

DataLad Catalog

[image: Documentation Status]
 [http://docs.datalad.org/projects/catalog/en/latest/?badge=latest]Welcome to the user and technical documentation of DataLad Catalog,
a DataLad extension that allows you to create a user-friendly data
browser from structured metadata.

[image: datacat logo]

Acknowledgements

This software was developed with support from the German Federal Ministry of
Education and Research (BMBF 01GQ1905), the US National Science Foundation
(NSF 1912266), and the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under grant SFB 1451 (431549029 [https://gepris.dfg.de/gepris/projekt/431549029], INF project).

Demo

See our demo catalog [https://datalad.github.io/datalad-catalog/], hosted via GitHub Pages. This catalog was generated
from the studyforrest dataset [https://www.studyforrest.org/].

[image: _images/datalad_catalog_demo.svg]

Index

	Overview

	Installation

	Usage

	Pipeline Description

	Metadata and datalad-catalog

	Catalog Schema

	Catalog Configuration

	Resources

	Contributing

	Command Line Reference

	Python Module Reference

	Change Log

Indices and tables

	Index

	Module Index

	Search Page

Overview

What is DataLad Catalog?

DataLad Catalog is a free and open source command line tool with a Python API
that allows you to turn structured metadata into a user-friendly, browser-based
data catalog.

[image: alternate text]

It is an extension to, and dependent on, Datalad [https://github.com/datalad/datalad], and is interoperable with
Datalad Metalad [https://github.com/datalad/datalad-metalad]:

	DataLad is a distributed data management system that keeps track of
your data, creates structure, ensures reproducibility, supports collaboration,
and integrates with widely used data infrastructure.

	DataLad MetaLad extends and equips DataLad with a command suite for metadata
handling. This includes traversing a full data tree (of arbitrarily large size) to
conduct metadata extraction (using extractors for various data
types), metadata aggregation, and also reporting.

By combining the functionality of these three tools, you can:

	manage the full lifecycle of your data (applying version control and capturing
provenance records along the way)

	add and extract detailed metadata records about every single item in a
multi-level dataset, and

	convert the metadata into a user-friendly browser application that increases
the findability and accessibility of your data.

As a bonus, these processes can be applied in a decentralized and collaborative way.

Why use DataLad Catalog?

Working collaboratively with large and distributed datasets poses particular
challenges for FAIR data access, browsing, and usage.

	the administrative burden of keeping track of different versions of the
data, who contributed what, where/how to gain access, and representing this
information centrally and accessibly can be significant

	data privacy regulations might restrict data from being shared or accessed
across multi-national sites

	costs of centrally maintained infrastructure for data hosting and
web-portal type browsing could be prohibitive

These challenges impede the many possible gains obtainable from distributed data
sharing and access. Decisions might even be made to forego FAIR principles in
favour of saving time, effort and money, leading to the view that these efforts
have seemingly contradicting outcomes.

[image: _images/datacat1_the_challenge.svg]DataLad Catalog helps counter this contradiction by focusing on
interoperability with structured, linked, and machine-readable metadata.

Metadata about datasets, their file content, and their links to other datasets
can be used to create abstract representations of datasets that are separate
from the actual data content. This means that data content can be stored
securely while metadata can be shared and operated on widely, thus improving
decentralization and FAIRness.

[image: _images/datacat2_the_opportunity.svg]By combining these features, DataLad Catalog can create a user-friendly
catalog of your dataset and make it publicly available, complete with all
additionally supplied metadata, while you maintain secured and permission-based
access control over your actual file content. This catalog can itself be
maintained and contributed to in a decentralized manner without compromising
metadata integrity.

How does it work?

DataLad Catalog can receive commands to create a new catalog, add and
remove metadata entries to/from an existing catalog, serve an existing
catalog locally, and more. Metadata can be provided to DataLad Catalog from any
number of arbitrary metadata sources, as an aggregated set or as individual
items/objects. DataLad Catalog has a dedicated Catalog Schema (using the
JSON Schema [https://json-schema.org/] vocabulary) against which incoming metadata items are validated.
This schema allows for standard metadata fields as one would expect for datasets
of any kind (such as name, doi, url, description, license,
authors, and more), as well as fields that support identification, versioning,
dataset context and linkage, and file tree specification.

The process of generating a catalog, after metadata entry validation, involves:

	aggregation of the provided metadata into the catalog filetree

	generating the assets required to render the user interface in a browser

The output is a set of structured metadata files, as well as a Vue.js [https://vuejs.org/]-based
browser interface that understands how to render this metadata in the browser.
What is left for the user is to host this content on their platform of choice
and to serve it for the world to see.

For an example of the result, visit our demo catalog [https://datalad.github.io/datalad-catalog/].

[image: _images/datacat4_the_catalog.svg]
Note

A detailed description of these steps can be found in the Pipeline Description

Installation

You can install and run DataLad Catalog on all major operating systems
by following the steps below in the command line.

Step 1 - Setup and activate a virtual environment

With your virtual environment manager of choice, create a virtual
environment and ensure you have a recent version of Python installed.
Then activate the environment.

With venv [https://github.com/pypa/virtualenv]:

python -m venv my_catalog_env
source my_catalog_env/bin/activate

With miniconda [https://docs.conda.io/en/latest/miniconda.html]:

conda create -n my_catalog_env python=3.11
conda activate my_catalog_env

Step 2 - Install via PyPI [https://pypi.org/project/datalad-catalog/]

pip install datalad-catalog

Congratulations! You have now installed DataLad Catalog!

Optional - Clone the repo and install the package

If you want to access the latest, unreleased version of the software or
contribute to the code, access the repository via GitHub [https://github.com/datalad/datalad-catalog]:

git clone https://github.com/datalad/datalad-catalog.git
cd datalad-catalog
pip install -e .

Dependencies

Because this is an extension to datalad and builds on metadata handling
functionality, the installation process also installed datalad [https://github.com/datalad/datalad] and
datalad-metalad [https://github.com/datalad/datalad-metalad] as dependencies, although these do not have to be used as the
only sources of metadata for a catalog. In addition datalad-next [https://github.com/datalad/datalad-next] is installed
in order to use the latest improvements and patches to the datalad core package.

While the catalog generation process does not expect data to be structured as
DataLad datasets, it can still be very useful to do so when building a full
(meta)data management pipeline from raw data to catalog publishing. For complete
instructions on how to install datalad and git-annex, please refer to the
DataLad Handbook [https://handbook.datalad.org/en/latest/intro/installation.html].

Similarly, the metadata input to datalad-catalog can come from any source as
long as it conforms to the catalog schema. While the catalog does not expect
metadata originating only from datalad-metalad's extractors, this tool has
advanced metadata handling capabilities that will integrate seamlessly with
DataLad datasets and the catalog generation process.

In order to translate metadata extracted using datalad-metalad into the
catalog schema, datalad-catalog provides translation modules that are
dependent on jq [https://stedolan.github.io/jq/].

Usage

DataLad Catalog can be used from the command line or with its Python API.
You can access detailed usage information in the Command Line Reference
or the Python Module Reference respectively.

The overall catalog generation process actually starts several steps before the
involvement of datalad-catalog. Typical steps include:

	curating data into datasets (a group of files in an hierarchical tree)

	adding metadata to datasets and files (the process for this and the resulting
metadata formats and content vary widely depending on domain, file types,
data availability, and more)

	extracting the metadata using an automated tool to output metadata items into
a standardized and queryable set

	translating the metadata into the catalog schema

These steps can follow any arbitrarily specified procedures and can use any
arbitrarily specified tools to get the job done. Once they are completed, the
datalad-catalog tool can be used for catalog generation and customization.

Create a catalog

To create a new catalog, start by running datalad catalog-create

datalad catalog-create --catalog /tmp/my-cat

This will create a catalog with the following structure:

	artwork: images that make the catalog pretty

	assets: mainly the JavaScript and CSS code that underlie the user interface of
the catalog

	metadata: where metadata content for any datasets and files rendered by the
catalog will be contained

	schema: which contains JSON documents laying out the schema that the specific
catalog complies with

	templates: HTML template documents for rendering specific components

	config.json: the configuration file with rules for rendering and updating
the catalog

	index.html: the main HTML content rendered in the browser

Note

The --config-file argument allows the catalog to be created with a custom
configuration. If not specified, a default configuration is applied at the catalog
level.

Add metadata

To add metadata to an existing catalog, run datalad catalog-add, specifying
the (location of the) metadata to be added. DataLad Catalog accepts metadata in the
form of:

	a path to a file containing JSON lines

	JSON lines from STDIN

	a JSON serialized string

where each line or record is a single, correctly formatted, JSON object. The correct
format for the added metadata is specified by the Catalog Schema.

datalad catalog-add --catalog /tmp/my-cat --metadata path/to/metadata.jsonl

The metadata directory is now populated.

Note

The --config-file argument allows the specific dataset in the catalog
to be created with a custom configuration. If not specified, the configuration
at the dataset level will be inferred from the catalog level.

Metadata validation

To check if metadata is valid before adding it to a catalog, datalad catalog-validate
can be run to check if the metadata conforms to the Catalog Schema.

datalad catalog-validate --catalog /tmp/my-cat --metadata path/to/metadata.jsonl

The metadata will then be validated against the schema version of the supplied
catalog. If the --catalog argument is not provided, validation happens against
the schema version contained in the installed datalad-catalog package.

Note

The validator runs internally whenever datalad catalog-add is called,
so there is no need to run validation explicitly unless desired.

Set catalog properties

Properties of the catalog can be set via the datalad catalog-set command. For
example, setting a "main" dataset is necessary in order to indicate which dataset
will be shown on the catalog homepage. To set this homepage, run
datalad catalog-set home, specifying the dataset_id and dataset_version:

datalad catalog-set --catalog /tmp/my-cat --dataset_id abcd --dataset_version 1234 home

Note

Tip

It could be a good idea to populate the catalog with datasets that are all linked
as subdatasets from the main dataset displayed on the home page, since this would
allow users to navigate to all other datasets from the main page. This linkage
is done implicitly if the catalog home page is a DataLad superdataset with nested
subdatasets.

View the catalog

To serve the content of a catalog via a local HTTP server for viewing or
testing, run datalad catalog-serve.

datalad catalog-serve --catalog /tmp/my-cat

Once the content is served, the catalog can be viewed by visiting the localhost URL.

Update

Catalog content can be updated using the add or remove commands. To add
content, simply re-run datalad catalog-add, providing the path to the new
metadata.

datalad catalog-add --catalog /tmp/my-cat --metadata path/to/new/metadata.jsonl

If a newly added dataset or version of a dataset was added incorrectly,
datalad catalog-remove can be used to get rid of the incorrect addition.

datalad catalog-remove --dataset_id abcd --dataset_version 1234 --reckless

Note

A standard catalog-remove call without the --reckless flag will provide
a warning and do nothing else, for safety. Remember to add the flag in order
to remove the metadata.

Configure

A useful feature of the catalog process is to be able to configure certain
properties according to your preferences. This is done with help of a config
file (in either JSON or YAML format) and the -F/--config-file flag.
A config file can be passed during catalog creation in order to set the config
on the catalog level:

datalad catalog-create --catalog /tmp/my-custom-cat --config-file path/to/custom_config.json

A config file can also be passed when adding metadata in order to set the config
on the dataset-level:

datalad catalog-add --catalog /tmp/my-custom-cat --metadata path/to/metadata.jsonl --config-file path/to/custom_dataset_config.json

In the latter case, the config will be set for all new dataset entries corresponding
to metadata source objects in the metadata provided to the catalog-add operation.

If no config file is specified on the catalog level, a default config file is used.
The catalog-level config also serves as the default config on the dataset level,
which is used if no config file is specified via the catalog-add command.

Note

For detailed information on how to structure and use config files, please refer to
the dedicated documentation in Catalog Configuration.

Get catalog properties

Properties of the catalog can be retrieved via the datalad catalog-get command. For
example, the specifics of the catalog home page can be retrieved as follows:

datalad catalog-get --catalog /tmp/my-cat home

Or the metadata of a specific dataset contained in the catalog can be retrieved as follows:

datalad catalog-get --catalog /tmp/my-cat --dataset_id abcd --dataset_version 1234 metadata

Translate

datalad-catalog can translate a metadata item originating from a particular
source structure, and extracted using datalad-metalad, into the catalog schema.
Before translation from a specific source will work, an extractor-specific translator
should be provided and exposed as an entry point (via a DataLad extension) as part of the
datalad.metadata.translators group. Then, translate metadata as follows:

datalad catalog-translate --metadata path/to/extracted/metadata.jsonl

This command will output the translated objects as JSON lines to stdout, which can
be saved to disk and later used, for example, for catalog entry generation.

Workflows

Several subprocesses need to be run in order to create a new catalog with multiple entries,
or in order to update an existing catalog with new entries. These processes can include:

	tracking datasets that are intended to be entries in a catalog as subdatasets of a DataLad super-dataset

	extracting (and temporarily storing) metadata from the super- and subdatasets

	translating extracted metadata (and temporarily storing it)

	creating a catalog

	adding translated metadata to the catalog

	updating the catalog's superdataset (i.e. homepage) if the DataLad superdataset version changed

It is evident that these steps can become quite cumbersome and even resource intensive if run
at scale. Therefore, in order to streamline these processes, to automate them as much as possible,
and to shift the effort away from the user, datalad-catalog can run workflows for catalog
generation and updates. It builds on top of the following functionality:

	DataLad datasets and nesting for maintaining a super-/subdataset hierarchy.

	datalad-metalad's metadata extraction functionality

	datalad-catalog's metadata translation functionality

	datalad-catalog for maintaining a catalog

workflow-new

To run a workflow from scratch on a dataset and all of its subdatasets:

datalad catalog-workflow --type new --catalog /tmp/my-cat --dataset path/to/superdataset --extractor metalad_core

This workflow will:

	Clone the super-dataset and all its first-level subdatasets

	Create the catalog if it does not yet exists

	Run dataset-level metadata extraction on the super- and subdatasets

	Translate all extracted metadata to the catalog schema

	Add the translated metadata as entries to the catalog

	Set the catalog's home page to the id and version of the DataLad super-dataset.

workflow-update

To run a workflow for updating an existing catalog after registering a new subdataset
to the superdataset which the catalog represents:

datalad catalog-workflow --type update --catalog /tmp/my-cat --dataset path/to/superdataset --subdataset path/to/subdataset --extractor metalad_core

This workflow assumes:

	The subdataset has already been added as a submodule to the parent dataset

	The parent dataset already contains the subdataset commit

This workflow will:

	Clone the super-dataset and new subdataset

	Run dataset-level metadata extraction on the super-dataset and new subdataset

	Translate all extracted metadata to the catalog schema

	Add the translated metadata as entries to the catalog

	Reset the catalog's home page to the latest id and version of the DataLad super-dataset.

Pipeline Description

The DataLad ecosystem provides a complete set of free and open source tools
that, together, provide full control over dataset access and distribution,
version control, provenance tracking, metadata addition, extraction, and
aggregation, as well as catalog generation.

DataLad itself can be used for decentralised management of data as lightweight,
portable and extensible representations. DataLad MetaLad can extract structured
high- and low-level metadata and associate it with these datasets or with
individual files. Then at the end of this workflow, DataLad Catalog can turn the
structured metadata into a user-friendly data browser.

Importantly, DataLad Catalog can operate independently as well. Since it
provides its own schema in a standard vocabulary, any metadata that conforms to
this schema can be submitted to the tool in order to generate a catalog.
Metadata items do not necessarily have to be derived from DataLad datasets, and
the metadata extraction does not have to be conducted via DataLad MetaLad.

Even so, the provided set of tools can be particularly powerful when used
together in a distributed (meta)data management pipeline. Below is an example
for building a catalog using the full DataLad toolset; from data management, to
metadata handling, to the end result of catalog generation.

[image: _images/datacat3_the_toolset.svg]
An example end-to-end pipeline

Step 1 - Create/access a DataLad dataset

Our fundamental operational unit is a DataLad dataset. In order to generate
a minimal catalog, we have to start with this unit. We do this either by
cloning a DataLad dataset from a known location, or by creating a new dataset.
See the DataLad Handbook [https://handbook.datalad.org/en/latest/basics/basics-datasets.html] for more information on working with DataLad datasets.

Clone:

datalad clone [dataset_location]

Create:

datalad create --force [dataset_location]

Step 2 - Add metadata

In order to extract arbitrary structured metadata from a DataLad dataset,
this information first has to be added explicitly to the dataset. It can
be added in your preferred location in the dataset tree. For example, here
we add a .studyminimeta.yaml file to the root directory of the dataset:

cd mydataset
mv [path/to/studyminimeta.yaml] .

Once the dataset has been updated with metadata, it has to be saved:

datalad save -m "add metadata to mydataset"

Various metadata formats can be recognized by DataLad MetaLad's extraction process.
See Metadata and datalad-catalog for an overview and DataLad Metalad [https://github.com/datalad/datalad-metalad]'s
documentation for more detail.

Step 3 - Extract metadata

With Datalad MetaLad we can extract implicit and explicit metadata from
our dataset. This can be done on the dataset as well as file level through
the use of built-in or custom extractors. MetaLad provides several commands
to streamline this process, especially for large datasets:

	meta-add adds metadata related to an element (dataset or file) to the
metadata store

	meta-dump shows metadata stored in a local or remote dataset

	meta-extract runs an extractor (see below) on an existing dataset or file
and emits the resulting metadata to stdout

	meta-aggregate combines metadata from a number of sub-datasets into the
root dataset

	meta-conduct runs pipelines of extractors and adders on locally available
datatasets/files, in order to automate metadata extraction and adding tasks

Below are example code snippets that can be run to extract metadata from the
file and dataset level (respectively using the metalad_core, and both the
metalad_core and metalad_studyminimeta extractors) and to subsequently
write these metadata objects to disk in JSON format.

From dataset

Extract and add:

#!/bin/zsh
DATASET_PATH="path/to/mydataset"
PIPELINE_PATH="path/to/extract_dataset_pipeline.json"
datalad meta-conduct "$PIPELINE_PATH" \
 traverser.top_level_dir=$DATASET_PATH \
 traverser.item_type=dataset \
 traverser.traverse_sub_datasets=True \
 extractor1.extractor_type=dataset \
 extractor1.extractor_name=metalad_core \
 extractor2.extractor_type=dataset \
 extractor2.extractor_name=metalad_studyminimeta \
 adder.aggregate=True

where the pipeline in path/to/extract_dataset_pipeline.json
looks like this:

{
 "provider": {
 "module": "datalad_metalad.pipeline.provider.datasettraverse",
 "class": "DatasetTraverser",
 "name": "traverser",
 "arguments": {}
 },
 "processors": [
 {
 "module": "datalad_metalad.pipeline.processor.extract",
 "class": "MetadataExtractor",
 "name": "extractor1",
 "arguments": {}
 },
 {
 "module": "datalad_metalad.pipeline.processor.extract",
 "class": "MetadataExtractor",
 "name": "extractor2",
 "arguments": {}
 },
 {
 "name": "adder",
 "module": "datalad_metalad.pipeline.processor.add",
 "class": "MetadataAdder",
 "arguments": {}
 }
]
}

Dump and write to disk:

#!/bin/zsh
DATASET_PATH="path/to/mydataset"
METADATA_OUT_PATH="path/to/dataset_metadata.json" # empty text file
datalad meta-dump -d "$DATASET_PATH" -r "*" > "$METADATA_OUT_PATH"

From files

Extract and write to disk:

#!/bin/zsh
DATASET_PATH="path/to/mydataset"
PIPELINE_PATH="path/to/extract_file_pipeline.json"
METADATA_OUT_PATH="path/to/file_metadata.json" # empty text file
Add starting array bracket
echo "[" > "$METADATA_OUT_PATH"
Extract file-level metadata, add comma
datalad -f json meta-conduct "$PIPELINE_PATH" \
 traverser.top_level_dir=$DATASET_PATH \
 traverser.item_type=file \
 traverser.traverse_sub_datasets=True \
 extractor.extractor_type=file \
 extractor.extractor_name=metalad_core \
 | jq '.["pipeline_element"]["result"]["metadata"][0]["metadata_record"]' \
 | jq -c . | sed 's/$/,/' >> "$METADATA_OUT_PATH"
Remove last comma
sed -i '' '$ s/.$//' "$METADATA_OUT_PATH"
Add closing array bracket
echo "]" >> "$METADATA_OUT_PATH"

where the pipeline in path/to/extract_file_pipeline.json
looks like this:

{
 "provider": {
 "module": "datalad_metalad.pipeline.provider.datasettraverse",
 "class": "DatasetTraverser",
 "name": "traverser",
 "arguments": {}
 },
 "processors": [
 {
 "module": "datalad_metalad.pipeline.processor.extract",
 "class": "MetadataExtractor",
 "name": "extractor",
 "arguments": {}
 }
]
}

At the end of this process, you have two files with structured metadata that
can eventually be provided to datalad-catalog in order to generate the catalog
and its entries.

Step 4 - Translate the metadata

Before the extracted metadata can be provided to datalad-catalog, it needs to be
in a format/structure that will validate successfully against the catalog schema.
Extracted metadata will typically be structured according to whatever schema was
specified by the extractor, and information in such a schema will have to be translated
to the catalog schema. For this purpose, datalad-catalog provides a catalog-translate
command together with dedicated translators for specific metadata extractors.
See Metadata and datalad-catalog and the Usage instructions for more information.

To translate the extracted metadata, we do the following:

datalad catalog-translate -m [path/to/dataset_metadata.json] > [path/to/translated_dataset_metadata.json]
datalad catalog-translate -m [path/to/file_metadata.json] > [path/to/translated_file_metadata.json]

Step 5 - Run DataLad Catalog

Note

Detailed usage instructions for DataLad Catalog can be viewed in
Usage and Command Line Reference.

The important subcommands for generating a catalog are:

	catalog-create creates a new catalog with the required assets, taking metadata
as an optional input argument

	catalog-add adds dataset and/or file level metadata to an existing catalog

To create a catalog from the metadata we generated above, we can run the following:

#!/bin/zsh
TRANSLATED_DATASET_METADATA_OUT_PATH="path/to/translated_dataset_metadata.json"
TRANSLATED_FILE_METADATA_OUT_PATH="path/to/translated_file_metadata.json"
CATALOG_PATH="path/to/new/catalog"
datalad catalog-create -c "$CATALOG_PATH" -m "$TRANSLATED_DATASET_METADATA_OUT_PATH"
datalad catalog-add -c "$CATALOG_PATH" -m "$TRANSLATED_FILE_METADATA_OUT_PATH"

Step 6 - Next steps

Congratulations! You now have a catalog with multiple entries!

This catalog can be served locally (datalad catalog-serve) to view/test it, deployed
to an open or/restricted cloud server in order to make it available to the public or
colleagues/collaborators (e.g. via GitHub Pages in the case of publicly available catalogs),
and updated with new entries in future (with a datalad catalog-add).

Happy cataloging!

Metadata and datalad-catalog

The catalog is rendered from structured metadata generated by datalad-catalog. In this
section, more information is provided about the nature of metadata (in general and in
relation to the catalog) and the states that metadata generally pass through in order to
end up as part of a catalog.

What is metadata?

Metadata describe the files in your dataset, as well as its overall content.
Implicit metadata include basic descriptions of the data itself (such as the names,
types, sizes, and relative locations of all files in your dataset), while explicit
metadata items (such as a description of your dataset, its contributors and project
specifications) can be added to your dataset as you see fit. MetaLad provides functionality
for adding metadata items of arbitrary size, format, and amount, and does not impose
restrictions in this regard.

Many standards exist for specifying and structuring metadata. Some examples include:

	DataCite: The DataCite Metadata Schema [https://en.wikipedia.org/wiki/Extensible_Metadata_Platform] is a list of core metadata properties
chosen for an accurate and consistent identification of a resource for citation
and retrieval purposes, along with recommended use instructions.

	XMP: The Extensible Metadata Platform [https://en.wikipedia.org/wiki/Extensible_Metadata_Platform] is an ISO standard for the creation,
processing and interchange of standardized and custom metadata for digital documents
and data sets. It also provides guidelines for embedding XMP information into popular
image, video and document file formats, such as JPEG and PDF.

	Frictionless Data: The Frictionless Data Package [https://specs.frictionlessdata.io/data-package/] is a container format for
describing a coherent collection of data in a single 'package', providing the basis
for convenient delivery, installation and management of datasets.

Standardized file formats may also contain format-specific information (such as bit rate
and duration for audio files, or resolution and color mode for image files), while domain-
standard files (such as Digital Imaging and Communications in Medicine [https://www.dicomstandard.org/], i.e. DICOM)
also supply embedded or sidecar metadata.

Note

In order to create a user-friendly catalog, DataLad Catalog should receive
structured metadata adhering to a specified Catalog Schema as input. This means
that structured metadata first has to be sourced and then translated into the schema.

Metadata handling with MetaLad

Since datalad-catalog provides its own schema in a standard vocabulary,
any metadata that conforms to this schema can be submitted to the tool in order to
generate a catalog and its entries. Metadata items do not necessarily have to be derived
from DataLad datasets, and the metadata extraction does not have to be conducted via
datalad-metalad. However, datalad-metalad provides highly applicable functionality
that simplifies the process of metadata handling for the purpose of generating structured
outputs that could be used for catalog generation.

datalad-metalad has functionality to:

	add metadata of an arbitrary format to a DataLad dataset

	dump metadata that was previously added to a DataLad dataset

	extract metadata from files or datasets using format-specific extractors

as well as to run batch jobs with these and other methods. Find out more about MetaLad and
its capabilities in the dedicated DataLad Handbook Chapter [https://handbook.datalad.org/en/latest/beyond_basics/101-181-metalad.html].

The benefit of using datalad-metalad in a catalog-generation workflow comes with the
use of its extraction interface and custom extractors. An extractor is nothing other than
something that understands a specific schema (or data structure) and can extract information
from a file or dataset that adheres to said schema. For example, the metalad_core
extractor that ships with datalad-metalad can extracting implicit metadata, such as author
information, dataset identifier/version, bytesize (for files), and more, from a DataLad dataset
and its files. And the metalad_studyminimeta extractor extracts information from DataLad
dataset containing a .studyminimeta.yaml file in its root directory. MetaLad ships with
a variety of dataset- and file-level extractors, and so does a number of DataLad extensions
including datalad-catalog. If an extractor for a specific metadata format is not available
a custom extractor can be created and provided via a DataLad extension. If this sounds like
something you need, please refer to the documentation on writing your own extractor [https://docs.datalad.org/projects/metalad/user_guide/writing-extractors.html].

An extractor will output its metadata, which has a structure specified by the dedicated
extractor, inside a wrapper object provided by datalad-metalad. This means the top-level
structure of all metadata extracted by datalad-metalad will be the same, while that of the
property containing the actual extracted metadata will differ based on the extractor.

Metadata translation

As mentioned above, datalad-catalog provides its own schema in a standard vocabulary,
and incoming metadata need to validate successfully against this schema. Since extracted
metadata will typically be structured according to whatever schema was specified by the
extractor, and information in such a schema will first have to be translated to the catalog
schema before catalog entry generation can continue.

datalad-catalog provides a catalog-translate command through which custom translators
can be created and used to translate MetaLad-extracted metadata into the catalog schema.
The catalog ships with several translators (including ones for metalad_core and
metalad_studyminimeta) and provides a base class that makes it straightforward to
implement custom translators. Before translation from a specific source will work,
the extractor-specific translator should be provided and exposed as an entry point
(via a DataLad extension) as part of the datalad.metadata.translators group.

Then datalad-catalog will be able to find the correct translator automatically
based on unique properties in a MetaLad-extracted metadata object. This is done by applying
matching criteria that is specified by the translator, and running a translate() method
if the match was successful.

The Catalog Schema

Finally, the result of the metadata extraction and translation workflow will be metadata
that conforms to the catalog's own schema, which uses the vocabulary defined by JSON Schema [https://json-schema.org/]
(specifically draft 2020-12 [https://json-schema.org/specification.html]). Find out more about the Catalog Schema.

Catalog Schema

Metadata submitted to DataLad Catalog has to conform to its own schema [https://datalad.github.io/datalad-catalog/display_schema], which
uses the vocabulary defined by JSON Schema [https://json-schema.org/] (specifically draft 2020-12 [https://json-schema.org/specification.html]).

Source files defining the catalog's schema can be found here:

	catalog [https://raw.githubusercontent.com/datalad/datalad-catalog/main/datalad_catalog/schema/jsonschema_catalog.json]

	dataset [https://raw.githubusercontent.com/datalad/datalad-catalog/main/datalad_catalog/schema/jsonschema_dataset.json]

	file [https://raw.githubusercontent.com/datalad/datalad-catalog/main/datalad_catalog/schema/jsonschema_file.json]

	authors [https://raw.githubusercontent.com/datalad/datalad-catalog/main/datalad_catalog/schema/jsonschema_authors.json]

	metadata_sources [https://raw.githubusercontent.com/datalad/datalad-catalog/main/datalad_catalog/schema/jsonschema_metadata_sources.json]

A rendering of the schema can be accessed at:
https://datalad.github.io/datalad-catalog/display_schema.html

Catalog Configuration

A useful feature of the catalog process is to be able to configure certain
properties according to your preferences. This is done with help of a config
file (in either JSON or YAML format) and the -F/--config-file flag.
A config file can be passed during catalog creation in order to set the config
on the catalog level, or when adding metadata in order to set the config
on the dataset-level.

As an example, datalad-catalog's default config file can be viewed here [https://raw.githubusercontent.com/datalad/datalad-catalog/main/datalad_catalog/config/config.json].

Catalog-level configuration

Via the catalog-level config (provided during catalog-create) you can specify
the following properties:

	the catalog name

	a path to a logo file to be used in the rendered catalog header

	the HEX color code to be used for links in the rendered catalog

	the HEX color code to be used when a cursor hovers over links in the rendered catalog

	default rules for rendering metadata on a dataset level (see detailed specification below)

The catalog-level configuration file will be located at: path-to-catalog/config.json.

Dataset-level configuration

The dataset-level config (provided during catalog-add) can specify the exact same content,
although then the catalog-level properties mentioned above will be ignored.

This configuration file will be located at: path-to-catalog/metadata/<dataset_id>/<dataset_version>/config.json.

This configuration file will be created for all dataset-level metadata items in the metadata
provided to the catalog-add operation. For each dataset, this file will override the default
config specified on the catalog level.

Inheritance rules

	If not specified by the user on the catalog-level, a default built-in config file is used.

	The catalog-level config serves as the default for dataset-level config.

	If not specified on the dataset-level by the user, the rendering rules will be inherited from the catalog level.

Prioritizing rendered metadata properties

datalad-catalog can generate metadata entries that originate from various sources. Through
the particular mechanism of catalog entry generation, this information from multiple sources
ends up in a single metadata entry in a catalog. It follows that one might want to prioritize
information coming from a particular source over another. For example, if metadata from
the metalad_core as well as the metalad_studyminimeta extractors both provide information
that maps to the authors property of a dataset in a catalog, which one should end up being
displayed in the catalog? Or should they be merged? How can I apply a rule to automate such
prioritization? And can these rules be set per catalog property?

To cater to these challenges, the catalog's configuration file can specify specific rules and
how they should be applied in relation to various sources of metadata. These rules
and sources can be specified per property of a file and a dataset.

Here is an example config structure:

config = {
 ...
 "property_sources": {
 "dataset": {
 ...
 "description": {
 "rule": "single",
 "source": ["metalad_studyinimeta"]
 },
 "authors": {
 "rule": "priority",
 "source": ["metalad_studyinimeta", "bids_dataset", "datacite_gin"]
 },
 "keywords": {
 "rule": "merge",
 "source": "any"
 },
 "publications": {
 "rule": "merge",
 "source": ["metalad_studyinimeta", "bids_dataset"]
 },
 ...
 },
 "file": {}
 }
 ...
}

Rules

A rule can be:

	single: only save metadata from a single specified source

	merge: merge specified sources together

	priority: save only one source from a list of sources, where the sources are prioritised based on the order in which they appear in the list

If no rule is specified, the default rule is "first-come-first-served".

Sources

A source is generally a list of strings, with the list containing:

	a single element, when the single rule is specified

	multiple elements, when the merge or priority rules are specified

The source can also be any, meaning that any sources are allowed.

How it works

When metadata from a specific source is added to a catalog, the config is loaded
(either from the file specified on the dataset level, or inherited from the catalog level)
and this provides the specification (rules and sources) according to which all key-value pairs
of the incoming metadata dictionary is evaluated and populated into the catalog metadata.

The catalog metadata for a dataset keeps track of which sources supplied the values for which keys
in the metadata dictionary. This is done in order to allow metadata to be updated according to the
config-specified rules and sources.

As an example, let's say a dataset in a catalog has the property dataset_name with a current
value supplied by source_B. And let's say the config specifies that the dataset_name property
can be populated by a number of sources in order of priority ["source_A", "source_B", "source_C"].
Now, if a catalog update is made that supplies a new value for dataset_name from source_A,
this should result in the new value for dataset_name being populated from source_A,
and in this source information being tracked.

The tracking process is done in the metadata_sources of the metadata entry for the
specific dataset in the catalog. For example (before the metadata update):

{
 "type": "dataset",
 "dataset_id": "....",
 "name": "value_from_source_B",
 ...
 "metadata_sources": {
 "key_source_map": {
 "type": ["metalad_core"],
 "dataset_id": ["metalad_core"],
 "name": ["source_B"],
 ...
 },
 "sources": [
 {
 "source_name": "metalad_core",
 "source_version": "0.0.1",
 "source_parameter": {},
 "source_time": 1643901350.65269,
 "agent_name": "John Doe",
 "agent_email": "email@example.com"
 },
 {
 "source_name": "source_B",
 "source_version": "2",
 "source_parameter": {},
 "source_time": 1643901350.65269,
 "agent_name": "John Doe",
 "agent_email": "email@example.com"
 },
]
 }
}

As can be seen in the above object, the structure of metadata_sources,

	metadata_sources["sources"] contains a list of metadata sources (with extra info such as version, agent, etc) that have provided content for this particular metadata record.

	metadata_sources["key_source_map"] provides a mapping of which metadata sources were used to provide content for which specific keys in the metadata record.

Resources

Here are some handy resources that can be useful on your metadata handling
and catalog generation journey.

Tutorials

A set of datalad-catalog-themed primers and tutorials [https://github.com/datalad/tutorials/tree/master/notebooks/catalog_tutorials] that can be run
live in a Jupyter notebook on Binder.

Handbook chapters

There are detailed and user-friendly chapters in the DataLad Handbook [https://handbook.datalad.org/en/latest/index.html]
that provide information about datalad-catalog and datalad-metalad:

	Metadata-Management with MetaLad [https://handbook.datalad.org/en/latest/beyond_basics/101-181-metalad.html]

	DataCat - a shiny front-end for your dataset [https://handbook.datalad.org/en/latest/beyond_basics/101-182-catalog.html]

Contributing

If you have any questions, comments, bug fixes or improvement suggestions, feel
free to contact us via our GitHub [https://github.com/datalad/datalad-catalog] page. Before contributing, be sure to read
the contributing guidelines [https://github.com/datalad/datalad-catalog#7-contributing].

Command Line Reference

	datalad catalog

	datalad catalog-create

	datalad catalog-validate

	datalad catalog-add

	datalad catalog-remove

	datalad catalog-serve

	datalad catalog-get

	datalad catalog-set

	datalad catalog-translate

	datalad catalog-workflow

datalad catalog

Synopsis

datalad catalog [-h] [--version]

Description

Generate a user-friendly web-based data catalog from structured
metadata.

datalad catalog can be used to -create a new catalog,
-add and -remove metadata entries to/from an existing catalog,
start a local http server to -serve an existing catalog locally.
It can also -validate a metadata entry (validation is also
performed implicitly when adding), -set dataset properties
such as the home page to be shown by default, and -get
dataset properties such as the config, specific metadata,
or the home page.

Metadata can be provided to DataLad Catalog from any number of
arbitrary metadata sources, as an aggregated set or as individual
metadata items. DataLad Catalog has a dedicated schema (using the
JSON Schema vocabulary) against which incoming metadata items are
validated. This schema allows for standard metadata fields as one
would expect for datasets of any kind (such as name, doi, url,
description, license, authors, and more), as well as fields that
support identification, versioning, dataset context and linkage,
and file tree specification.

The output is a set of structured metadata files, as well as a
Vue.js-based browser interface that understands how to render this
metadata in the browser. These can be hosted on a platform of
choice as a static webpage.

Note: in the catalog website, each dataset entry is displayed
under <main page>/#/dataset/<dataset_id>/<dataset_version>.
By default, the main page of the catalog will display a 404 error,
unless the default dataset is configured with datalad catalog-set
home.

Examples

CREATE a new catalog from scratch:

% datalad catalog-create -c /tmp/my-cat

ADD metadata to an existing catalog:

% datalad catalog-add -c /tmp/my-cat -m path/to/metadata.jsonl

SET a property of an existing catalog, such as the home page of an
existing catalog - i.e. the first dataset displayed when navigating to
the root URL of the catalog:

% datalad catalog-set -c /tmp/my-cat -i abcd -v 1234 home

SERVE the content of the catalog via a local HTTP server at
http://localhost:8001:

% datalad catalog-serve -c /tmp/my-cat -p 8001

VALIDATE metadata against a catalog schema without adding it to the
catalog:

% datalad catalog-validate -c /tmp/my-cat/-m path/to/metadata.jsonl'

GET a property of an existing catalog, such as the catalog
configuration:

% datalad catalog-get -c /tmp/my-cat/ config

REMOVE a specific metadata record from an existing catalog:

% datalad catalog-remove -c /tmp/my-cat -i efgh -v 5678

TRANSLATE a metalad-extracted metadata item from a particular source
structure into the catalog schema. A dedicated translator should be
provided and exposed as an entry point (e.g. via a DataLad extension)
as part of the 'datalad.metadata.translators' group.:

% datalad catalog-translate -c /tmp/my-cat -m path/to/metadata.jsonl

RUN A WORKFLOW for recursive metadata extraction (using datalad-
metalad), translating metadata to the catalog schema, and adding the
translated metadata to a new catalog:

% datalad catalog-workflow -t new -c /tmp/my-cat -d path/to/superdataset -e metalad_core

RUN A WORKFLOW for updating a catalog after registering a subdataset
to the superdataset which the catalog represents. This workflow
includes extraction (using datalad-metalad), translating metadata to
the catalog schema, and adding the translated metadata to the existing
catalog.:

% datalad catalog-workflow -t new -c /tmp/my-cat -d path/to/superdataset -s path/to/subdataset -e metalad_core

Options

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

--version

show the module and its version which provides the command

Authors

datalad is developed by DataLad Developers <team@datalad.org>.

datalad catalog-create

Synopsis

datalad catalog-create [-h] [-c CATALOG] [-m METADATA] [-F CONFIG_FILE] [-f] [--version]

Description

Create a user-friendly web-based data catalog, with or without
metadata.

If the catalog does not exist at the specified location, it will be
created. If the catalog exists and the force flag is True, this will
overwrite assets of the existing catalog, while catalog metadata
remain unchanged.

Parameters

	catalogpath-like object | WebCatalog instance
	an instance of the catalog to be created

	metadatapath-like object, optional
	metadata to be added to the catalog after creation

	forcebool, optional
	if True, will overwrite assets of an existing catalog

Yields

	status_dictdict
	DataLad result record

Examples

Create a new catalog from scratch:

% datalad catalog-create -c /tmp/my-cat

Create a new catalog at a location where a directory already exists.
This will overwrite all catalog content except for metadata.:

% datalad catalog-create -c /tmp/my-cat --force

Create a new catalog and add metadata:

% datalad catalog-create -c /tmp/my-cat -m path/to/metadata.jsonl

Create a new catalog with a custom configuration:

% datalad catalog-create -c /tmp/my-cat -F path/to/custom_config_file.json

Options

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

-c CATALOG, --catalog CATALOG

Directory where the catalog is located or will be created.

-m METADATA, --metadata METADATA

The metadata records to be added to the catalog. Multiple input types are possible: - a path to a file containing JSON lines - JSON lines from STDIN - a JSON serialized string.

-F CONFIG_FILE, --config-file CONFIG_FILE

Path to config file in YAML or JSON format. Default config is read from datalad_catalog/config/config.json.

-f, --force

If content for the user interface already exists in the catalog directory, force this content to be overwritten. Content overwritten with this flag include the 'artwork' and 'assets' directories and the 'index.html' and 'config.json' files. Content in the 'metadata' directory remain untouched.

--version

show the module and its version which provides the command

Authors

datalad is developed by DataLad Developers <team@datalad.org>.

datalad catalog-validate

Synopsis

datalad catalog-validate [-h] [-m METADATA] [-c CATALOG] [--version]

Description

Validate metadata against the catalog schema

The schema version is determined from the catalog, if provided.
Otherwise from the latest supported version of the package installation.

Examples

Validate metadata against a catalog schema without adding it to the
catalog:

% datalad catalog-validate -c /tmp/my-cat/-m path/to/metadata.jsonl'

Options

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

-m METADATA, --metadata METADATA

Path to input metadata. Multiple input types are possible: - A '.json' file containing an array of JSON objects related to a single datalad dataset. - A stream of JSON objects/lines.

-c CATALOG, --catalog CATALOG

Location of the existing catalog.

--version

show the module and its version which provides the command

Authors

datalad is developed by DataLad Developers <team@datalad.org>.

datalad catalog-add

Synopsis

datalad catalog-add [-h] [-c CATALOG] [-m METADATA] [-F CONFIG_FILE] [--version]

Description

Add metadata to an existing catalog

Optionally, a dataset-level configuration file can be provided
(defaults to the catalog-level config if not provided)

Examples

Add metadata from file to an existing catalog:

% datalad catalog-add -c /tmp/my-cat -m path/to/metadata.jsonl

Add metadata as JSON string to an existing catalog:

% datalad catalog-add -c /tmp/my-cat -m '{"my":"metadata"}'

Add metadata as subject to a dataset-level configuration:

% datalad catalog-add -c /tmp/my-cat -F path/to/dataset_config_file.json

Options

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

-c CATALOG, --catalog CATALOG

Location of the existing catalog.

-m METADATA, --metadata METADATA

The metadata records to be added to the catalog. Multiple input types are possible: - a path to a file containing JSON lines - JSON lines from STDIN - a JSON serialized string.

-F CONFIG_FILE, --config-file CONFIG_FILE

Path to config file in YAML or JSON format. Default config is read from: 'datalad_catalog/config/config.json'.

--version

show the module and its version which provides the command

Authors

datalad is developed by DataLad Developers <team@datalad.org>.

datalad catalog-remove

Synopsis

datalad catalog-remove [-h] [-c CATALOG] [-i DATASET_ID] [-v DATASET_VERSION] [--reckless] [--version]

Description

Remove metadata from an existing catalog

This will remove metadata corresponding to a specified
dataset_id and dataset_version from an existing catalog.

This command has to be called with the reckless flag to
ignore a warning message.

Examples

REMOVE a specific metadata record from an existing catalog:

% datalad catalog-remove -c /tmp/my-cat -i efgh -v 5678 --reckless

Options

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

-c CATALOG, --catalog CATALOG

Location of the existing catalog.

-i DATASET_ID, --dataset-id DATASET_ID

The unique identifier of the dataset for which metadata or config has been requested.

-v DATASET_VERSION, --dataset-version DATASET_VERSION

The unique version of the dataset for which metadata or config has been requested.

--reckless

Remove the dataset in a potentially unsafe way. A standard catalog-remove call without this flag will provide a warning and do nothing else.

--version

show the module and its version which provides the command

Authors

datalad is developed by DataLad Developers <team@datalad.org>.

datalad catalog-serve

Synopsis

datalad catalog-serve [-h] [-c CATALOG] [--port PORT] [--version]

Description

Start a local http server to render and test a local catalog.

Optional arguments include a custom port.

Examples

SERVE the content of the catalog via a local HTTP server:

% datalad catalog-serve -c /tmp/my-cat

SERVE the content of the catalog via a local HTTP server at a custom
port, e.g. http://localhost:8001:

% datalad catalog-serve -c /tmp/my-cat -p 8001

Options

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

-c CATALOG, --catalog CATALOG

Location of the existing catalog to be served.

--port PORT

The port at which the content is served at 'localhost' (default 8000). [Default: 8000]

--version

show the module and its version which provides the command

Authors

datalad is developed by DataLad Developers <team@datalad.org>.

datalad catalog-get

Synopsis

datalad catalog-get [-h] [-c CATALOG] [-i DATASET_ID] [-v DATASET_VERSION] [--record-type RECORD_TYPE] [--record-path RECORD_PATH] [--version] property

Description

Utility for getting various properties of a catalog, based on the specified
property ('home', 'config', 'metadata', 'tree')

Used to get the catalog home page, get config at catalog- or dataset-level,
or get the metadata for a specific dataset/version.

Examples

Get the configuration of an existing catalog:

% datalad catalog-get -c /tmp/my-cat/ config

Get the home page details of an existing catalog:

% datalad catalog-get -c /tmp/my-cat/ home

Get metadata of a specific dataset from an existing catalog:

% datalad catalog-get -c /tmp/my-cat -i abcd -v 1234 metadata

Get metadata of a specific directory node in a dataset from an
existing catalog:

% datalad catalog-get -c /tmp/my-cat -i abcd -v 1234 --record_type directory --record_path relative/path/to/directory metadata

Options

property

The property to get in the catalog. Should be one of 'home', 'config', 'metadata' or 'tree'.

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

-c CATALOG, --catalog CATALOG

Location of the existing catalog.

-i DATASET_ID, --dataset-id DATASET_ID

The unique identifier of the dataset for which metadata or config has been requested.

-v DATASET_VERSION, --dataset-version DATASET_VERSION

The unique version of the dataset for which metadata or config has been requested.

--record-type RECORD_TYPE

The type of record in a catalog for which metadata has been requested. Should be one of 'dataset' (default), 'directory', or 'file'.

--record-path RECORD_PATH

The relative path of record in a catalog for which metadata has been requested. Required if 'record_type' is 'directory' or 'file'.

--version

show the module and its version which provides the command

Authors

datalad is developed by DataLad Developers <team@datalad.org>.

datalad catalog-set

Synopsis

datalad catalog-set [-h] [-c CATALOG] [-i DATASET_ID] [-v DATASET_VERSION] [--reckless RECKLESS] [--version] property

Description

Utility for setting various properties of a catalog, based on the
specified property ('home' or 'config')

Used to set the catalog home page, or to reset config at catalog- or dataset-level.
(Note: the latter is not fully supported yet and will yield an error result)

Examples

Set the home page of an existing catalog:

% datalad catalog-set -c /tmp/my-cat -i abcd -v 1234 home

Set a new home page of an existing catalog, where the home page has
previously been set:

% datalad catalog-set -c /tmp/my-cat -i efgh -v 5678 --reckless overwrite home

Options

property

The property to set in the catalog. Should be one of 'home' or 'config'.

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

-c CATALOG, --catalog CATALOG

Location of the existing catalog.

-i DATASET_ID, --dataset-id DATASET_ID

The unique identifier of a dataset.

-v DATASET_VERSION, --dataset-version DATASET_VERSION

The unique version of a dataset.

--reckless RECKLESS

Set the property in a potentially unsafe way. Supported modes are: ["overwrite"]: if the property is already set, overwrite it.

--version

show the module and its version which provides the command

Authors

datalad is developed by DataLad Developers <team@datalad.org>.

datalad catalog-translate

Synopsis

datalad catalog-translate [-h] [-c CATALOG] [--version] metadata

Description

Translate datalad-metalad-extracted metadata items into the catalog schema

The to-be-translated-to schema version is determined from the catalog,
if provided, otherwise from the latest supported version of the package installation.

Translators should be provided and exposed as a datalad entry point using the group:
'datalad.metadata.translators'.

Available translators will be filtered based on own matching criteria (such as
extractor name, version, etc) to find the appropriate translator, after which
the translator's translation code will be executed on the metadata item.

Examples

Translate a metalad-extracted metadata item from a particular source
structure into the catalog schema, assuming a dedicated translator is
locally available via the entry point mechanism:

% datalad catalog-translate -c /tmp/my-cat -m path/to/metadata.jsonl

Options

metadata

The metalad-extracted metadata that is to be translated. Multiple input types are possible: - a path to a file containing JSON lines - JSON lines from STDIN - a JSON serialized string.

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

-c CATALOG, --catalog CATALOG

Location of an existing catalog. If this argument is provided it will determine the to-be-translated-to schema version. If the version cannot be found in the catalog, it is determined from the latest supported version of the package installation. The latter is also the default when the 'catalog' argument is not supplied.

--version

show the module and its version which provides the command

Authors

datalad is developed by DataLad Developers <team@datalad.org>.

datalad catalog-workflow

Synopsis

datalad catalog-workflow [-h] [-c CATALOG] [-t TYPE] [-d DATASET] [-s SUBDATASET] [-r] [-R RECURSION_LIMIT] [-e EXTRACTOR [EXTRACTOR ...]] [-F CONFIG_FILE] [-f] [--version]

Description

Run a workflow to create or update a catalog

This functionality requires the installation of datalad-metalad as well
as any datalad extensions providing relevant translators for the extracted
metadata items.

It will run a workflow of metadata extraction, translation, and catalog (entry)
generation, given a DataLad dataset hierarchy and a specified workflow type:
new/update.

Examples

Run a workflow for recursive metadata extraction (using the
'metalad_core' extractor), translating metadata to the latestcatalog
schema, and adding the translated metadata to a new catalog:

% datalad catalog-workflow -t new -c /tmp/my-cat -d path/to/superdataset -e metalad_core

Run a workflow for updating a catalog after registering a subdataset
to the superdataset which the catalog represents.:

% datalad catalog-workflow -t new -c /tmp/my-cat -d path/to/superdataset -s path/to/subdataset -e metalad_core

Options

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

-c CATALOG, --catalog CATALOG

Location of the existing catalog.

-t TYPE, --type TYPE

Which type of workflow to run: one of ['new', 'update'].

-d DATASET, --dataset DATASET

The datalad dataset on which to run the workflow.

-s SUBDATASET, --subdataset SUBDATASET

The datalad subdataset on which to run the update workflow.

-r, --recursive

Specifies whether to recurse into subdatasets or not during workflow execution.

-R RECURSION_LIMIT, --recursion-limit RECURSION_LIMIT

Specifies how many levels to recurse down into the hierarchy when recursing into subdatasets.

-e EXTRACTOR [EXTRACTOR ...], --extractor EXTRACTOR [EXTRACTOR ...]

Which extractors to use during metadata extraction of a workflow. Multiple can be provided. If none are provided, the default extractor 'metalad_core' is used. Any extractor name passed as an argument should first be known to the current installation via datalad's entrypoint mechanism. [Default: ['metalad_core']]

-F CONFIG_FILE, --config-file CONFIG_FILE

Path to config file in YAML or JSON format. Default config is read from datalad_catalog/config/config.json.

-f, --force

If content for the user interface already exists in the catalog directory, force this content to be overwritten. Content overwritten with this flag include the 'artwork' and 'assets' directories and the 'index.html' and 'config.json' files. Content in the 'metadata' directory remain untouched.

--version

show the module and its version which provides the command

Authors

datalad is developed by DataLad Developers <team@datalad.org>.

Python Module Reference

	catalog()

	Generate a user-friendly web-based data catalog from structured metadata.

	catalog_create(catalog[, metadata, ...])

	Create a user-friendly web-based data catalog, with or without metadata.

	catalog_validate(metadata[, catalog])

	Validate metadata against the catalog schema

	catalog_add(catalog, metadata[, config_file])

	Add metadata to an existing catalog

	catalog_remove(catalog, dataset_id, ...[, ...])

	Remove metadata from an existing catalog

	catalog_serve(catalog[, port])

	Start a local http server to render and test a local catalog.

	catalog_get(catalog, property[, dataset_id, ...])

	Utility for getting various properties of a catalog, based on the specified property ('home', 'config', 'metadata', 'tree')

	catalog_set(catalog, property[, dataset_id, ...])

	Utility for setting various properties of a catalog, based on the specified property ('home' or 'config')

	catalog_translate(metadata[, catalog])

	Translate datalad-metalad-extracted metadata items into the catalog schema

	catalog_workflow(catalog, mode, dataset[, ...])

	Run a workflow to create or update a catalog

datalad.api.catalog

	
datalad.api.catalog()

	Generate a user-friendly web-based data catalog from structured
metadata.

datalad catalog can be used to -create a new catalog,
-add and -remove metadata entries to/from an existing catalog,
start a local http server to -serve an existing catalog locally.
It can also -validate a metadata entry (validation is also
performed implicitly when adding), -set dataset properties
such as the home page to be shown by default, and -get
dataset properties such as the config, specific metadata,
or the home page.

Metadata can be provided to DataLad Catalog from any number of
arbitrary metadata sources, as an aggregated set or as individual
metadata items. DataLad Catalog has a dedicated schema (using the
JSON Schema vocabulary) against which incoming metadata items are
validated. This schema allows for standard metadata fields as one
would expect for datasets of any kind (such as name, doi, url,
description, license, authors, and more), as well as fields that
support identification, versioning, dataset context and linkage,
and file tree specification.

The output is a set of structured metadata files, as well as a
Vue.js-based browser interface that understands how to render this
metadata in the browser. These can be hosted on a platform of
choice as a static webpage.

Note: in the catalog website, each dataset entry is displayed
under <main page>/#/dataset/<dataset_id>/<dataset_version>.
By default, the main page of the catalog will display a 404 error,
unless the default dataset is configured with datalad catalog-set
home.

Examples

CREATE a new catalog from scratch:

> catalog_create(catalog='/tmp/my-cat')

ADD metadata to an existing catalog:

> catalog_add(catalog='/tmp/my-cat', metadata='path/to/metadata.jsonl')

SET a property of an existing catalog, such as the home page of an
existing catalog - i.e. the first dataset displayed when navigating to
the root URL of the catalog:

> catalog_set(property='home', catalog='/tmp/my-cat', dataset_id='abcd', dataset_version='1234')

SERVE the content of the catalog via a local HTTP server at
http://localhost:8001:

> catalog_serve(catalog='/tmp/my-cat/', port=8001)

VALIDATE metadata against a catalog schema without adding it to the
catalog:

> catalog_validate(catalog='/tmp/my-cat/',metadata='path/to/metadata.jsonl')

GET a property of an existing catalog, such as the catalog
configuration:

> catalog_get(property='config', catalog='/tmp/my-cat/')

REMOVE a specific metadata record from an existing catalog:

> catalog_remove(catalog='/tmp/my-cat', dataset_id='efgh', dataset_version='5678')

TRANSLATE a metalad-extracted metadata item from a particular source
structure into the catalog schema. A dedicated translator should be
provided and exposed as an entry point (e.g. via a DataLad extension)
as part of the 'datalad.metadata.translators' group.:

> catalog_translate(catalog='/tmp/my-cat', metadata='path/to/metadata.jsonl')

RUN A WORKFLOW for recursive metadata extraction (using datalad-
metalad), translating metadata to the catalog schema, and adding the
translated metadata to a new catalog:

> catalog_workflow(mode='new', catalog='/tmp/my-cat/', dataset='path/to/superdataset', extractor='metalad_core')

RUN A WORKFLOW for updating a catalog after registering a subdataset
to the superdataset which the catalog represents. This workflow
includes extraction (using datalad-metalad), translating metadata to
the catalog schema, and adding the translated metadata to the existing
catalog.:

> catalog_workflow(mode='update', catalog='/tmp/my-cat/', dataset='path/to/superdataset', subdataset='path/to/subdataset', extractor='metalad_core')

datalad.api.catalog_create

	
datalad.api.catalog_create(catalog: Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] | WebCatalog, metadata=None, config_file=None, force: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Create a user-friendly web-based data catalog, with or without
metadata.

If the catalog does not exist at the specified location, it will be
created. If the catalog exists and the force flag is True, this will
overwrite assets of the existing catalog, while catalog metadata
remain unchanged.

	Parameters:

	
	catalog (path-like object | WebCatalog instance) -- an instance of the catalog to be created

	metadata (path-like object, optional) -- metadata to be added to the catalog after creation

	force (bool [https://docs.python.org/3/library/functions.html#bool], optional) -- if True, will overwrite assets of an existing catalog

	Yields:

	status_dict (dict) -- DataLad result record

Examples

Create a new catalog from scratch:

> catalog_create(catalog='/tmp/my-cat')

Create a new catalog at a location where a directory already exists.
This will overwrite all catalog content except for metadata.:

> catalog_create(catalog='/tmp/my-cat', force=True)

Create a new catalog and add metadata:

> catalog_create(catalog='/tmp/my-cat', metadata='path/to/metadata.jsonl')

Create a new catalog with a custom configuration:

> catalog_create(catalog='/tmp/my-cat', config_file='path/to/custom_config_file.json')

	Parameters:

	
	catalog -- Directory where the catalog is located or will be created.

	metadata -- The metadata records to be added to the catalog. Multiple input
types are possible: - a path to a file containing JSON lines - JSON
lines from STDIN - a JSON serialized string. [Default: None]

	config_file -- Path to config file in YAML or JSON format. Default config is read
from datalad_catalog/config/config.json. [Default: None]

	force (bool [https://docs.python.org/3/library/functions.html#bool], optional) -- If content for the user interface already exists in the catalog
directory, force this content to be overwritten. Content overwritten
with this flag include the 'artwork' and 'assets' directories and
the 'index.html' and 'config.json' files. Content in the 'metadata'
directory remain untouched. [Default: False]

	on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on failure: 'ignore' any failure is reported,
but does not cause an exception; 'continue' if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; 'stop': processing will stop
on first failure and an exception is raised. A failure is any result
with status 'impossible' or 'error'. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: 'continue']

	result_filter (callable or None, optional) -- if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable's return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer -- select rendering mode command results. 'tailored' enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the 'generic' result renderer; 'generic' renders
each result in one line with key info like action, status, path,
and an optional message); 'json' a complete JSON line serialization
of the full result record; 'json_pp' like 'json', but pretty-printed
spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties
in any format indicated by the template (e.g. '{path}', compare with
JSON output for all key-value choices). The template syntax follows
the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key
contains a colon, e.g. 'music:Genre', ':' must be substituted by '#'
in the template, like so: '{metadata[music#Genre]}'. [Default:
'tailored']

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) -- if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value behavior switch. If 'item-or-list' a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: 'list']

datalad.api.catalog_validate

	
datalad.api.catalog_validate(metadata, catalog=None)

	Validate metadata against the catalog schema

The schema version is determined from the catalog, if provided.
Otherwise from the latest supported version of the package installation.

Examples

Validate metadata against a catalog schema without adding it to the
catalog:

> catalog_validate(catalog='/tmp/my-cat/',metadata='path/to/metadata.jsonl')

	Parameters:

	
	metadata -- Path to input metadata. Multiple input types are possible: - A
'.json' file containing an array of JSON objects related to a single
datalad dataset. - A stream of JSON objects/lines.

	catalog -- Location of the existing catalog. [Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on failure: 'ignore' any failure is reported,
but does not cause an exception; 'continue' if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; 'stop': processing will stop
on first failure and an exception is raised. A failure is any result
with status 'impossible' or 'error'. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: 'continue']

	result_filter (callable or None, optional) -- if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable's return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer -- select rendering mode command results. 'tailored' enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the 'generic' result renderer; 'generic' renders
each result in one line with key info like action, status, path,
and an optional message); 'json' a complete JSON line serialization
of the full result record; 'json_pp' like 'json', but pretty-printed
spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties
in any format indicated by the template (e.g. '{path}', compare with
JSON output for all key-value choices). The template syntax follows
the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key
contains a colon, e.g. 'music:Genre', ':' must be substituted by '#'
in the template, like so: '{metadata[music#Genre]}'. [Default:
'tailored']

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) -- if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value behavior switch. If 'item-or-list' a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: 'list']

datalad.api.catalog_add

	
datalad.api.catalog_add(catalog: Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] | WebCatalog, metadata, config_file=None)

	Add metadata to an existing catalog

Optionally, a dataset-level configuration file can be provided
(defaults to the catalog-level config if not provided)

Examples

Add metadata from file to an existing catalog:

> catalog_add(catalog='/tmp/my-cat', metadata='path/to/metadata.jsonl')

Add metadata as JSON string to an existing catalog:

> catalog_add(catalog='/tmp/my-cat', metadata=json.dumps({'my':'metadata'}))

Add metadata as subject to a dataset-level configuration:

> catalog_add(catalog='/tmp/my-cat', config_file='path/to/dataset_config_file.json')

	Parameters:

	
	catalog -- Location of the existing catalog.

	metadata -- The metadata records to be added to the catalog. Multiple input
types are possible: - a path to a file containing JSON lines - JSON
lines from STDIN - a JSON serialized string.

	config_file -- Path to config file in YAML or JSON format. Default config is read
from: 'datalad_catalog/config/config.json'. [Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on failure: 'ignore' any failure is reported,
but does not cause an exception; 'continue' if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; 'stop': processing will stop
on first failure and an exception is raised. A failure is any result
with status 'impossible' or 'error'. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: 'continue']

	result_filter (callable or None, optional) -- if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable's return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer -- select rendering mode command results. 'tailored' enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the 'generic' result renderer; 'generic' renders
each result in one line with key info like action, status, path,
and an optional message); 'json' a complete JSON line serialization
of the full result record; 'json_pp' like 'json', but pretty-printed
spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties
in any format indicated by the template (e.g. '{path}', compare with
JSON output for all key-value choices). The template syntax follows
the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key
contains a colon, e.g. 'music:Genre', ':' must be substituted by '#'
in the template, like so: '{metadata[music#Genre]}'. [Default:
'tailored']

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) -- if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value behavior switch. If 'item-or-list' a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: 'list']

datalad.api.catalog_remove

	
datalad.api.catalog_remove(catalog: Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] | WebCatalog, dataset_id: str [https://docs.python.org/3/library/stdtypes.html#str], dataset_version: str [https://docs.python.org/3/library/stdtypes.html#str], reckless: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Remove metadata from an existing catalog

This will remove metadata corresponding to a specified
dataset_id and dataset_version from an existing catalog.

This command has to be called with the reckless flag to
ignore a warning message.

Examples

REMOVE a specific metadata record from an existing catalog:

> catalog_remove(catalog='/tmp/my-cat', dataset_id='efgh', dataset_version='5678', reckless=True)

	Parameters:

	
	catalog -- Location of the existing catalog.

	dataset_id -- The unique identifier of the dataset for which metadata or config
has been requested.

	dataset_version -- The unique version of the dataset for which metadata or config has
been requested.

	reckless (bool [https://docs.python.org/3/library/functions.html#bool], optional) -- Remove the dataset in a potentially unsafe way. A standard catalog-
remove call without this flag will provide a warning and do nothing
else. [Default: False]

	on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on failure: 'ignore' any failure is reported,
but does not cause an exception; 'continue' if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; 'stop': processing will stop
on first failure and an exception is raised. A failure is any result
with status 'impossible' or 'error'. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: 'continue']

	result_filter (callable or None, optional) -- if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable's return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer -- select rendering mode command results. 'tailored' enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the 'generic' result renderer; 'generic' renders
each result in one line with key info like action, status, path,
and an optional message); 'json' a complete JSON line serialization
of the full result record; 'json_pp' like 'json', but pretty-printed
spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties
in any format indicated by the template (e.g. '{path}', compare with
JSON output for all key-value choices). The template syntax follows
the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key
contains a colon, e.g. 'music:Genre', ':' must be substituted by '#'
in the template, like so: '{metadata[music#Genre]}'. [Default:
'tailored']

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) -- if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value behavior switch. If 'item-or-list' a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: 'list']

datalad.api.catalog_serve

	
datalad.api.catalog_serve(catalog: Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] | WebCatalog, port: int [https://docs.python.org/3/library/functions.html#int] = 8000)

	Start a local http server to render and test a local catalog.

Optional arguments include a custom port.

Examples

SERVE the content of the catalog via a local HTTP server:

> catalog_serve(catalog='/tmp/my-cat/')

SERVE the content of the catalog via a local HTTP server at a custom
port, e.g. http://localhost:8001:

> catalog_serve(catalog='/tmp/my-cat/', port=8001)

	Parameters:

	
	catalog -- Location of the existing catalog to be served.

	port -- The port at which the content is served at 'localhost' (default
8000). [Default: 8000]

	on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on failure: 'ignore' any failure is reported,
but does not cause an exception; 'continue' if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; 'stop': processing will stop
on first failure and an exception is raised. A failure is any result
with status 'impossible' or 'error'. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: 'continue']

	result_filter (callable or None, optional) -- if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable's return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer -- select rendering mode command results. 'tailored' enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the 'generic' result renderer; 'generic' renders
each result in one line with key info like action, status, path,
and an optional message); 'json' a complete JSON line serialization
of the full result record; 'json_pp' like 'json', but pretty-printed
spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties
in any format indicated by the template (e.g. '{path}', compare with
JSON output for all key-value choices). The template syntax follows
the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key
contains a colon, e.g. 'music:Genre', ':' must be substituted by '#'
in the template, like so: '{metadata[music#Genre]}'. [Default:
'tailored']

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) -- if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value behavior switch. If 'item-or-list' a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: 'list']

datalad.api.catalog_get

	
datalad.api.catalog_get(catalog: Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] | WebCatalog, property: str [https://docs.python.org/3/library/stdtypes.html#str], dataset_id: str [https://docs.python.org/3/library/stdtypes.html#str] = None, dataset_version: str [https://docs.python.org/3/library/stdtypes.html#str] = None, record_type: str [https://docs.python.org/3/library/stdtypes.html#str] = None, record_path: str [https://docs.python.org/3/library/stdtypes.html#str] = None)

	Utility for getting various properties of a catalog, based on the specified
property ('home', 'config', 'metadata', 'tree')

Used to get the catalog home page, get config at catalog- or dataset-level,
or get the metadata for a specific dataset/version.

Examples

Get the configuration of an existing catalog:

> catalog_get(property='config', catalog='/tmp/my-cat/')

Get the home page details of an existing catalog:

> catalog_get(property='home', catalog='/tmp/my-cat/')

Get metadata of a specific dataset from an existing catalog:

> catalog_get(property='metadata', catalog='/tmp/my-cat', dataset_id='abcd', dataset_version='1234')

Get metadata of a specific directory node in a dataset from an
existing catalog:

> catalog_get(property='metadata', catalog='/tmp/my-cat', dataset_id='abcd', dataset_version='1234', record_type='directory', record_path='relative/path/to/directory')

	Parameters:

	
	catalog -- Location of the existing catalog.

	property -- The property to get in the catalog. Should be one of 'home',
'config', 'metadata' or 'tree'.

	dataset_id -- The unique identifier of the dataset for which metadata or config
has been requested. [Default: None]

	dataset_version -- The unique version of the dataset for which metadata or config has
been requested. [Default: None]

	record_type -- The type of record in a catalog for which metadata has been
requested. Should be one of 'dataset' (default), 'directory', or
'file'. [Default: None]

	record_path -- The relative path of record in a catalog for which metadata has been
requested. Required if 'record_type' is 'directory' or 'file'.
[Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on failure: 'ignore' any failure is reported,
but does not cause an exception; 'continue' if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; 'stop': processing will stop
on first failure and an exception is raised. A failure is any result
with status 'impossible' or 'error'. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: 'continue']

	result_filter (callable or None, optional) -- if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable's return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer -- select rendering mode command results. 'tailored' enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the 'generic' result renderer; 'generic' renders
each result in one line with key info like action, status, path,
and an optional message); 'json' a complete JSON line serialization
of the full result record; 'json_pp' like 'json', but pretty-printed
spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties
in any format indicated by the template (e.g. '{path}', compare with
JSON output for all key-value choices). The template syntax follows
the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key
contains a colon, e.g. 'music:Genre', ':' must be substituted by '#'
in the template, like so: '{metadata[music#Genre]}'. [Default:
'tailored']

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) -- if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value behavior switch. If 'item-or-list' a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: 'list']

datalad.api.catalog_set

	
datalad.api.catalog_set(catalog: Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] | WebCatalog, property: str [https://docs.python.org/3/library/stdtypes.html#str], dataset_id: str [https://docs.python.org/3/library/stdtypes.html#str] = None, dataset_version: str [https://docs.python.org/3/library/stdtypes.html#str] = None, reckless: str [https://docs.python.org/3/library/stdtypes.html#str] = None)

	Utility for setting various properties of a catalog, based on the
specified property ('home' or 'config')

Used to set the catalog home page, or to reset config at catalog- or dataset-level.
(Note: the latter is not fully supported yet and will yield an error result)

Examples

Set the home page of an existing catalog:

> catalog_set(property='home', catalog='/tmp/my-cat', dataset_id='abcd', dataset_version='1234')

Set a new home page of an existing catalog, where the home page has
previously been set:

> catalog_set(property='home', catalog='/tmp/my-cat', dataset_id='efgh', dataset_version='5678', reckless='overwrite')

	Parameters:

	
	catalog -- Location of the existing catalog.

	property -- The property to set in the catalog. Should be one of 'home' or
'config'.

	dataset_id -- The unique identifier of a dataset. [Default: None]

	dataset_version -- The unique version of a dataset. [Default: None]

	reckless -- Set the property in a potentially unsafe way. Supported modes are:
["overwrite"]: if the property is already set, overwrite it.
[Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on failure: 'ignore' any failure is reported,
but does not cause an exception; 'continue' if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; 'stop': processing will stop
on first failure and an exception is raised. A failure is any result
with status 'impossible' or 'error'. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: 'continue']

	result_filter (callable or None, optional) -- if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable's return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer -- select rendering mode command results. 'tailored' enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the 'generic' result renderer; 'generic' renders
each result in one line with key info like action, status, path,
and an optional message); 'json' a complete JSON line serialization
of the full result record; 'json_pp' like 'json', but pretty-printed
spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties
in any format indicated by the template (e.g. '{path}', compare with
JSON output for all key-value choices). The template syntax follows
the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key
contains a colon, e.g. 'music:Genre', ':' must be substituted by '#'
in the template, like so: '{metadata[music#Genre]}'. [Default:
'tailored']

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) -- if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value behavior switch. If 'item-or-list' a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: 'list']

datalad.api.catalog_translate

	
datalad.api.catalog_translate(metadata, catalog=None)

	Translate datalad-metalad-extracted metadata items into the catalog schema

The to-be-translated-to schema version is determined from the catalog,
if provided, otherwise from the latest supported version of the package installation.

Translators should be provided and exposed as a datalad entry point using the group:
'datalad.metadata.translators'.

Available translators will be filtered based on own matching criteria (such as
extractor name, version, etc) to find the appropriate translator, after which
the translator's translation code will be executed on the metadata item.

Examples

Translate a metalad-extracted metadata item from a particular source
structure into the catalog schema, assuming a dedicated translator is
locally available via the entry point mechanism:

> catalog_translate(catalog='/tmp/my-cat', metadata='path/to/metadata.jsonl')

	Parameters:

	
	metadata -- The metalad-extracted metadata that is to be translated. Multiple
input types are possible: - a path to a file containing JSON lines -
JSON lines from STDIN - a JSON serialized string.

	catalog -- Location of an existing catalog. If this argument is provided it
will determine the to-be-translated-to schema version. If the
version cannot be found in the catalog, it is determined from the
latest supported version of the package installation. The latter is
also the default when the 'catalog' argument is not supplied.
[Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on failure: 'ignore' any failure is reported,
but does not cause an exception; 'continue' if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; 'stop': processing will stop
on first failure and an exception is raised. A failure is any result
with status 'impossible' or 'error'. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: 'continue']

	result_filter (callable or None, optional) -- if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable's return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer -- select rendering mode command results. 'tailored' enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the 'generic' result renderer; 'generic' renders
each result in one line with key info like action, status, path,
and an optional message); 'json' a complete JSON line serialization
of the full result record; 'json_pp' like 'json', but pretty-printed
spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties
in any format indicated by the template (e.g. '{path}', compare with
JSON output for all key-value choices). The template syntax follows
the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key
contains a colon, e.g. 'music:Genre', ':' must be substituted by '#'
in the template, like so: '{metadata[music#Genre]}'. [Default:
'tailored']

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) -- if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value behavior switch. If 'item-or-list' a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: 'list']

datalad.api.catalog_workflow

	
datalad.api.catalog_workflow(catalog: Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] | WebCatalog, mode: str [https://docs.python.org/3/library/stdtypes.html#str], dataset: Dataset, subdataset: Dataset = None, recursive=False, recursion_limit=None, extractor=['metalad_core'], config_file=None, force: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Run a workflow to create or update a catalog

This functionality requires the installation of datalad-metalad as well
as any datalad extensions providing relevant translators for the extracted
metadata items.

It will run a workflow of metadata extraction, translation, and catalog (entry)
generation, given a DataLad dataset hierarchy and a specified workflow type:
new/update.

Examples

Run a workflow for recursive metadata extraction (using the
'metalad_core' extractor), translating metadata to the latestcatalog
schema, and adding the translated metadata to a new catalog:

> catalog_workflow(mode='new', catalog='/tmp/my-cat/', dataset='path/to/superdataset', extractor='metalad_core')

Run a workflow for updating a catalog after registering a subdataset
to the superdataset which the catalog represents.:

> catalog_workflow(mode='update', catalog='/tmp/my-cat/', dataset='path/to/superdataset', subdataset='path/to/subdataset', extractor='metalad_core')

	Parameters:

	
	catalog -- Location of the existing catalog.

	mode -- Which type of workflow to run: one of ['new', 'update'].

	dataset -- The datalad dataset on which to run the workflow.

	subdataset -- The datalad subdataset on which to run the update workflow.
[Default: None]

	recursive (bool [https://docs.python.org/3/library/functions.html#bool], optional) -- Specifies whether to recurse into subdatasets or not during workflow
execution. [Default: False]

	recursion_limit -- Specifies how many levels to recurse down into the hierarchy when
recursing into subdatasets. [Default: None]

	extractor -- Which extractors to use during metadata extraction of a workflow.
Multiple can be provided. If none are provided, the default
extractor 'metalad_core' is used. Any extractor name passed as an
argument should first be known to the current installation via
datalad's entrypoint mechanism. [Default: ['metalad_core']]

	config_file -- Path to config file in YAML or JSON format. Default config is read
from datalad_catalog/config/config.json. [Default: None]

	force (bool [https://docs.python.org/3/library/functions.html#bool], optional) -- If content for the user interface already exists in the catalog
directory, force this content to be overwritten. Content overwritten
with this flag include the 'artwork' and 'assets' directories and
the 'index.html' and 'config.json' files. Content in the 'metadata'
directory remain untouched. [Default: False]

	on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on failure: 'ignore' any failure is reported,
but does not cause an exception; 'continue' if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; 'stop': processing will stop
on first failure and an exception is raised. A failure is any result
with status 'impossible' or 'error'. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: 'continue']

	result_filter (callable or None, optional) -- if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable's return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer -- select rendering mode command results. 'tailored' enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the 'generic' result renderer; 'generic' renders
each result in one line with key info like action, status, path,
and an optional message); 'json' a complete JSON line serialization
of the full result record; 'json_pp' like 'json', but pretty-printed
spanning multiple lines; 'disabled' turns off result rendering
entirely; '<template>' reports any value(s) of any result properties
in any format indicated by the template (e.g. '{path}', compare with
JSON output for all key-value choices). The template syntax follows
the Python "format() language". It is possible to report individual
dictionary values, e.g. '{metadata[name]}'. If a 2nd-level key
contains a colon, e.g. 'music:Genre', ':' must be substituted by '#'
in the template, like so: '{metadata[music#Genre]}'. [Default:
'tailored']

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) -- if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value behavior switch. If 'item-or-list' a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: 'list']

Change Log

Please refer to the code repository for a complete and up to date changelog [https://github.com/datalad/datalad-catalog/blob/main/CHANGELOG.md].

 Index

 Index pages by letter:

 C

 Full index on one page
 (can be huge)

Index

 Index

Index

 C

C

 	
 	catalog() (in module datalad.api)

 	catalog_add() (in module datalad.api)

 	catalog_create() (in module datalad.api)

 	catalog_get() (in module datalad.api)

 	catalog_remove() (in module datalad.api)

 	
 	catalog_serve() (in module datalad.api)

 	catalog_set() (in module datalad.api)

 	catalog_translate() (in module datalad.api)

 	catalog_validate() (in module datalad.api)

 	catalog_workflow() (in module datalad.api)

nav.xhtml

 Table of Contents

 		
 DataLad Catalog

 		
 Overview

 		
 What is DataLad Catalog?

 		
 Why use DataLad Catalog?

 		
 How does it work?

 		
 Installation

 		
 Step 1 - Setup and activate a virtual environment

 		
 Step 2 - Install via PyPI

 		
 Optional - Clone the repo and install the package

 		
 Dependencies

 		
 Usage

 		
 Create a catalog

 		
 Add metadata

 		
 Metadata validation

 		
 Set catalog properties

 		
 View the catalog

 		
 Update

 		
 Configure

 		
 Get catalog properties

 		
 Translate

 		
 Workflows

 		
 workflow-new

 		
 workflow-update

 		
 Pipeline Description

 		
 An example end-to-end pipeline

 		
 Step 1 - Create/access a DataLad dataset

 		
 Step 2 - Add metadata

 		
 Step 3 - Extract metadata

 		
 Step 4 - Translate the metadata

 		
 Step 5 - Run DataLad Catalog

 		
 Step 6 - Next steps

 		
 Metadata and datalad-catalog

 		
 What is metadata?

 		
 Metadata handling with MetaLad

 		
 Metadata translation

 		
 The Catalog Schema

 		
 Catalog Schema

 		
 Catalog Configuration

 		
 Catalog-level configuration

 		
 Dataset-level configuration

 		
 Inheritance rules

 		
 Prioritizing rendered metadata properties

 		
 Rules

 		
 Sources

 		
 How it works

 		
 Resources

 		
 Tutorials

 		
 Handbook chapters

 		
 Contributing

 		
 Command Line Reference

 		
 datalad catalog

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Authors

 		
 datalad catalog-create

 		
 Synopsis

 		
 Description

 		
 Parameters

 		
 Yields

 		
 Options

 		
 Authors

 		
 datalad catalog-validate

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Authors

 		
 datalad catalog-add

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Authors

 		
 datalad catalog-remove

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Authors

 		
 datalad catalog-serve

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Authors

 		
 datalad catalog-get

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Authors

 		
 datalad catalog-set

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Authors

 		
 datalad catalog-translate

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Authors

 		
 datalad catalog-workflow

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Authors

 		
 Python Module Reference

 		
 datalad.api.catalog

 		
 catalog()

 		
 datalad.api.catalog_create

 		
 catalog_create()

 		
 datalad.api.catalog_validate

 		
 catalog_validate()

 		
 datalad.api.catalog_add

 		
 catalog_add()

 		
 datalad.api.catalog_remove

 		
 catalog_remove()

 		
 datalad.api.catalog_serve

 		
 catalog_serve()

 		
 datalad.api.catalog_get

 		
 catalog_get()

 		
 datalad.api.catalog_set

 		
 catalog_set()

 		
 datalad.api.catalog_translate

 		
 catalog_translate()

 		
 datalad.api.catalog_workflow

 		
 catalog_workflow()

 		
 Change Log

_static/catalog_screenshot.png
