, optional) -- maximum number of search results to re-
port. Setting this to 0 will report all search matches. Depending on the mode this can search
substantially slower. If not specified, a mode-specific default setting will be used. [Default:
None]

• mode -- Mode of search index structure and content. See section SEARCH MODES for
details. [Default: None]

• full_record (bool, optional) -- If set, return the full metadata record for each search
hit. Depending on the search mode this might require additional queries. By default, only
data that is available to the respective search modes is returned. This always includes essen-
tial information, such as the path and the type. [Default: False]

• show_keys -- if given, a list of known search keys is shown. If 'name' - only the name is
printed one per line. If 'short' or 'full', statistics (in how many datasets, and how many unique
values) are printed. 'short' truncates the listing of unique values. QUERY, if provided, is reg-
ular expressions any of which keys should contain. No other action is performed (except for
reindexing), even if other arguments are given. Each key is accompanied by a term defini-
tion in parenthesis (TODO). In most cases a definition is given in the form of a URL. If an
ontology definition for a term is known, this URL can resolve to a webpage that provides a
comprehensive definition of the term. However, for speed reasons term resolution is solely
done on information contained in a local dataset's metadata, and definition URLs might be
outdated or point to no longer existing resources. [Default: None]

• show_query (bool, optional) -- if given, the formal query that was generated from the
given query string is shown, but not actually executed. This is mostly useful for debugging
purposes. [Default: False]

• metadata_source -- if given, defines which metadata source will be used to search. 'legacy'
will limit search to metadata in the old format, i.e. stored in '$DATASET/.datalad/metadata'.
'gen4' will limit search to metadata stored by the git-backend of 'datalad-metadata-model'. If
'all' is given, metadata from all supported sources will be included in the search. The default
is 'legacy'. [Default: 'legacy']

1.1. High-level API commands 9

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception is
raised. A failure is any result with status 'impossible' or 'error'. Raised exception is an In-
completeResultsError that carries the result dictionaries of the failures in its failed attribute.
[Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned status
dictionary is passed to this callable, and is only returned if the callable's return value does not
evaluate to False or a ValueError exception is raised. If the given callable supports **kwargs
it will additionally be passed the keyword arguments of the original API call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an optional
message); 'json' a complete JSON line serialization of the full result record; 'json_pp' like
'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering entirely;
'<template>' reports any value(s) of any result properties in any format indicated by the tem-
plate (e.g. '{path}', compare with JSON output for all key-value choices). The template
syntax follows the Python "format() language". It is possible to report individual dictionary
values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'music:Genre',
':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'. [Default:
'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned result
status dictionary is passed to this callable, and its return value becomes the result instead.
This is different from result_filter, as it can perform arbitrary transformation of the result
value. This is mostly useful for top- level command invocations that need to provide
the results in a particular format. Instead of a callable, a label for a pre-crafted result
transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return value
list, or a list in case of multiple return values. None is return in case of an empty list. [Default:
'list']

1.1.5 datalad.api.extract_metadata

datalad.api.extract_metadata(types, files=None, dataset=None)
Run one or more of DataLad's metadata extractors on a dataset or file.

The result(s) are structured like the metadata DataLad would extract during metadata aggregation. There is one
result per dataset/file.

10 Chapter 1. API

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

Examples

Extract metadata with two extractors from a dataset in the current directory and also from all its files:

$ datalad extract-metadata -d . --type frictionless_datapackage --type datalad_core

Extract XMP metadata from a single PDF that is not part of any dataset:

$ datalad extract-metadata --type xmp Downloads/freshfromtheweb.pdf

Parameters

• types -- Name of a metadata extractor to be executed.

• files (sequence of str or None, optional) -- Path of a file to extract metadata
from. [Default: None]

• dataset (Dataset or None, optional) -- "Dataset to extract metadata from. If no file
is given, metadata is extracted from all files of the dataset. [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception is
raised. A failure is any result with status 'impossible' or 'error'. Raised exception is an In-
completeResultsError that carries the result dictionaries of the failures in its failed attribute.
[Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned status
dictionary is passed to this callable, and is only returned if the callable's return value does not
evaluate to False or a ValueError exception is raised. If the given callable supports **kwargs
it will additionally be passed the keyword arguments of the original API call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an optional
message); 'json' a complete JSON line serialization of the full result record; 'json_pp' like
'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering entirely;
'<template>' reports any value(s) of any result properties in any format indicated by the tem-
plate (e.g. '{path}', compare with JSON output for all key-value choices). The template
syntax follows the Python "format() language". It is possible to report individual dictionary
values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'music:Genre',
':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'. [Default:
'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned result
status dictionary is passed to this callable, and its return value becomes the result instead.
This is different from result_filter, as it can perform arbitrary transformation of the result
value. This is mostly useful for top- level command invocations that need to provide
the results in a particular format. Instead of a callable, a label for a pre-crafted result
transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return value
list, or a list in case of multiple return values. None is return in case of an empty list. [Default:
'list']

1.1. High-level API commands 11

https://docs.python.org/3/library/stdtypes.html#str

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

1.1.6 datalad.api.aggregate_metadata

datalad.api.aggregate_metadata(path=None, *, dataset=None, recursive=False, recursion_limit=None,
update_mode='target', incremental=False, force_extraction=False,
save=True)

Aggregate metadata of one or more datasets for later query.

Metadata aggregation refers to a procedure that extracts metadata present in a dataset into a portable representa-
tion that is stored a single standardized format. Moreover, metadata aggregation can also extract metadata in this
format from one dataset and store it in another (super)dataset. Based on such collections of aggregated metadata
it is possible to discover particular datasets and specific parts of their content, without having to obtain the target
datasets first (see the DataLad 'search' command).

To enable aggregation of metadata that are contained in files of a dataset, one has to enable one or more metadata
extractor for a dataset. DataLad supports a number of common metadata standards, such as the Exchangeable Im-
age File Format (EXIF), Adobe's Extensible Metadata Platform (XMP), and various audio file metadata systems
like ID3. DataLad extension packages can provide metadata data extractors for additional metadata sources. For
example, the neuroimaging extension provides extractors for scientific (meta)data standards like BIDS, DICOM,
and NIfTI1. Some metadata extractors depend on particular 3rd-party software. The list of metadata extractors
available to a particular DataLad installation is reported by the 'wtf' command ('datalad wtf').

Enabling a metadata extractor for a dataset is done by adding its name to the 'datalad.metadata.nativetype' con-
figuration variable -- typically in the dataset's configuration file (.datalad/config), e.g.:

[datalad "metadata"]
nativetype = exif
nativetype = xmp

If an enabled metadata extractor is not available in a particular DataLad installation, metadata extraction will not
succeed in order to avoid inconsistent aggregation results.

Enabling multiple extractors is supported. In this case, metadata are extracted by each extractor individually,
and stored alongside each other. Metadata aggregation will also extract DataLad's own metadata (extractors
'datalad_core', and 'annex').

Metadata aggregation can be performed recursively, in order to aggregate all metadata across all subdatasets,
for example, to be able to search across any content in any dataset of a collection. Aggregation can also be
performed for subdatasets that are not available locally. In this case, pre-aggregated metadata from the closest
available superdataset will be considered instead.

Depending on the versatility of the present metadata and the number of dataset or files, aggregated metadata can
grow prohibitively large. A number of configuration switches are provided to mitigate such issues.

datalad.metadata.aggregate-content-<extractor-name>
If set to false, content metadata aggregation will not be performed for the named metadata extractor (a
potential underscore '_' in the extractor name must be replaced by a dash '-'). This can substantially reduce
the runtime for metadata extraction, and also reduce the size of the generated metadata aggregate. Note,
however, that some extractors may not produce any metadata when this is disabled, because their metadata
might come from individual file headers only. 'datalad.metadata.store-aggregate-content' might be a more
appropriate setting in such cases.

datalad.metadata.aggregate-ignore-fields
Any metadata key matching any regular expression in this configuration setting is removed prior to generat-
ing the dataset-level metadata summary (keys and their unique values across all dataset content), and from
the dataset metadata itself. This switch can also be used to filter out sensitive information prior aggregation.

datalad.metadata.generate-unique-<extractor-name>
If set to false, DataLad will not auto-generate a summary of unique content metadata values for a partic-

12 Chapter 1. API

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

ular extractor as part of the dataset-global metadata (a potential underscore '_' in the extractor name must
be replaced by a dash '-'). This can be useful if such a summary is bloated due to minor uninformative
(e.g. numerical) differences, or when a particular extractor already provides a carefully designed content
metadata summary.

datalad.metadata.maxfieldsize
Any metadata value that exceeds the size threshold given by this configuration setting (in bytes/characters)
is removed.

datalad.metadata.store-aggregate-content
If set, extracted content metadata are still used to generate a dataset-level summary of present metadata (all
keys and their unique values across all files in a dataset are determined and stored as part of the dataset-level
metadata aggregate, see datalad.metadata.generate-unique-<extractor-name>), but metadata on individual
files are not stored. This switch can be used to avoid prohibitively large metadata files. Discovery of datasets
containing content matching particular metadata properties will still be possible, but such datasets would
have to be obtained first in order to discover which particular files in them match these properties.

Parameters

• path (sequence of str or None, optional) -- path to datasets that shall be aggre-
gated. When a given path is pointing into a dataset, the metadata of the containing dataset
will be aggregated. If no paths given, current dataset metadata is aggregated. [Default:
None]

• dataset (Dataset or None, optional) -- topmost dataset metadata will be aggregated
into. All dataset between this dataset and any given path will receive updated aggregated
metadata from all given paths. [Default: None]

• recursive (bool, optional) -- if set, recurse into potential subdatasets. [Default: False]

• recursion_limit (int or None, optional) -- limit recursion into subdatasets to the
given number of levels. [Default: None]

• update_mode ({'all', 'target'}, optional) -- which datasets to update with newly ag-
gregated metadata: all datasets from any leaf dataset to the top-level target dataset including
all intermediate datasets (all), or just the top-level target dataset (target). [Default: 'target']

• incremental (bool, optional) -- If set, all information on metadata records of sub-
datasets that have not been (re-)aggregated in this run will be kept unchanged. This is useful
when (re-)aggregation only a subset of a dataset hierarchy, for example, because not all sub-
datasets are locally available. [Default: False]

• force_extraction (bool, optional) -- If set, all enabled extractors will be engaged
regardless of whether change detection indicates that metadata has already been extracted
for a given dataset state. [Default: False]

• save (bool, optional) -- by default all modifications to a dataset are immediately saved.
Giving this option will disable this behavior. [Default: True]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception is
raised. A failure is any result with status 'impossible' or 'error'. Raised exception is an In-
completeResultsError that carries the result dictionaries of the failures in its failed attribute.
[Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned status
dictionary is passed to this callable, and is only returned if the callable's return value does not

1.1. High-level API commands 13

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

evaluate to False or a ValueError exception is raised. If the given callable supports **kwargs
it will additionally be passed the keyword arguments of the original API call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an optional
message); 'json' a complete JSON line serialization of the full result record; 'json_pp' like
'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering entirely;
'<template>' reports any value(s) of any result properties in any format indicated by the tem-
plate (e.g. '{path}', compare with JSON output for all key-value choices). The template
syntax follows the Python "format() language". It is possible to report individual dictionary
values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'music:Genre',
':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'. [Default:
'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned result
status dictionary is passed to this callable, and its return value becomes the result instead.
This is different from result_filter, as it can perform arbitrary transformation of the result
value. This is mostly useful for top- level command invocations that need to provide
the results in a particular format. Instead of a callable, a label for a pre-crafted result
transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return value
list, or a list in case of multiple return values. None is return in case of an empty list. [Default:
'list']

1.2 Command line reference

1.2.1 datalad ls

Synopsis

datalad ls [-h] [-r] [-F] [-a] [-L] [--config-file CONFIG_FILE] [--list-content {None,
→˓first10,md5,full}] [--json {file,display,delete}] [--version] [PATH/URL ...]

Description

List summary information about URLs and dataset(s)

ATM only s3:// URLs and datasets are supported

Examples:

$ datalad ls s3://openfmri/tarballs/ds202 # to list S3 bucket $ datalad ls # to list current dataset

14 Chapter 1. API

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

Options

PATH/URL

URL or path to list, e.g. s3://... Constraints: value must be a string or value must be NONE

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

-r, --recursive

recurse into subdirectories.

-F, --fast

only perform fast operations. Would be overridden by --all.

-a, --all

list all (versions of) entries, not e.g. only latest entries in case of S3.

-L, --long

list more information on entries (e.g. acl, urls in s3, annex sizes etc).

--config-file CONFIG_FILE

path to config file which could help the 'ls'. E.g. for s3:// URLs could be some ~/.s3cfg file which would provide
credentials. Constraints: value must be a string or value must be NONE

--list-content {None,first10,md5,full}

list also the content or only first 10 bytes (first10), or md5 checksum of an entry. Might require expensive transfer and
dump binary output to your screen. Do not enable unless you know what you are after. [Default: False]

--json {file,display,delete}

metadata json of dataset for creating web user interface. display: prints jsons to stdout or file: writes each subdir
metadata to json file in subdir of dataset or delete: deletes all metadata json files in dataset.

1.2. Command line reference 15

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

1.2.2 datalad publish

Synopsis

datalad publish [-h] [-d DATASET] [--to LABEL] [--since SINCE] [--missing MODE] [-f] [--
→˓transfer-data {auto|none|all}] [-r] [-R LEVELS] [--git-opts STRING] [--annex-opts␣
→˓STRING] [--annex-copy-opts STRING] [-J NJOBS] [--version] [PATH ...]

Description

Publish a dataset to a known sibling.

This makes the last saved state of a dataset available to a sibling or special remote data store of a dataset. Any target
sibling must already exist and be known to the dataset.

Optionally, it is possible to limit publication to change sets relative to a particular point in the version history of a
dataset (e.g. a release tag). By default, the state of the local dataset is evaluated against the last known state of the
target sibling. Actual publication is only attempted if there was a change compared to the reference state, in order
to speed up processing of large collections of datasets. Evaluation with respect to a particular "historic" state is only
supported in conjunction with a specified reference dataset. Change sets are also evaluated recursively, i.e. only those
subdatasets are published where a change was recorded that is reflected in to current state of the top-level reference
dataset. See "since" option for more information.

Only publication of saved changes is supported. Any unsaved changes in a dataset (hierarchy) have to be saved before
publication.

NOTE
Power-user info: This command uses git push, and git annex copy to publish a dataset. Publication targets are
either configured remote Git repositories, or git-annex special remotes (if they support data upload).

NOTE
This command is deprecated. It will be removed from DataLad eventually, but no earlier than the 0.15 release.
The PUSH command (new in 0.13.0) provides an alternative interface. Critical differences are that push transfers
annexed data by default and does not handle sibling creation (i.e. it does not have a --missing option).

16 Chapter 1. API

mailto:team@datalad.org

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

Options

PATH

path(s), that may point to file handle(s) to publish including their actual content or to subdataset(s) to be published. If
a file handle is published with its data, this implicitly means to also publish the (sub)dataset it belongs to. '.' as a path
is treated in a special way in the sense, that it is passed to subdatasets in case RECURSIVE is also given. Constraints:
value must be a string or value must be NONE

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

specify the (top-level) dataset to be published. If no dataset is given, the datasets are determined based on the input
arguments. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

--to LABEL

name of the target sibling. If no name is given an attempt is made to identify the target based on the dataset's configu-
ration (i.e. a configured tracking branch, or a single sibling that is configured for publication). Constraints: value must
be a string or value must be NONE

--since SINCE

specifies commit-ish (tag, shasum, etc.) from which to look for changes to decide whether pushing is necessary. If '^'
is given, the last state of the current branch at the sibling is taken as a starting point. An empty string ('') for the same
effect is still supported). Constraints: value must be a string or value must be NONE

--missing MODE

action to perform, if a sibling does not exist in a given dataset. By default it would fail the run ('fail' setting). With
'inherit' a 'create-sibling' with '-- inherit-settings' will be used to create sibling on the remote. With 'skip' - it simply
will be skipped. Constraints: value must be one of ('fail', 'inherit', 'skip') [Default: 'fail']

-f, --force

enforce doing publish activities (git push etc) regardless of the analysis if they seemed needed.

1.2. Command line reference 17

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

--transfer-data {auto|none|all}

ADDME. Constraints: value must be one of ('auto', 'none', 'all') [Default: 'auto']

-r, --recursive

if set, recurse into potential subdatasets.

-R LEVELS, --recursion-limit LEVELS

limit recursion into subdatasets to the given number of levels. Constraints: value must be convertible to type 'int' or
value must be NONE

--git-opts STRING

option string to be passed to git calls. Constraints: value must be a string or value must be NONE

--annex-opts STRING

option string to be passed to git annex calls. Constraints: value must be a string or value must be NONE

--annex-copy-opts STRING

option string to be passed to git annex copy calls. Constraints: value must be a string or value must be NONE

-J NJOBS, --jobs NJOBS

how many parallel jobs (where possible) to use. "auto" corresponds to the number defined by 'datalad.runtime.max-
annex-jobs' configuration item NOTE: This option can only parallelize input retrieval (get) and output recording (save).
DataLad does NOT parallelize your scripts for you. Constraints: value must be convertible to type 'int' or value must
be NONE or value must be one of ('auto',)

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

18 Chapter 1. API

mailto:team@datalad.org

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

1.2.3 datalad metadata

Synopsis

datalad metadata [-h] [-d DATASET] [--get-aggregates] [--reporton TYPE] [-r] [--version]␣
→˓[PATH ...]

Description

Metadata reporting for files and entire datasets

Two types of metadata are supported:

1. metadata describing a dataset as a whole (dataset-global metadata), and

2. metadata for files in a dataset (content metadata).

Both types can be accessed with this command.

Examples:

Report the metadata of a single file, as aggregated into the closest locally available dataset, containing the
query path:

% datalad metadata somedir/subdir/thisfile.dat

Sometimes it is helpful to get metadata records formatted in a more accessible form, here as pretty-printed
JSON:

% datalad -f json_pp metadata somedir/subdir/thisfile.dat

Same query as above, but specify which dataset to query (must be containing the query path):

% datalad metadata -d . somedir/subdir/thisfile.dat

Report any metadata record of any dataset known to the queried dataset:

% datalad metadata --recursive --reporton datasets

Get a JSON-formatted report of aggregated metadata in a dataset, incl. information on enabled metadata
extractors, dataset versions, dataset IDs, and dataset paths:

% datalad -f json metadata --get-aggregates

Options

PATH

path(s) to query metadata for. Constraints: value must be a string or value must be NONE

1.2. Command line reference 19

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

dataset to query. If given, metadata will be reported as stored in this dataset. Otherwise, the closest available dataset
containing a query path will be consulted. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g.
a path) or value must be NONE

--get-aggregates

if set, yields all (sub)datasets for which aggregate metadata are available in the dataset. No other action is performed,
even if other arguments are given. The reported results contain a datasets's ID, the commit hash at which metadata
aggregation was performed, and the location of the object file(s) containing the aggregated metadata.

--reporton TYPE

choose on what type result to report on: 'datasets', 'files', 'all' (both datasets and files), or 'none' (no report). Constraints:
value must be one of ('all', 'datasets', 'files', 'none') [Default: 'all']

-r, --recursive

if set, recurse into potential subdatasets.

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

1.2.4 datalad extract-metadata

Synopsis

datalad extract-metadata [-h] --type NAME [-d DATASET] [--version] [FILE ...]

20 Chapter 1. API

mailto:team@datalad.org

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

Description

Run one or more of DataLad's metadata extractors on a dataset or file.

The result(s) are structured like the metadata DataLad would extract during metadata aggregation. There is one result
per dataset/file.

Examples:

Extract metadata with two extractors from a dataset in the current directory and also from all its files:

$ datalad extract-metadata -d . --type frictionless_datapackage --type datalad_
→˓core

Extract XMP metadata from a single PDF that is not part of any dataset:

$ datalad extract-metadata --type xmp Downloads/freshfromtheweb.pdf

Options

FILE

Path of a file to extract metadata from. Constraints: value must be a string or value must be NONE

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

--type NAME

Name of a metadata extractor to be executed. This option can be given more than once.

-d DATASET, --dataset DATASET

"Dataset to extract metadata from. If no FILE is given, metadata is extracted from all files of the dataset. Constraints:
Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

--version

show the module and its version which provides the command

1.2. Command line reference 21

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

1.2.5 datalad aggregate-metadata

Synopsis

datalad aggregate-metadata [-h] [-d DATASET] [-r] [-R LEVELS] [--update-mode {all|target}
→˓] [--incremental] [--force-extraction] [--nosave] [--version] [PATH ...]

Description

Aggregate metadata of one or more datasets for later query.

Metadata aggregation refers to a procedure that extracts metadata present in a dataset into a portable representation that
is stored a single standardized format. Moreover, metadata aggregation can also extract metadata in this format from
one dataset and store it in another (super)dataset. Based on such collections of aggregated metadata it is possible to
discover particular datasets and specific parts of their content, without having to obtain the target datasets first (see the
DataLad 'search' command).

To enable aggregation of metadata that are contained in files of a dataset, one has to enable one or more metadata
extractor for a dataset. DataLad supports a number of common metadata standards, such as the Exchangeable Image
File Format (EXIF), Adobe's Extensible Metadata Platform (XMP), and various audio file metadata systems like ID3.
DataLad extension packages can provide metadata data extractors for additional metadata sources. For example, the
neuroimaging extension provides extractors for scientific (meta)data standards like BIDS, DICOM, and NIfTI1. Some
metadata extractors depend on particular 3rd-party software. The list of metadata extractors available to a particular
DataLad installation is reported by the 'wtf' command ('datalad wtf').

Enabling a metadata extractor for a dataset is done by adding its name to the 'datalad.metadata.nativetype' configuration
variable -- typically in the dataset's configuration file (.datalad/config), e.g.:

[datalad "metadata"]
nativetype = exif
nativetype = xmp

If an enabled metadata extractor is not available in a particular DataLad installation, metadata extraction will not
succeed in order to avoid inconsistent aggregation results.

Enabling multiple extractors is supported. In this case, metadata are extracted by each extractor individually, and stored
alongside each other. Metadata aggregation will also extract DataLad's own metadata (extractors 'datalad_core', and
'annex').

Metadata aggregation can be performed recursively, in order to aggregate all metadata across all subdatasets, for ex-
ample, to be able to search across any content in any dataset of a collection. Aggregation can also be performed for
subdatasets that are not available locally. In this case, pre-aggregated metadata from the closest available superdataset
will be considered instead.

Depending on the versatility of the present metadata and the number of dataset or files, aggregated metadata can grow
prohibitively large. A number of configuration switches are provided to mitigate such issues.

datalad.metadata.aggregate-content-<extractor-name>
If set to false, content metadata aggregation will not be performed for the named metadata extractor (a potential
underscore '_' in the extractor name must be replaced by a dash '-'). This can substantially reduce the runtime
for metadata extraction, and also reduce the size of the generated metadata aggregate. Note, however, that some

22 Chapter 1. API

mailto:team@datalad.org

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

extractors may not produce any metadata when this is disabled, because their metadata might come from indi-
vidual file headers only. 'datalad.metadata.store-aggregate-content' might be a more appropriate setting in such
cases.

datalad.metadata.aggregate-ignore-fields
Any metadata key matching any regular expression in this configuration setting is removed prior to generating
the dataset-level metadata summary (keys and their unique values across all dataset content), and from the dataset
metadata itself. This switch can also be used to filter out sensitive information prior aggregation.

datalad.metadata.generate-unique-<extractor-name>
If set to false, DataLad will not auto-generate a summary of unique content metadata values for a particular
extractor as part of the dataset-global metadata (a potential underscore '_' in the extractor name must be replaced
by a dash '-'). This can be useful if such a summary is bloated due to minor uninformative (e.g. numerical)
differences, or when a particular extractor already provides a carefully designed content metadata summary.

datalad.metadata.maxfieldsize
Any metadata value that exceeds the size threshold given by this configuration setting (in bytes/characters) is
removed.

datalad.metadata.store-aggregate-content
If set, extracted content metadata are still used to generate a dataset-level summary of present metadata (all keys
and their unique values across all files in a dataset are determined and stored as part of the dataset-level meta-
data aggregate, see datalad.metadata.generate-unique-<extractor-name>), but metadata on individual files are
not stored. This switch can be used to avoid prohibitively large metadata files. Discovery of datasets containing
content matching particular metadata properties will still be possible, but such datasets would have to be obtained
first in order to discover which particular files in them match these properties.

Options

PATH

path to datasets that shall be aggregated. When a given path is pointing into a dataset, the metadata of the containing
dataset will be aggregated. If no paths given, current dataset metadata is aggregated. Constraints: value must be a
string or value must be NONE

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

topmost dataset metadata will be aggregated into. All dataset between this dataset and any given path will receive
updated aggregated metadata from all given paths. Constraints: Value must be a Dataset or a valid identifier of a
Dataset (e.g. a path) or value must be NONE

1.2. Command line reference 23

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

-r, --recursive

if set, recurse into potential subdatasets.

-R LEVELS, --recursion-limit LEVELS

limit recursion into subdatasets to the given number of levels. Constraints: value must be convertible to type 'int' or
value must be NONE

--update-mode {all|target}

which datasets to update with newly aggregated metadata: all datasets from any leaf dataset to the top-level target
dataset including all intermediate datasets (all), or just the top-level target dataset (target). Constraints: value must be
one of ('all', 'target') [Default: 'target']

--incremental

If set, all information on metadata records of subdatasets that have not been (re-)aggregated in this run will be kept
unchanged. This is useful when (re-)aggregation only a subset of a dataset hierarchy, for example, because not all
subdatasets are locally available.

--force-extraction

If set, all enabled extractors will be engaged regardless of whether change detection indicates that metadata has already
been extracted for a given dataset state.

--nosave

by default all modifications to a dataset are immediately saved. Giving this option will disable this behavior.

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

24 Chapter 1. API

mailto:team@datalad.org

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

1.2.6 datalad search

Synopsis

datalad search [-h] [-d DATASET] [--reindex] [--max-nresults MAX_NRESULTS] [--mode
→˓{egrep,textblob,autofield}] [--full-record] [--show-keys {name,short,full}] [--show-
→˓query] [--metadata-source {legacy,gen4,all}] [--version] [QUERY ...]

Description

Search dataset metadata

DataLad can search metadata extracted from a dataset and/or aggregated into a superdataset (see the aggregate-
metadata command). This makes it possible to discover datasets, or individual files in a dataset even when they are not
available locally.

Ultimately DataLad metadata are a graph of linked data structures. However, this command does not (yet) support
queries that can exploit all information stored in the metadata. At the moment the following search modes are im-
plemented that represent different trade-offs between the expressiveness of a query and the computational and storage
resources required to execute a query.

• egrep (default)

• egrepcs [case-sensitive egrep]

• textblob

• autofield

An alternative default mode can be configured by tuning the configuration variable 'datalad.search.default-mode':

[datalad "search"]
default-mode = egrepcs

Each search mode has its own default configuration for what kind of documents to query. The respective default can
be changed via configuration variables:

[datalad "search"]
index-<mode_name>-documenttype = (all|datasets|files)

Mode: egrep/egrepcs

These search modes are largely ignorant of the metadata structure, and simply perform matching of a search pattern
against a flat string-representation of metadata. This is advantageous when the query is simple and the metadata struc-
ture is irrelevant, or precisely known. Moreover, it does not require a search index, hence results can be reported
without an initial latency for building a search index when the underlying metadata has changed (e.g. due to a dataset
update). By default, these search modes only consider datasets and do not investigate records for individual files for
speed reasons. Search results are reported in the order in which they were discovered.

Queries can make use of Python regular expression syntax (https://docs.python.org/3/library/re.html). In EGREP
mode, matching is case-insensitive when the query does not contain upper case characters, but is case-sensitive when
it does. In egrepcs mode, matching is always case-sensitive. Expressions will match anywhere in a metadata string,
not only at the start.

When multiple queries are given, all queries have to match for a search hit (AND behavior).

1.2. Command line reference 25

https://docs.python.org/3/library/re.html

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

It is possible to search individual metadata key/value items by prefixing the query with a metadata key name, separated
by a colon (':'). The key name can also be a regular expression to match multiple keys. A query match happens when
any value of an item with a matching key name matches the query (OR behavior). See examples for more information.

Examples:

Query for (what happens to be) an author:

% datalad search haxby

Queries are case-INsensitive when the query contains no upper case characters, and can be regular expres-
sions. Use EGREPCS mode when it is desired to perform a case-sensitive lowercase match:

% datalad search --mode egrepcs halchenko.*haxby

This search mode performs NO analysis of the metadata content. Therefore queries can easily fail to match.
For example, the above query implicitly assumes that authors are listed in alphabetical order. If that is the
case (which may or may not be true), the following query would yield NO hits:

% datalad search Haxby.*Halchenko

The textblob search mode represents an alternative that is more robust in such cases.

For more complex queries multiple query expressions can be provided that all have to match to be consid-
ered a hit (AND behavior). This query discovers all files (non-default behavior) that match 'bids.type=T1w'
AND 'nifti1.qform_code=scanner':

% datalad -c datalad.search.index-egrep-documenttype=all search bids.type:T1w␣
→˓nifti1.qform_code:scanner

Key name selectors can also be expressions, which can be used to select multiple keys or construct "fuzzy"
queries. In such cases a query matches when any item with a matching key matches the query (OR
behavior). However, multiple queries are always evaluated using an AND conjunction. The follow-
ing query extends the example above to match any files that have either 'nifti1.qform_code=scanner' or
'nifti1.sform_code=scanner':

% datalad -c datalad.search.index-egrep-documenttype=all search bids.type:T1w␣
→˓nifti1.(q|s)form_code:scanner

Mode: textblob

This search mode is very similar to the egrep mode, but with a few key differences. A search index is built from the
string-representation of metadata records. By default, only datasets are included in this index, hence the indexing is
usually completed within a few seconds, even for hundreds of datasets. This mode uses its own query language (not
regular expressions) that is similar to other search engines. It supports logical conjunctions and fuzzy search terms.
More information on this is available from the Whoosh project (search engine implementation):

• Description of the Whoosh query language: http://whoosh.readthedocs.io/en/latest/querylang.html)

• Description of a number of query language customizations that are enabled in DataLad, such as, fuzzy term
matching: http://whoosh.readthedocs.io/en/latest/parsing.html#common-customizations

Importantly, search hits are scored and reported in order of descending relevance, hence limiting the number of search
results is more meaningful than in the 'egrep' mode and can also reduce the query duration.

Examples:

Search for (what happens to be) two authors, regardless of the order in which those names appear in the
metadata:

26 Chapter 1. API

http://whoosh.readthedocs.io/en/latest/querylang.html
http://whoosh.readthedocs.io/en/latest/parsing.html#common-customizations

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

% datalad search --mode textblob halchenko haxby

Fuzzy search when you only have an approximate idea what you are looking for or how it is spelled:

% datalad search --mode textblob haxbi~

Very fuzzy search, when you are basically only confident about the first two characters and how it sounds
approximately (or more precisely: allow for three edits and require matching of the first two characters):

% datalad search --mode textblob haksbi~3/2

Combine fuzzy search with logical constructs:

% datalad search --mode textblob 'haxbi~ AND (hanke OR halchenko)'

Mode: autofield

This mode is similar to the 'textblob' mode, but builds a vastly more detailed search index that represents individual
metadata variables as individual fields. By default, this search index includes records for datasets and individual fields,
hence it can grow very quickly into a huge structure that can easily take an hour or more to build and require more
than a GB of storage. However, limiting it to documents on datasets (see above) retains the enhanced expressiveness
of queries while dramatically reducing the resource demands.

Examples:

List names of search index fields (auto-discovered from the set of indexed datasets) which either have a
field starting with "age" or "gender":

% datalad search --mode autofield --show-keys name '\.age' '\.gender'

Fuzzy search for datasets with an author that is specified in a particular metadata field:

% datalad search --mode autofield bids.author:haxbi~ type:dataset

Search for individual files that carry a particular description prefix in their 'nifti1' metadata:

% datalad search --mode autofield nifti1.description:FSL* type:file

Reporting

Search hits are returned as standard DataLad results. On the command line the '--output-format' (or '-f') option can be
used to tweak results for further processing.

Examples:

Format search hits as a JSON stream (one hit per line):

% datalad -f json search haxby

Custom formatting: which terms matched the query of particular results. Useful for investigating fuzzy
search results:

$ datalad -f '{path}: {query_matched}' search --mode autofield bids.
→˓author:haxbi~

1.2. Command line reference 27

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

Options

QUERY

query string, supported syntax and features depends on the selected search mode (see documentation).

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

specify the dataset to perform the query operation on. If no dataset is given, an attempt is made to identify the dataset
based on the current working directory and/or the PATH given. Constraints: Value must be a Dataset or a valid identifier
of a Dataset (e.g. a path) or value must be NONE

--reindex

force rebuilding the search index, even if no change in the dataset's state has been detected, for example, when the index
documenttype configuration has changed.

--max-nresults MAX_NRESULTS

maximum number of search results to report. Setting this to 0 will report all search matches. Depending on the mode
this can search substantially slower. If not specified, a mode-specific default setting will be used. Constraints: value
must be convertible to type 'int' or value must be NONE

--mode {egrep,textblob,autofield}

Mode of search index structure and content. See section SEARCH MODES for details.

--full-record, -f

If set, return the full metadata record for each search hit. Depending on the search mode this might require additional
queries. By default, only data that is available to the respective search modes is returned. This always includes essential
information, such as the path and the type.

--show-keys {name,short,full}

if given, a list of known search keys is shown. If 'name' - only the name is printed one per line. If 'short' or 'full',
statistics (in how many datasets, and how many unique values) are printed. 'short' truncates the listing of unique values.
QUERY, if provided, is regular expressions any of which keys should contain. No other action is performed (except for
reindexing), even if other arguments are given. Each key is accompanied by a term definition in parenthesis (TODO).
In most cases a definition is given in the form of a URL. If an ontology definition for a term is known, this URL can
resolve to a webpage that provides a comprehensive definition of the term. However, for speed reasons term resolution
is solely done on information contained in a local dataset's metadata, and definition URLs might be outdated or point
to no longer existing resources.

28 Chapter 1. API

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

--show-query

if given, the formal query that was generated from the given query string is shown, but not actually executed. This is
mostly useful for debugging purposes.

--metadata-source {legacy,gen4,all}

if given, defines which metadata source will be used to search. 'legacy' will limit search to metadata in the old format,
i.e. stored in '$DATASET/.datalad/metadata'. 'gen4' will limit search to metadata stored by the git-backend of 'datalad-
metadata-model'. If 'all' is given, metadata from all supported sources will be included in the search. The default is
'legacy'. [Default: 'legacy']

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

1.3 Miscellaneous functionality

auto.AutomagicIO([autoget, activate, check_once]) Class to proxy commonly used API for accessing files so
they get automatically fetched

1.3.1 datalad_deprecated.auto.AutomagicIO

class datalad_deprecated.auto.AutomagicIO(autoget=True, activate=False, check_once=False)
Class to proxy commonly used API for accessing files so they get automatically fetched

Currently supports builtin open() and h5py.File when those are read

__init__(autoget=True, activate=False, check_once=False)

Parameters

• autoget --

• activate --

• check_once (bool, optional) -- To speed things up and avoid unnecessary repeated
checks, if True, paths considered for proxying and corresponding repositories are remem-
bered, and are not subject to datalad checks on subsequent calls. This option is to be used
if you do not expect new git repositories to not be created and files not to get dropped while
operating under AutomagicIO supervision.

1.3. Miscellaneous functionality 29

mailto:team@datalad.org
https://docs.python.org/3/library/functions.html#bool

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

Methods

__init__([autoget, activate, check_once])
param autoget

activate()

deactivate()

Attributes

active

autoget

30 Chapter 1. API

CHAPTER

TWO

INDICES AND TABLES

• genindex

• search

31

Datalad Extension for deprecated functionality, Release 0.3.0+6.g4f29653.dirty

32 Chapter 2. Indices and tables

INDEX

Symbols
__init__() (datalad_deprecated.auto.AutomagicIO

method), 29

A
aggregate_metadata() (in module datalad.api), 12
AutomagicIO (class in datalad_deprecated.auto), 29

E
extract_metadata() (in module datalad.api), 10

L
ls() (in module datalad.api), 1

M
metadata() (in module datalad.api), 4

P
publish() (in module datalad.api), 2

S
search() (in module datalad.api), 6

33

	API
	High-level API commands
	datalad.api.ls
	datalad.api.publish
	datalad.api.metadata
	datalad.api.search
	datalad.api.extract_metadata
	datalad.api.aggregate_metadata

	Command line reference
	datalad ls
	Synopsis
	Description
	Options
	PATH/URL
	-h, --help, --help-np
	-r, --recursive
	-F, --fast
	-a, --all
	-L, --long
	--config-file CONFIG_FILE
	--list-content {None,first10,md5,full}
	--json {file,display,delete}
	--version

	Authors

	datalad publish
	Synopsis
	Description
	Options
	PATH
	-h, --help, --help-np
	-d DATASET, --dataset DATASET
	--to LABEL
	--since SINCE
	--missing MODE
	-f, --force
	--transfer-data {auto|none|all}
	-r, --recursive
	-R LEVELS, --recursion-limit LEVELS
	--git-opts STRING
	--annex-opts STRING
	--annex-copy-opts STRING
	-J NJOBS, --jobs NJOBS
	--version

	Authors

	datalad metadata
	Synopsis
	Description
	Options
	PATH
	-h, --help, --help-np
	-d DATASET, --dataset DATASET
	--get-aggregates
	--reporton TYPE
	-r, --recursive
	--version

	Authors

	datalad extract-metadata
	Synopsis
	Description
	Options
	FILE
	-h, --help, --help-np
	--type NAME
	-d DATASET, --dataset DATASET
	--version

	Authors

	datalad aggregate-metadata
	Synopsis
	Description
	Options
	PATH
	-h, --help, --help-np
	-d DATASET, --dataset DATASET
	-r, --recursive
	-R LEVELS, --recursion-limit LEVELS
	--update-mode {all|target}
	--incremental
	--force-extraction
	--nosave
	--version

	Authors

	datalad search
	Synopsis
	Description
	Options
	QUERY
	-h, --help, --help-np
	-d DATASET, --dataset DATASET
	--reindex
	--max-nresults MAX_NRESULTS
	--mode {egrep,textblob,autofield}
	--full-record, -f
	--show-keys {name,short,full}
	--show-query
	--metadata-source {legacy,gen4,all}
	--version

	Authors

	Miscellaneous functionality
	datalad_deprecated.auto.AutomagicIO

	Indices and tables
	Index

