
Datalad Gooey
Release 0.2.0+43.g5bd6b92

DataLad team

Feb 20, 2024

CONTENTS

1 What DataLad Gooey is not 3

2 Overview 5

3 Commands and API 27

Index 35

i

ii

Datalad Gooey, Release 0.2.0+43.g5bd6b92

DataLad Gooey is a Graphical User Interface (GUI) for using DataLad, a free and open source distributed data manage-
ment tool. DataLad Gooey is compatible with all major operating systems and allows access to DataLad's operations
via both a simplified and complete suite.

While using DataLad Gooey assumes at least some familiarity with DataLad concepts, the simplified command suite
makes starting with DataLad easier via tailor-made command selections, condensed parameter specifications, and tool
tips. The current core functionality supported via the simplified suite includes:

• cloning a dataset

• creating a dataset

• creating a sibling (GIN, GitHub, WebDAV)

• dropping/getting content

• pushing data/updates to a sibling

• saving the state of a dataset

• updating from a sibling

In addition, DataLad Gooey adds support for querying and setting credentials, git-annex metadata, and general meta-
data.

CONTENTS 1

https://www.datalad.org/
http://docs.datalad.org/en/stable/generated/man/datalad-clone.html
http://docs.datalad.org/en/stable/generated/man/datalad-create.html
http://docs.datalad.org/en/stable/generated/man/datalad-create-sibling-gin.html
http://docs.datalad.org/en/stable/generated/man/datalad-create-sibling-github.html
http://docs.datalad.org/projects/next/en/latest/generated/man/datalad-create-sibling-webdav.html
http://docs.datalad.org/en/stable/generated/man/datalad-drop.html
http://docs.datalad.org/en/stable/generated/man/datalad-get.html
http://docs.datalad.org/en/stable/generated/man/datalad-push.html
http://docs.datalad.org/en/stable/generated/man/datalad-save.html
http://docs.datalad.org/en/stable/generated/man/datalad-update.html

Datalad Gooey, Release 0.2.0+43.g5bd6b92

2 CONTENTS

CHAPTER

ONE

WHAT DATALAD GOOEY IS NOT

DataLad Gooey has a number of cool features, but here are features that you will need to use other tools for:

• An interface to visualize revision histories of DataLad datasets. Please refer to many of the available visual Git
visualization tools

• An interface for advanced Git operations such as branching, resetting, reverting, or otherwise interacting with
commit history. Please refer to your favourite Git client or the command line for these operations. DataLad
Gooey will detect such external operations, and will update its view accordingly.

3

Datalad Gooey, Release 0.2.0+43.g5bd6b92

4 Chapter 1. What DataLad Gooey is not

CHAPTER

TWO

OVERVIEW

2.1 Installation

2.1.1 Installing via PyPI

You can install the latest version of datalad-gooey from PyPI. It is recommended to use a dedicated virtualenv:

Create and enter a new virtual environment (optional)
python3 -m venv ~/.venvs/datalad-gooey
source ~/.venvs/datalad-gooey/bin/activate

Install from PyPI
pip install datalad_gooey

Dependencies

Because this is an extension to datalad, the installation process also installs the datalad Python package, although
all recursive dependencies (such as git-annex) are not automatically installed. For complete instructions on how to
install datalad and git-annex, please refer to the DataLad Handbook.

2.1.2 Installing on Windows

The current version of datalad-gooey comes with two installers, a full installer and a gooey-only installer. The
full installer will install datalad-gooey as well as git and git-annex. it requires admin privileges to execute
successfully. The gooey-only installer will only install datalad-gooey. It can be executed as admin user or as non-
admin user. If you use the gooey-only installer, git and git-annex have to be provided by other means, e.g. an
administrator installs them.

Note: if the full installer is executed and the system has already a newer version of git or git-annex installed, the
git or git-annex-installer can be canceled and installation of the remaining components will continue.

The installers can be downloaded here.

5

https://virtualenv.pypa.io/en/latest/
https://github.com/datalad/datalad
https://handbook.datalad.org/en/latest/intro/installation.html
https://github.com/datalad/datalad-gooey/releases

Datalad Gooey, Release 0.2.0+43.g5bd6b92

2.1.3 Installing on Linux

Install DataLad Gooey via PyPI while specifying the --user flag:

pip install --user datalad_gooey

Then run the following line to ensure that the application's desktop file is generated:

datalad gooey --postinstall

2.1.4 Installing on macOS

macOS application pending

Until the macOS application is available to allow standard installation into the Applications folder, macOS users can
install DataLad Gooey via PyPI.

Install from PyPI
pip install datalad_gooey

2.2 Getting started

This section walks through the first steps to take when using DataLad Gooey and describes its main pieces and func-
tions.

In order to start up DataLad Gooey, double-click the program's icon on your Desktop or in your Explorer if you are on
Windows, find it among your Desktop files if you are using Linux, or launch it from the Terminal if you are on Mac1.
An initial dialog lets you select a base directory. Navigate to any directory you would like to open up, select it, and
click Select Folder.

1 Regardless of the operating system you are using, if you used pip to install datalad gooey you can also start it up from the command line,
running datalad gooey. The optional --path argument lets you specify the root directory.

6 Chapter 2. Overview

Datalad Gooey, Release 0.2.0+43.g5bd6b92

If you Cancel this dialog, the DataLad Gooey will open your home directory. The root directory can be changed at any
later point using the File→ Set base directory submenu from the top task bar, or from the right-click context
menus of directories in the file tree.

2.2.1 Initial configuration

If you are using DataLad and Git for the first time on your computer, make sure that the first thing you do is to set your
Git identity by clicking Utilities→ Set author identity in the tab at the top of the application. Add your name
and email address in the resulting dialog. This information will be used to include author information to the commands
you will be running, and is required for many commands.

2.2. Getting started 7

Datalad Gooey, Release 0.2.0+43.g5bd6b92

2.2.2 Application Overview

The User Interface

In general, the DataLad Gooey interface has three main sections: A tree view on the upper left, pane on the upper right
containing Command, Metadata, History``and ``Properties tabs, and the different log views at the bottom.

8 Chapter 2. Overview

Datalad Gooey, Release 0.2.0+43.g5bd6b92

The tree view should display files and directories on your computer, starting from the root directory picked at start up.
Double-clicking directories allows you to expand their contents, and to navigate into directory hierarchies. Double-
clicking files will attempt to open them in your systems configured default application. You will notice that the Type
and State annotations next to the file and directory names reveal details about files and directories: You can distinguish
directories and DataLad datasets and files. Within datasets, files are either annexed-file's or file's, depending on
how these files are tracked in the dataset. The State property indicates the version-state of files, datasets, or directories:
A new file, for example, would be annotated with an untracked state, a directory with a newly added unsaved change
would be modified, and neatly saved content would be annotated with a clean tag.

In addition to the information in the tree view, the Properties and History tab will load information for any selected
directory or file. The History tab displays past commits associated with the file or directory, and the Properties tab
displays known information such as the annex key or file size of annexed files.

Running a DataLad command

There are two ways of running DataLad command: either through the Dataset menu at the top, or by right-clicking
on files, directories, or datasets in the tree view. The latter option might be simpler to use, as it only allows commands
suitable for the item that was right-clicked on, and prefills many parameter specifications. The screenshot below shows
the right-click context menu of a dataset, which has more available commands than directories or files.

2.2. Getting started 9

Datalad Gooey, Release 0.2.0+43.g5bd6b92

Once a DataLad command is selected, the Command tab contains relevant parameters and configurations for it. The
parameters will differ for each command, but hovering over their submenus or editors will show useful hints what to
set them to, and the Help tab below displays the commands detailed documentation. Little system-specific icons in the
command panel can help you identify required input, or parameters that were wrongly specified (see detailed screenshot
on the right).

10 Chapter 2. Overview

Datalad Gooey, Release 0.2.0+43.g5bd6b92

Once input validation passes on all parameters, the OK button will become functional and will execute the command.
The Command log will continuously update you on the state of running and finished commands, displaying, where
available, progress bars, result reports, or command summaries.

During command execution, a small hammer symbol lets you interrupt ongoing commands. If you accidentally started
to get hundreds of Gigabytes worth of files instead of only one directory, clicking this button will stop the command.

Note: The stop button will stop the execution at the next possible chance, which is after the next part of the command
(such as the retrieval of the next file) has finished. This means it is not an immediate stop like a CTRL-C press in the
command line, but a safe interruption. This also means that stopping might take longer than you expect, depending on
the command that gets interrupted.

Should a command fail, a detailed traceback with details about the failure will be send to the Error log tab right next
to the Command log. You can use the information from this tab to investigate and fix problems.

Navigation

The interface can be navigated via mouse clicks, or, on most operating systems, via keyboard shortcuts as well. Low
lines under specific letters of menus or submenus identify the shortcut2. Accessing the shortcut to a menu requires
pressing Alt and the respective letter: Alt + f for example will open the Filemenu. Pressing further letters shortcuts
to submenu actions: Alt + f + q will shortcut to Quit and close the application, while Alt + d + g will open a get
command in the Command panel.

In addition, path parameters (such as the dataset parameter) can be filled via drag and drop from your system's native
file browser.

The View Menu

The View menu contains two submenus that allow you to alter the appearance of the interface. Whenever you change
the appearance of the interface, you need to close and reopen the program in order to let the change take effect.

The Theme submenu lets you switch between a light, dark, and system theme, shown below in order.
2 Windows users may not automatically see underlined letters. To make them visible, press the Alt key. Mac users won't see underlined letters

as it would violate the guidelines of macOS graphical user interface aqua.

2.2. Getting started 11

https://en.wikipedia.org/wiki/Aqua_%28user_interface%29

Datalad Gooey, Release 0.2.0+43.g5bd6b92

The Suite submenu lets you switch between suites that alter the command selection. The two suites you will always
be able to select between is a "simplified" command set, reduced to the most essential commands and parameters, and
a "complete" command set, which is a development preview. DataLad extensions can add additional suites when you
install them. Please note that we recommend the "simplified" command suite to users, as the complete suite can contain
experimental implementations.

12 Chapter 2. Overview

Datalad Gooey, Release 0.2.0+43.g5bd6b92

The Utilities and Help Menu

The Utilities menu has a several useful functions. One is a convenience version checker that can tell you whether
there is a newer DataLad version available.

Note: The Check for new version feature requires a network connection.

The Manage credentials submenu opens an interface to the Credential manager. The section Credential manage-
ment with DataLad Gooey has a detailed overview. The Set author identity submenu lets you set and change
your Git identity and was already covered above.

The Help menu contains a range of actions to find additional information or help. Report a problem contains links
for filing issues and getting in touch with the developers. Diagnostic infos will create a report about the details of
your installation and system that you can copy-paste into such issues.

2.3 Central Concepts (Glossary)

Working with DataLad is easier if you know a few technical terms that are regularly referred to in the documentation
and the GUI interface. This glossary provides short definitions, and links relevant additional documentation, where
available.

annex
git-annex concept: a different word for the internal location in a dataset that annexed-file's are version controlled
in.

annexed-file
Files managed by git-annex are annotated as "annexed-file". Annexed files have access to additional commands
in their context menus such as get and drop.

branch
Git concept: A lightweight, independent history streak of your dataset. Branches can contain less, more, or
changed files compared to other branches, and one can merge the changes a branch contains into another branch.
DataLad Gooey only views the currently checked out branch in your dataset, and does not support Git commands
that expose branching functionality.

clone
The datalad clone command retrieves a copy of a Git repository or DataLad dataset from a local or remote path
or URL. In Git-terminology, all "installed" datasets are clones.

commit
Git concept: Adding selected changes of a file or dataset to the repository, and thus making these changes part
of the revision history of the repository. The datalad save command creates a commit in the selected dataset.
Commits should always have an informative commit message.

commit message
Git concept: A concise summary of changes you should attach to a datalad save command. This summary
will show up in your DataLad dataset history.

DataLad dataset
A DataLad dataset is a Git repository that may or may not have a data annex that is used to manage data referenced
in a dataset. In practice, most DataLad datasets will come with an annex.

DataLad extension
Python packages that equip DataLad with specialized commands. The section extensions_intro
<http://handbook.datalad.org/en/latest/r.html?extensions>_ of the DataLad Handbook gives and overview of
available extensions and links to Handbook chapters that contain demonstrations.

2.3. Central Concepts (Glossary) 13

http://docs.datalad.org/en/stable/generated/man/datalad-clone.html
http://docs.datalad.org/en/stable/generated/man/datalad-save.html

Datalad Gooey, Release 0.2.0+43.g5bd6b92

DataLad subdataset
A DataLad dataset contained within a different DataLad dataset (the parent or DataLad superdataset).

DataLad superdataset
A DataLad dataset that contains one or more levels of other DataLad datasets (DataLad subdataset).

drop
The datalad drop command drops file content of annexed files. It is the antagonist to get.

GIN
A web-based repository store for data management that you can use to host and share datasets. Find out more
about GIN here.

Git
A version control system to track changes made to small-sized files over time. You can find out more about git
in this (free) book or these interactive Git tutorials on GitHub.

git-annex
A distributed file synchronization system, enabling sharing and synchronizing collections of large files. It allows
managing files with Git, without checking the file content into Git.

git-annex branch
A branch that exists in your dataset, if the dataset contains an annex. The git-annex branch is completely un-
connected to any other branch in your dataset, and contains different types of log files. Its contents are used for
git-annex’s internal tracking of the dataset and its annexed contents. DataLad Gooey provides support for adding
git annex metadata, but does not otherwise support operations on dataset branches

GitHub
GitHub is an online platform where one can store and share version controlled projects using Git (and thus also
DataLad project). See`GitHub.com <https://github.com/>`_.

GitLab
An online platform to host and share software projects version controlled with Git, similar to GitHub. See
Gitlab.com.

get
The datalad get command gets file content of annexed files. It is the antagonist to drop.

https
Hypertext Transfer Protocol Secure; A protocol for file transfer over a network.

pip
A Python package manager. Short for "Pip installs Python". pip install <package name> searches the
Python package index PyPi for a package and installs it while resolving any potential dependencies.

remote
Git-terminology: A repository (and thus also DataLad dataset) that a given repository tracks. A sibling is
DataLad's equivalent to a remote.

SSH
Secure shell (SSH) is a network protocol to link one machine (computer), the client, to a different local or remote
machine, the server.

SSH key
An SSH key is an access credential in the SSH protocol that can be used to login from one system to remote
servers and services, such as from your private computer to an SSH server, without supplying your username or
password at each visit. To use an SSH key for authentication, you need to generate a key pair on the system you
would like to use to access a remote system or service (most likely, your computer). The pair consists of a private
and a public key. The public key is shared with the remote server, and the private key is used to authenticate
your machine whenever you want to access the remote server or service. Services such as GitHub, GitLab, and

14 Chapter 2. Overview

http://docs.datalad.org/en/stable/generated/man/datalad-drop.html
https://gin.g-node.org/G-Node/Info/wiki
https://git-scm.com/book/en/v2
https://try.github.io/
https://github.com/
https://about.gitlab.com/
http://docs.datalad.org/en/stable/generated/man/datalad-get.html
https://pypi.org/

Datalad Gooey, Release 0.2.0+43.g5bd6b92

GIN use SSH keys and the SSH protocol to ease access to repositories. This tutorial by GitHub is a detailed
step-by-step instruction to generate and use SSH keys for authentication.

sibling
DataLad concept: A dataset clone that a given DataLad dataset knows about. Changes can be retrieved and
pushed between a dataset and its sibling. It is the equivalent of a remote in Git.

version control
Processes and tools to keep track of changes to documents or other collections of information.

2.4 Walk-through: Dataset hosting on GIN

In this walkthrough, we will use DataLad Gooey to create a dataset, save it contents, and publish it to GIN (G-Node
Infrastructure).

2.4.1 Prerequisites

In order to use GIN for hosting and sharing your datasets, you need to:

• Register a GIN account;

• add a personal access token to your GIN account (for creation of repositories with DataLad);

• add an SSH key to your GIN account (for uploading annexed contents).

Follow the instructions on GIN to do so.

If you need to generate an SSH key pair and want to stay in the world of graphical interfaces, we recommend using
PuTTYgen for this purpose. Your private key needs to be placed in the .ssh folder in your home directory for it to be
picked up correctly.

2.4.2 Create a dataset

Let's assume that we are starting with an existing folder which already has some content, but is not yet a DataLad
dataset. Let's open the DataLad Gooey and set a base directory to our folder, or its parent directory.

Our first operation is to to create a DataLad dataset. For this, right-click your folder and select Directory commands
→ Create a dataset. This will populate the Command tab on the right with options for the selected command. The
first value (Create at) is already populated, since we used right-click to issue the command. We leave Dataset with
file annex checked (default), and Register in superdataset not set (default). In this example we want to configure our
dataset to annex binary, but not text files. To do so, select text2git from the list of Configuration procedure(s) and click
Add. Finally, check the OK if target directory not empty to enforce dataset creation out of a non-empty folder. With the
options selected, click OK.

2.4. Walk-through: Dataset hosting on GIN 15

https://help.github.com/en/github/authenticating-to-github/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://gin.g-node.org
https://www.puttygen.com/

Datalad Gooey, Release 0.2.0+43.g5bd6b92

2.4.3 Save the contents

Right-click the newly created dataset, and select Dataset commands → Save the state in a dataset. Parameters required
for the Save command should appear in the Command tab. Fill in the Description of change (this is the commit message
associated with the save). Leave all other fields default (note: Do not put files in annex is greyed out, not checked, i.e.
it has no value). Here, we are saving all files at once, but if we wanted we could limit the save operation to selected
files, or trigger it by clicking on a specific file. Once ready, click OK.

Note that after this operation, "untracked" files changed their state to "clean". Different from files, the dataset state is
still "untracked", because it is not registered in any superdataset. Because we used the text2git configuration, only the
PNG file changed its type to "annexed-file" in the screenshot below.

16 Chapter 2. Overview

Datalad Gooey, Release 0.2.0+43.g5bd6b92

2.4.4 Create a GIN sibling

Creating a GIN sibling will create a new repository on GIN, and configure your dataset with its address. To perform
this action, right-click your dataset, and select Dataset commands → Create a GIN sibling. Fill in the New repository
name on Gin (and, optionally, check the Make GIN repository private). You can leave all other options default.

In the Name of the credential to be used field, you can pick previously used credentials. If no value is given, and no
previous credentials exist, the credentials will be save with website name (gin.g-node.org) by default.

Click OK.

At this point, a pop-up window will appear and you will be asked for a token. Paste the access token generated from
GIN website, and click OK.

2.4. Walk-through: Dataset hosting on GIN 17

Datalad Gooey, Release 0.2.0+43.g5bd6b92

2.4.5 Push to the GIN sibling

Right-click Dataset commands → Push data/updates to a sibling. The only thing you need to select is the value of To
dataset sibling - this will be the sibling name from the step above. Leave other options default, and click OK.

18 Chapter 2. Overview

Datalad Gooey, Release 0.2.0+43.g5bd6b92

2.4.6 Retrieve the data from GIN

Finally we can confirm that our dataset can be obtained from GIN (possibly by other users who have access). Let's
try making a clone in the same parent directory as our dataset, but under a different name. To do this, from the menu
select DataLad → Clone a dataset. In the Clone from field, enter the dataset URL taken from GIN. Here, you can use
either the HTTPS (for public repositories) or SSH (for private repositories) URL. Note that when using HTTPS, you
need to remove the .git from the URL ending for proper interaction with GIN. Next, click the directory selection icon
to the right of Clone into field, and use the directory picker to create and select a new directory named, for example,
cloned-dataset. Afterwards, click OK.

To obtain the annexed contents in the cloned dataset, right click it in the file tree, select Dataset commands → Get
content, and click OK. With other options kept default, this will download all annexed content in the dataset; if you
wanted to obtain contents selectively, you could use the Limit to option. Alternatively, you could right-click individual
files, and use File commands → Get content.

2.4. Walk-through: Dataset hosting on GIN 19

Datalad Gooey, Release 0.2.0+43.g5bd6b92

2.5 Credential management with DataLad Gooey

DataLad can store credentials and use them to authenticate against a variety of services or infrastructures. Among them
are, for example, the credentials required to push datasets to siblings on Gin, GitHub, or similar services. DataLad
Gooey's credential manager makes setting, querying, and removing credentials much easier than performing the actions
via the command line. It is a front-end for the modernized datalad credential command from datalad-next.

Access to this tooling is provided via the Utilities -> Manage credential menu in the tab bar.

All credentials are identified via a unique name, and should at least contain a secret such as a token, a password, or
a key. The Select known credential drop-down menu will list all known secrets for query or modification. This
drop-down menu can be helpful to discover credentials, update them after their secrets changed, or remove credentials
that became obsolete via the Delete button at the bottom of the form.

In order to create a new credential, for example a token to authenticate against Gin, enter a name of your choice (here
it is gin) and a corresponding secret in the Credential tab underneath. As the Secret field is confidential, the
characters you type or paste will be hidden, but the show button on the right can be ticked to view it in clear text. To
prevent typos, the secret has to be repeated and match the previous entry. The Save button at the bottom will store the
secret in your systems credential store.

20 Chapter 2. Overview

http://docs.datalad.org/projects/next/en/latest/generated/man/datalad-credentials.html
http://docs.datalad.org/projects/next/en/latest

Datalad Gooey, Release 0.2.0+43.g5bd6b92

Credentials can have properties denoting additional details about them useful for queries or required for authentication
to particular services. Once saved, the gin credential gained an automatic property, the last-modified property.
You can add additional arbitrary properties or alter or remove existing ones in the central Properties tab.

2.5. Credential management with DataLad Gooey 21

Datalad Gooey, Release 0.2.0+43.g5bd6b92

Once saved, the credential will be available in all commands with a credential parameter via a drop-down menu for you
to select. This ensures that you can precisely select which credential is used in every operation. Especially if you have
several accounts on one and the same service or several authentication methods with a different set of permissions,
such as one for your private account and one for your organizations account, this comes in handy.

In the screenshot below, the newly created credential gin is used in the parametrization of a create-sibling-gin
command.

22 Chapter 2. Overview

Datalad Gooey, Release 0.2.0+43.g5bd6b92

2.6 Setting git-annex metadata

git-annex has its own concept and implementation of file metadata, and DataLad Gooey provides a graphical user
interface for querying, removing, and setting metadata. This functionality is exposed via the Metadata tab or right-
click context menue on any annexed file.

2.6. Setting git-annex metadata 23

Datalad Gooey, Release 0.2.0+43.g5bd6b92

Each annexed file's content1 can have any number of metadata fields attached to it to describe it, and each field can have
any number of values. This metadata is stored internally, in the git-annex branch.

The Annex metadata editor will show all existing fields and values for a selected file, and let users add additional fields
and values as well as deleting them. A subsequent Save will write the provided annex metadata to the file.

2.6.1 Input validation

git-annex's metadata is highly flexible and allows arbitrary content, but it is impossible to have two fields of the same
name, or two identical values belonging to one field. This is validated automatically after each entry, and only valid
metadata can be saved. Icons attached to conflicting fields will let you know which metadata elements need fixing.

1 Note that metadata is attached to file content, not file names, i.e. the git-annex key corresponding to the content of a file, not to a particular
filename on a particular git branch. This means that all files with the same key share the same metadata, which is stored in the git-annex branch. If
a file is modified, the metadata of the previous version will be copied to the new key when git-annex adds the modified file.

24 Chapter 2. Overview

Datalad Gooey, Release 0.2.0+43.g5bd6b92

2.7 Setting Metadata

Coming soon - stay tuned!

2.7. Setting Metadata 25

Datalad Gooey, Release 0.2.0+43.g5bd6b92

26 Chapter 2. Overview

CHAPTER

THREE

COMMANDS AND API

3.1 Command line reference

This module reference extends the manual with an overview of the available functionality built into datalad gooey.
Please note that apart from the main command, the commands this module provides are internal helpers used within
DataLad Gooey for fast annotations and file tree overviews. Unlike the DataLad core package or its extensions, the
commands provided by DataLad Gooey are thus not intended to be used directly.

3.1.1 datalad gooey

Synopsis

datalad gooey [-h] [-p PATH] [--postinstall] [--version]

Description

DataLad GUI

Long description of arbitrary volume.

Examples

Launch the DataLad Graphical User Interface (GUI, a.k.a Gooey) at the specified location.:

% datalad gooey --path 'path/to/root/explorer/directory'

Options

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

27

Datalad Gooey, Release 0.2.0+43.g5bd6b92

-p PATH, --path PATH

The root location from which the Gooey file explorer will be launched (default is current working directory).

--postinstall

Perform post-installation tasks.

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

3.1.2 datalad gooey-askpass

Synopsis

datalad gooey-askpass [-h] [--version]

Description

Internal helper for datalad-gooey

Options

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

28 Chapter 3. Commands and API

mailto:team@datalad.org
mailto:team@datalad.org

Datalad Gooey, Release 0.2.0+43.g5bd6b92

3.1.3 datalad gooey-lsdir

Synopsis

datalad gooey-lsdir [-h] [--version] path

Description

Internal helper for datalad-gooey

Options

path

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

3.1.4 datalad gooey-status-light

Synopsis

datalad gooey-status-light [-h] [-d DATASET] [--version] path

Description

Internal helper for datalad-gooey

Options

path

-h, --help, --help-np

show this help message. --help-np forcefully disables the use of a pager for displaying the help message

3.1. Command line reference 29

mailto:team@datalad.org

Datalad Gooey, Release 0.2.0+43.g5bd6b92

-d DATASET, --dataset DATASET

specify the dataset to query. If no dataset is given, an attempt is made to identify the dataset based on the current
working directory. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be
NONE

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

3.2 Python module reference

This module reference extends the manual with an overview of the available functionality built into datalad gooey.
Please note that apart from the main command, the commands this module provides are internal helpers used within
DataLad Gooey for fast annotations and file tree overviews. Unlike the DataLad core package or its extensions, the
commands provided by DataLad Gooey are thus not intended to be used directly.

gooey([path, postinstall]) DataLad GUI
gooey_askpass() Internal helper for datalad-gooey
gooey_lsdir(path) Internal helper for datalad-gooey
gooey_status_light([dataset, path]) Internal helper for datalad-gooey

3.2.1 datalad.api.gooey

datalad.api.gooey(path: str = None, postinstall: bool = False)
DataLad GUI

Long description of arbitrary volume.

Examples

Launch the DataLad Graphical User Interface (GUI, a.k.a Gooey) at the specified location.:

> gooey(path='path/to/root/explorer/directory')

Parameters

• path -- The root location from which the Gooey file explorer will be launched (default is
current working directory). [Default: None]

• postinstall (bool, optional) -- Perform post-installation tasks. [Default: False]

30 Chapter 3. Commands and API

mailto:team@datalad.org

Datalad Gooey, Release 0.2.0+43.g5bd6b92

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception is
raised. A failure is any result with status 'impossible' or 'error'. Raised exception is an In-
completeResultsError that carries the result dictionaries of the failures in its failed attribute.
[Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned status
dictionary is passed to this callable, and is only returned if the callable's return value does not
evaluate to False or a ValueError exception is raised. If the given callable supports **kwargs
it will additionally be passed the keyword arguments of the original API call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an optional
message); 'json' a complete JSON line serialization of the full result record; 'json_pp' like
'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering entirely;
'<template>' reports any value(s) of any result properties in any format indicated by the tem-
plate (e.g. '{path}', compare with JSON output for all key-value choices). The template
syntax follows the Python "format() language". It is possible to report individual dictionary
values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'music:Genre',
':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'. [Default:
'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned result
status dictionary is passed to this callable, and its return value becomes the result instead.
This is different from result_filter, as it can perform arbitrary transformation of the result
value. This is mostly useful for top- level command invocations that need to provide
the results in a particular format. Instead of a callable, a label for a pre-crafted result
transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return value
list, or a list in case of multiple return values. None is return in case of an empty list. [Default:
'list']

3.2.2 datalad.api.gooey_askpass

datalad.api.gooey_askpass()

Internal helper for datalad-gooey

3.2.3 datalad.api.gooey_lsdir

datalad.api.gooey_lsdir(path: Path)
Internal helper for datalad-gooey

Parameters

• path --

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any

3.2. Python module reference 31

Datalad Gooey, Release 0.2.0+43.g5bd6b92

failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception is
raised. A failure is any result with status 'impossible' or 'error'. Raised exception is an In-
completeResultsError that carries the result dictionaries of the failures in its failed attribute.
[Default: 'continue']

• result_filter (callable or None, optional) -- if given, each to-be-returned status
dictionary is passed to this callable, and is only returned if the callable's return value does not
evaluate to False or a ValueError exception is raised. If the given callable supports **kwargs
it will additionally be passed the keyword arguments of the original API call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an optional
message); 'json' a complete JSON line serialization of the full result record; 'json_pp' like
'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering entirely;
'<template>' reports any value(s) of any result properties in any format indicated by the tem-
plate (e.g. '{path}', compare with JSON output for all key-value choices). The template
syntax follows the Python "format() language". It is possible to report individual dictionary
values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'music:Genre',
':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'. [Default:
'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned result
status dictionary is passed to this callable, and its return value becomes the result instead.
This is different from result_filter, as it can perform arbitrary transformation of the result
value. This is mostly useful for top- level command invocations that need to provide
the results in a particular format. Instead of a callable, a label for a pre-crafted result
transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return value
list, or a list in case of multiple return values. None is return in case of an empty list. [Default:
'list']

3.2.4 datalad.api.gooey_status_light

datalad.api.gooey_status_light(dataset=None, path: Path = None)
Internal helper for datalad-gooey

Parameters

• dataset (Dataset or None, optional) -- specify the dataset to query. If no dataset
is given, an attempt is made to identify the dataset based on the current working directory.
[Default: None]

• path -- [Default: None]

• on_failure ({'ignore', 'continue', 'stop'}, optional) -- behavior to perform on
failure: 'ignore' any failure is reported, but does not cause an exception; 'continue' if any
failure occurs an exception will be raised at the end, but processing other actions will con-
tinue for as long as possible; 'stop': processing will stop on first failure and an exception is
raised. A failure is any result with status 'impossible' or 'error'. Raised exception is an In-
completeResultsError that carries the result dictionaries of the failures in its failed attribute.
[Default: 'continue']

32 Chapter 3. Commands and API

Datalad Gooey, Release 0.2.0+43.g5bd6b92

• result_filter (callable or None, optional) -- if given, each to-be-returned status
dictionary is passed to this callable, and is only returned if the callable's return value does not
evaluate to False or a ValueError exception is raised. If the given callable supports **kwargs
it will additionally be passed the keyword arguments of the original API call. [Default: None]

• result_renderer -- select rendering mode command results. 'tailored' enables a
command- specific rendering style that is typically tailored to human consumption, if there
is one for a specific command, or otherwise falls back on the the 'generic' result renderer;
'generic' renders each result in one line with key info like action, status, path, and an optional
message); 'json' a complete JSON line serialization of the full result record; 'json_pp' like
'json', but pretty-printed spanning multiple lines; 'disabled' turns off result rendering entirely;
'<template>' reports any value(s) of any result properties in any format indicated by the tem-
plate (e.g. '{path}', compare with JSON output for all key-value choices). The template
syntax follows the Python "format() language". It is possible to report individual dictionary
values, e.g. '{metadata[name]}'. If a 2nd-level key contains a colon, e.g. 'music:Genre',
':' must be substituted by '#' in the template, like so: '{metadata[music#Genre]}'. [Default:
'tailored']

• result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths',
'metadata'} or callable or None, optional) -- if given, each to-be-returned result
status dictionary is passed to this callable, and its return value becomes the result instead.
This is different from result_filter, as it can perform arbitrary transformation of the result
value. This is mostly useful for top- level command invocations that need to provide
the results in a particular format. Instead of a callable, a label for a pre-crafted result
transformation can be given. [Default: None]

• return_type ({'generator', 'list', 'item-or-list'}, optional) -- return value
behavior switch. If 'item-or-list' a single value is returned instead of a one-item return value
list, or a list in case of multiple return values. None is return in case of an empty list. [Default:
'list']

3.2. Python module reference 33

Datalad Gooey, Release 0.2.0+43.g5bd6b92

34 Chapter 3. Commands and API

INDEX

A
annex, 13
annexed-file, 13

B
branch, 13

C
clone, 13
commit, 13
commit message, 13

D
DataLad dataset, 13
DataLad extension, 13
DataLad subdataset, 14
DataLad superdataset, 14
drop, 14

G
get, 14
GIN, 14
Git, 14
git-annex, 14
git-annex branch, 14
GitHub, 14
GitLab, 14
gooey() (in module datalad.api), 30
gooey_askpass() (in module datalad.api), 31
gooey_lsdir() (in module datalad.api), 31
gooey_status_light() (in module datalad.api), 32

H
https, 14

P
pip, 14

R
remote, 14

S
sibling, 15
SSH, 14
SSH key, 14

V
version control, 15

35

	What DataLad Gooey is not
	Overview
	Installation
	Installing via PyPI
	Installing on Windows
	Installing on Linux
	Installing on macOS

	Getting started
	Initial configuration
	Application Overview
	The User Interface
	Running a DataLad command
	Navigation
	The View Menu
	The Utilities and Help Menu

	Central Concepts (Glossary)
	Walk-through: Dataset hosting on GIN
	Prerequisites
	Create a dataset
	Save the contents
	Create a GIN sibling
	Push to the GIN sibling
	Retrieve the data from GIN

	Credential management with DataLad Gooey
	Setting git-annex metadata
	Input validation

	Setting Metadata

	Commands and API
	Command line reference
	datalad gooey
	Synopsis
	Description
	Options
	-h, --help, --help-np
	-p PATH, --path PATH
	--postinstall
	--version

	Authors

	datalad gooey-askpass
	Synopsis
	Description
	Options
	-h, --help, --help-np
	--version

	Authors

	datalad gooey-lsdir
	Synopsis
	Description
	Options
	path
	-h, --help, --help-np
	--version

	Authors

	datalad gooey-status-light
	Synopsis
	Description
	Options
	path
	-h, --help, --help-np
	-d DATASET, --dataset DATASET
	--version

	Authors

	Python module reference
	datalad.api.gooey
	datalad.api.gooey_askpass
	datalad.api.gooey_lsdir
	datalad.api.gooey_status_light

	Index

