

DataLad — data management and publication multitool

Welcome to DataLad’s technical documentation. Information here is targeting
software developers and is focused on the Python API and CLI, as well
as software design, employed technologies, and key features. Comprehensive
user documentation with information on installation, basic operation,
support, and (advanced) use case descriptions is available in the DataLad
handbook [http://handbook.datalad.org].

Content

	Change log

	Acknowledgments

	Publications

Concepts and technologies

	Background and motivation
	Vision

	Technological foundation: git-annex

	Objective

	Delineation from related solutions
	Data catalogs

	Data delivery/management middleware

	Git/Git-annex/DataLad

	Basic principles
	Datasets

	Basic command line usage

	API principles

	Credentials
	Integration with Git

	Let Git query DataLad

	Let DataLad query Git

	Customization and extension of functionality
	Using an extension

	Writing your own extensions

	Design
	Command line interface

	Provenance capture

	Application-type vs. library-type usage

	File URL handling

	Result records

	dataset argument

	Log levels

	Drop dataset components

	Python import statements

	Miscellaneous patterns

	Exception handling

	Credential management

	URL substitution

	Threaded runner

	BatchedCommand and BatchedAnnex

	Standard parameters

	Positional vs Keyword parameters

	Docstrings

	Progress reporting

	GitHub Action

	Continuous integration and testing

	User messaging: result records vs exceptions vs logging

	Glossary

Commands and API

	Command line reference
	Main command

	Core commands

	Extended set of functionality

	Python module reference
	High-level user interface

	Support functionality

	Configuration management

	Test infrastructure

	Command interface

	Command line interface infrastructure

	Configuration
	Global user configuration

	Local repository configuration

	Sticky dataset configuration

	Miscellaneous configuration

Extension packages

DataLad can be customized and additional functionality can be integrated via
extensions. Each extension provides its own documentation:

	Crawling web resources and automated data distributions [http://docs.datalad.org/projects/crawler]

	Neuroimaging data and workflows [http://docs.datalad.org/projects/neuroimaging]

	Containerized computational environments [http://docs.datalad.org/projects/container]

	Advanced metadata tooling with JSON-LD reporting and additional metadata extractors [http://docs.datalad.org/projects/metalad]

	Staged additions, performance and user experience improvements for DataLad [http://docs.datalad.org/projects/next]

	Resources for working with the UKBiobank as a DataLad dataset [http://docs.datalad.org/projects/ukbiobank]

	Deposit and retrieve DataLad datasets via the Open Science Framework [http://docs.datalad.org/projects/osf]

	Functionality that has been phased out of the core package [http://docs.datalad.org/projects/deprecated]

	Special interest functionality or drafts of future additions to DataLad proper [http://docs.datalad.org/projects/mihextras]

Indices and tables

	Index

	Module Index

	Search Page

Change log

1.1.3 (2024-08-08)

Tests

	Account for the fix in git-annex behavior in
test_add_delete_after_and_drop_subdir. PR
#7640 [https://github.com/datalad/datalad/pull/7640] (by
@yarikoptic [https://github.com/yarikoptic])

1.1.2 (2024-07-25)

Bug Fixes

	Correct remote OS detection when working with RIA (ORA) stores: this
should enable RIA operations, including push, from Mac clients to
Linux hosts (and likely vice versa). Fixes
#7536 [https://github.com/datalad/datalad/issues/7536] via PR
#7549 [https://github.com/datalad/datalad/pull/7549] (by
@mslw [https://github.com/mslw])

	Allow only one thread in S3 downloader’s progress report callback.
PR #7636 [https://github.com/datalad/datalad/pull/7636] (by
@christian-monch [https://github.com/christian-monch])

1.1.1 (2024-07-03)

Bug Fixes

	Ensure timestamps of files in ZIP archives are within years
1980-2107. Fixes
#3753 [https://github.com/datalad/datalad/issues/3753] via PR
#7450 [https://github.com/datalad/datalad/pull/7450] (by
@adswa [https://github.com/adswa])

Documentation

	Update README.md: improve wording. PR
#7550 [https://github.com/datalad/datalad/pull/7550] (by
@alliesw [https://github.com/alliesw])

Internal

	Add codespell and minor fixuppers to pre-commit configuration and
apply it to non-datalad/ components. PR
#7621 [https://github.com/datalad/datalad/pull/7621] (by
@yarikoptic [https://github.com/yarikoptic])

Tests

	For appveyor ssh setup, setup MaxSessions 100 to avoid ‘channel 22:
open failed: connect failed: open failed’. PR
#7617 [https://github.com/datalad/datalad/pull/7617] (by
@yarikoptic [https://github.com/yarikoptic])

	test_gracefull_death: raise test_gracefull_death threshold to 300
from 100. PR #7619 [https://github.com/datalad/datalad/pull/7619]
(by @yarikoptic [https://github.com/yarikoptic])

	Make test for presence of max_path in partitions not run for current
psutil 6.0.0. PR
#7622 [https://github.com/datalad/datalad/pull/7622] (by
@yarikoptic [https://github.com/yarikoptic])

1.1.0 (2024-06-06)

Dependencies

	Deprecated boto is replaced with boto3 (used to handle AWS S3
downloads). Fixes
#5597 [https://github.com/datalad/datalad/issues/5597] via PR
#7340 [https://github.com/datalad/datalad/pull/7340] (by
@mslw [https://github.com/mslw],
@effigies [https://github.com/effigies], and
@yarikoptic [https://github.com/yarikoptic]). Remaining issues:

	no download progress indication,

	no “Range” support (for partial downloads).

Internal

	Retry logic for S3 connections is now handed over to Boto3 and its
standard mode, removing our custom method. PR
#7340 [https://github.com/datalad/datalad/pull/7340]

1.0.3 (2024-06-06)

Bug Fixes

	Raise exception if an annex remote process without console tries to
interact with the user, e.g. prompt for a password. PR
#7578 [https://github.com/datalad/datalad/pull/7578] (by
@christian-monch [https://github.com/christian-monch])

	Fix add-archive-content for patool>=2.0. PR
#7603 [https://github.com/datalad/datalad/pull/7603] (by
@dguibert [https://github.com/dguibert])

Internal

	Fixup minor typos in documentation/comments using fresh codespell.
PR #7610 [https://github.com/datalad/datalad/pull/7610] (by
@yarikoptic [https://github.com/yarikoptic])

Tests

	Stop testing on Python 3.7. Switch MacOS tests to 3.11, include 3.11
in Appveyor, and use 3.8 for other tests. Fixes
#7584 [https://github.com/datalad/datalad/issues/7584] via PR
#7585 [https://github.com/datalad/datalad/pull/7585] (by
@mslw [https://github.com/mslw])

	Convert .travis.yml to GitHub Actions workflow. Fixes
#7574 [https://github.com/datalad/datalad/issues/7574] via PR
#7600 [https://github.com/datalad/datalad/pull/7600] (by
@jwodder [https://github.com/jwodder])

	Cancel lengthy running workflows if a new commit is pushed. PR
#7601 [https://github.com/datalad/datalad/pull/7601] (by
@jwodder [https://github.com/jwodder])

1.0.2 (2024-04-19)

Tests

	Relax condition in test_force_checkdatapresent to avoid flaky
test failures. PR
#7581 [https://github.com/datalad/datalad/pull/7581] (by
@christian-monch [https://github.com/christian-monch])

1.0.1 (2024-04-17)

Internal

	The main entrypoint for annex remotes now also runs the standard
extension load hook. This enables extensions to alter annex remote
implementation behavior in the same way than other DataLad
components. (by @mih [https://github.com/mih])

1.0.0 (2024-04-06)

Breaking Changes

	Merging maint to make the first major release. PR
#7577 [https://github.com/datalad/datalad/pull/7577] (by
@yarikoptic [https://github.com/yarikoptic])

Enhancements and New Features

	Increase minimal Git version to 2.25. Fixes
#7389 [https://github.com/datalad/datalad/issues/7389] via PR
#7431 [https://github.com/datalad/datalad/pull/7431] (by
@adswa [https://github.com/adswa])

0.19.6 (2024-02-02)

Enhancements and New Features

	Add the “http_token” authentication mechanism which provides
‘Authentication: Token {TOKEN}’ header. PR
#7551 [https://github.com/datalad/datalad/pull/7551] (by
@yarikoptic [https://github.com/yarikoptic])

Internal

	Update pytest_ignore_collect() for pytest 8.0. PR
#7546 [https://github.com/datalad/datalad/pull/7546] (by
@jwodder [https://github.com/jwodder])

	Add manual triggering support/documentation for release workflow. PR
#7553 [https://github.com/datalad/datalad/pull/7553] (by
@yarikoptic [https://github.com/yarikoptic])

0.19.5 (2023-12-28)

Tests

	Fix text to account for a recent change in git-annex dropping
sub-second clock precision. As a result we might not report push of
git-annex branch since there would be none. PR
#7544 [https://github.com/datalad/datalad/pull/7544] (by
@yarikoptic [https://github.com/yarikoptic])

0.19.4 (2023-12-13)

Bug Fixes

	Update target detection for adjusted mode datasets has been improved.
Fixes #7507 [https://github.com/datalad/datalad/issues/7507] via
PR #7522 [https://github.com/datalad/datalad/pull/7522] (by
@mih [https://github.com/mih])

	Fix typos found by new codespell 2.2.6 and also add checking/fixing
“hidden files”. PR
#7530 [https://github.com/datalad/datalad/pull/7530] (by
@yarikoptic [https://github.com/yarikoptic])

Documentation

	Improve threaded-runner documentation. Fixes
#7498 [https://github.com/datalad/datalad/issues/7498] via PR
#7500 [https://github.com/datalad/datalad/pull/7500] (by
@christian-monch [https://github.com/christian-monch])

Internal

	add RRID to package metadata. PR
#7495 [https://github.com/datalad/datalad/pull/7495] (by
@adswa [https://github.com/adswa])

	Fix time_diff* and time_remove benchmarks to account for long RFed
interfaces. PR
#7502 [https://github.com/datalad/datalad/pull/7502] (by
@yarikoptic [https://github.com/yarikoptic])

Tests

	Cache value of the has_symlink_capability to spare some cycles. PR
#7471 [https://github.com/datalad/datalad/pull/7471] (by
@yarikoptic [https://github.com/yarikoptic])

	RF(TST): use setup_method and teardown_method in
TestAddArchiveOptions. PR
#7488 [https://github.com/datalad/datalad/pull/7488] (by
@yarikoptic [https://github.com/yarikoptic])

	Announce test_clone_datasets_root xfail on github osx. PR
#7489 [https://github.com/datalad/datalad/pull/7489] (by
@yarikoptic [https://github.com/yarikoptic])

	Inform asv that there should be no warmup runs for time_remove
benchmark. PR
#7505 [https://github.com/datalad/datalad/pull/7505] (by
@yarikoptic [https://github.com/yarikoptic])

	BF(TST): Relax matching of git-annex error message about unsafe drop,
which was changed in 10.20231129-18-gfd0b510573. PR
#7541 [https://github.com/datalad/datalad/pull/7541] (by
@yarikoptic [https://github.com/yarikoptic])

0.19.3 (2023-08-10)

Bug Fixes

	Type annotate get_status_dict and note that we can pass Exception or
CapturedException which is not subclass. PR
#7403 [https://github.com/datalad/datalad/pull/7403] (by
@yarikoptic [https://github.com/yarikoptic])

	BF: create-sibling-gitlab used to raise a TypeError when attempting a
recursive operation in a dataset with uninstalled subdatasets. It now
raises an impossible result instead. PR
#7430 [https://github.com/datalad/datalad/pull/7430] (by
@adswa [https://github.com/adswa])

	Pass branch option into recursive call within Install - for the cases
whenever install is invoked with URL(s). Fixes
#7461 [https://github.com/datalad/datalad/issues/7461] via PR
#7463 [https://github.com/datalad/datalad/pull/7463] (by
@yarikoptic [https://github.com/yarikoptic])

	Allow for reckless=ephemeral clone using relative path for the
original location. Fixes
#7469 [https://github.com/datalad/datalad/issues/7469] via PR
#7472 [https://github.com/datalad/datalad/pull/7472] (by
@yarikoptic [https://github.com/yarikoptic])

Documentation

	Fix a property name and default costs described in “getting
subdatasets” section of get documentation. Fixes
#7458 [https://github.com/datalad/datalad/issues/7458] via PR
#7460 [https://github.com/datalad/datalad/pull/7460] (by
@mslw [https://github.com/mslw])

Internal

	Copy an adjusted environment only if requested to do so. PR
#7399 [https://github.com/datalad/datalad/pull/7399] (by
@christian-monch [https://github.com/christian-monch])

	Eliminate uses of pkg_resources. Fixes
#7435 [https://github.com/datalad/datalad/issues/7435] via PR
#7439 [https://github.com/datalad/datalad/pull/7439] (by
@jwodder [https://github.com/jwodder])

Tests

	Disable some S3 tests of their VCR taping where they fail for known
issues. PR #7467 [https://github.com/datalad/datalad/pull/7467]
(by @yarikoptic [https://github.com/yarikoptic])

0.19.2 (2023-07-03)

Bug Fixes

	Remove surrounding quotes in output filenames even for newer version
of annex. Fixes
#7440 [https://github.com/datalad/datalad/issues/7440] via PR
#7443 [https://github.com/datalad/datalad/pull/7443] (by
@yarikoptic [https://github.com/yarikoptic])

Documentation

	DOC: clarify description of the “install” interface to reflect its
convoluted behavior. PR
#7445 [https://github.com/datalad/datalad/pull/7445] (by
@yarikoptic [https://github.com/yarikoptic])

0.19.1 (2023-06-26)

Internal

	Make compatible with upcoming release of git-annex (next after
10.20230407) and pass explicit core.quotepath=false to all git calls.
Also added tools/find-hanged-tests helper. PR
#7372 [https://github.com/datalad/datalad/pull/7372] (by
@yarikoptic [https://github.com/yarikoptic])

Tests

	Adjust tests for upcoming release of git-annex (next after
10.20230407) and ignore DeprecationWarning for pkg_resources for now.
PR #7372 [https://github.com/datalad/datalad/pull/7372] (by
@yarikoptic [https://github.com/yarikoptic])

0.19.0 (2023-06-14)

Enhancements and New Features

	Address gitlab API special character restrictions. PR
#7407 [https://github.com/datalad/datalad/pull/7407] (by
@jsheunis [https://github.com/jsheunis])

	BF: The default layout of create-sibling-gitlab is now
collection. The previous default, hierarchy has been removed
as it failed in –recursive mode in different edgecases. For
single-level datasets, the outcome of collection and
hierarchy is identical. PR
#7410 [https://github.com/datalad/datalad/pull/7410] (by
@jsheunis [https://github.com/jsheunis] and
@adswa [https://github.com/adswa])

Bug Fixes

	WTF - bring back and extend information on metadata extractors etc,
and allow for sections to have subsections and be selected at both
levels PR #7309 [https://github.com/datalad/datalad/pull/7309]
(by @yarikoptic [https://github.com/yarikoptic])

	BF: Run an actual git invocation with interactive commit config. PR
#7398 [https://github.com/datalad/datalad/pull/7398] (by
@adswa [https://github.com/adswa])

Dependencies

	Raise minimal version of tqdm (progress bars) to v.4.32.0 PR
#7330 [https://github.com/datalad/datalad/pull/7330] (by
@mslw [https://github.com/mslw])

Documentation

	DOC: Add a “User messaging” design doc. PR
#7310 [https://github.com/datalad/datalad/pull/7310] (by
@jsheunis [https://github.com/jsheunis])

Tests

	Remove nose-based testing utils and possibility to test extensions
using nose. PR
#7261 [https://github.com/datalad/datalad/pull/7261] (by
@yarikoptic [https://github.com/yarikoptic])

0.18.5 (2023-06-13)

Bug Fixes

	More correct summary reporting for relaxed (no size) –annex. PR
#7050 [https://github.com/datalad/datalad/pull/7050] (by
@yarikoptic [https://github.com/yarikoptic])

	ENH: minor tune up of addurls to be more tolerant and “informative”.
PR #7388 [https://github.com/datalad/datalad/pull/7388] (by
@yarikoptic [https://github.com/yarikoptic])

	Ensure that data generated by timeout handlers in the asynchronous
runner are accessible via the result generator, even if no other
other events occur. PR
#7390 [https://github.com/datalad/datalad/pull/7390] (by
@christian-monch [https://github.com/christian-monch])

	Do not map (leave as is) trailing / or in github URLs. PR
#7418 [https://github.com/datalad/datalad/pull/7418] (by
@yarikoptic [https://github.com/yarikoptic])

Documentation

	Use sphinx_autodoc_typehints. Fixes
#7404 [https://github.com/datalad/datalad/issues/7404] via PR
#7412 [https://github.com/datalad/datalad/pull/7412] (by
@jwodder [https://github.com/jwodder])

Internal

	Discontinue ConfigManager abuse for Git identity warning. PR
#7378 [https://github.com/datalad/datalad/pull/7378] (by
@mih [https://github.com/mih]) and PR
#7392 [https://github.com/datalad/datalad/pull/7392] (by
@yarikoptic [https://github.com/yarikoptic])

Tests

	Boost python to 3.8 during extensions testing. PR
#7413 [https://github.com/datalad/datalad/pull/7413] (by
@yarikoptic [https://github.com/yarikoptic])

	Skip test_system_ssh_version if no ssh found + split parsing into
separate test. PR
#7422 [https://github.com/datalad/datalad/pull/7422] (by
@yarikoptic [https://github.com/yarikoptic])

0.18.4 (2023-05-16)

Bug Fixes

	Provider config files were ignored, when CWD changed between
different datasets during runtime. Fixes
#7347 [https://github.com/datalad/datalad/issues/7347] via PR
#7357 [https://github.com/datalad/datalad/pull/7357] (by
@bpoldrack [https://github.com/bpoldrack])

Documentation

	Added a workaround for an issue with documentation theme (search
function not working on Read the Docs). Fixes
#7374 [https://github.com/datalad/datalad/issues/7374] via PR
#7385 [https://github.com/datalad/datalad/pull/7385] (by
@mslw [https://github.com/mslw])

Internal

	Type-annotate datalad/support/gitrepo.py. PR
#7341 [https://github.com/datalad/datalad/pull/7341] (by
@jwodder [https://github.com/jwodder])

Tests

	Fix failing testing on CI PR
#7379 [https://github.com/datalad/datalad/pull/7379] (by
@yarikoptic [https://github.com/yarikoptic])

	use sample S3 url DANDI archive,

	use our copy of old .deb from datasets.datalad.org instead of
snapshots.d.o

	use specific miniconda installer for py 3.7.

0.18.3 (2023-03-25)

Bug Fixes

	Fixed that the get command would fail, when subdataset
source-candidate-templates where using the path property from
.gitmodules. Also enhance the respective documentation for the
get command. Fixes
#7274 [https://github.com/datalad/datalad/issues/7274] via PR
#7280 [https://github.com/datalad/datalad/pull/7280] (by
@bpoldrack [https://github.com/bpoldrack])

	Improve up-to-dateness of config reports across manager instances.
Fixes #7299 [https://github.com/datalad/datalad/issues/7299] via
PR #7301 [https://github.com/datalad/datalad/pull/7301] (by
@mih [https://github.com/mih])

	BF: GitRepo.merge do not allow merging unrelated unconditionally. PR
#7312 [https://github.com/datalad/datalad/pull/7312] (by
@yarikoptic [https://github.com/yarikoptic])

	Do not render (empty) WTF report on other records. PR
#7322 [https://github.com/datalad/datalad/pull/7322] (by
@yarikoptic [https://github.com/yarikoptic])

	Fixed a bug where changing DataLad’s log level could lead to failing
git-annex calls. Fixes
#7328 [https://github.com/datalad/datalad/issues/7328] via PR
#7329 [https://github.com/datalad/datalad/pull/7329] (by
@bpoldrack [https://github.com/bpoldrack])

	Fix an issue with uninformative error reporting by the datalad
special remote. Fixes
#7332 [https://github.com/datalad/datalad/issues/7332] via PR
#7333 [https://github.com/datalad/datalad/pull/7333] (by
@bpoldrack [https://github.com/bpoldrack])

	Fix save to not force committing into git if reference dataset is
pure git (not git-annex). Fixes
#7351 [https://github.com/datalad/datalad/issues/7351] via PR
#7355 [https://github.com/datalad/datalad/pull/7355] (by
@yarikoptic [https://github.com/yarikoptic])

Documentation

	Include a few previously missing commands in html API docs. Fixes
#7288 [https://github.com/datalad/datalad/issues/7288] via PR
#7289 [https://github.com/datalad/datalad/pull/7289] (by
@mslw [https://github.com/mslw])

Internal

	Type-annotate almost all of datalad/utils.py; add
datalad/typing.py. PR
#7317 [https://github.com/datalad/datalad/pull/7317] (by
@jwodder [https://github.com/jwodder])

	Type-annotate and fix datalad/support/strings.py. PR
#7318 [https://github.com/datalad/datalad/pull/7318] (by
@jwodder [https://github.com/jwodder])

	Type-annotate datalad/support/globbedpaths.py. PR
#7327 [https://github.com/datalad/datalad/pull/7327] (by
@jwodder [https://github.com/jwodder])

	Extend type-annotations for datalad/support/path.py. PR
#7336 [https://github.com/datalad/datalad/pull/7336] (by
@jwodder [https://github.com/jwodder])

	Type-annotate various things in datalad/runner/. PR
#7337 [https://github.com/datalad/datalad/pull/7337] (by
@jwodder [https://github.com/jwodder])

	Type-annotate some more files in datalad/support/. PR
#7339 [https://github.com/datalad/datalad/pull/7339] (by
@jwodder [https://github.com/jwodder])

Tests

	Skip or xfail some currently failing or stalling tests. PR
#7331 [https://github.com/datalad/datalad/pull/7331] (by
@yarikoptic [https://github.com/yarikoptic])

	Skip with_sameas_remote when rsync and annex are incompatible. Fixes
#7320 [https://github.com/datalad/datalad/issues/7320] via PR
#7342 [https://github.com/datalad/datalad/pull/7342] (by
@bpoldrack [https://github.com/bpoldrack])

	Fix testing assumption - do create pure GitRepo superdataset and test
against it. PR
#7353 [https://github.com/datalad/datalad/pull/7353] (by
@yarikoptic [https://github.com/yarikoptic])

0.18.2 (2023-02-27)

Bug Fixes

	Fix create-sibling for non-English SSH remotes by providing
LC_ALL=C for the ls call. PR
#7265 [https://github.com/datalad/datalad/pull/7265] (by
@nobodyinperson [https://github.com/nobodyinperson])

	Fix EnsureListOf() and EnsureTupleOf() for string inputs. PR
#7267 [https://github.com/datalad/datalad/pull/7267] (by
@nobodyinperson [https://github.com/nobodyinperson])

	create-sibling: Use C.UTF-8 locale instead of C on the remote end.
PR #7273 [https://github.com/datalad/datalad/pull/7273] (by
@nobodyinperson [https://github.com/nobodyinperson])

	Address compatibility with most recent git-annex where info would
exit with non-0. PR
#7292 [https://github.com/datalad/datalad/pull/7292] (by
@yarikoptic [https://github.com/yarikoptic])

Dependencies

	Revert “Revert”Remove chardet version upper limit””. PR
#7263 [https://github.com/datalad/datalad/pull/7263] (by
@yarikoptic [https://github.com/yarikoptic])

Internal

	Codespell more (CHANGELOGs etc) and remove custom CLI options from
tox.ini. PR #7271 [https://github.com/datalad/datalad/pull/7271]
(by @yarikoptic [https://github.com/yarikoptic])

Tests

	Use older python 3.8 in testing nose utils in github-action
test-nose. Fixes
#7259 [https://github.com/datalad/datalad/issues/7259] via PR
#7260 [https://github.com/datalad/datalad/pull/7260] (by
@yarikoptic [https://github.com/yarikoptic])

0.18.1 (2023-01-16)

Bug Fixes

	Fixes crashes on windows where DataLad was mistaking git-annex
10.20221212 for a not yet released git-annex version and trying to
use a new feature. Fixes
#7248 [https://github.com/datalad/datalad/issues/7248] via PR
#7249 [https://github.com/datalad/datalad/pull/7249] (by
@bpoldrack [https://github.com/bpoldrack])

Documentation

	DOC: fix EnsureCallable docstring. PR
#7245 [https://github.com/datalad/datalad/pull/7245] (by
@matrss [https://github.com/matrss])

Performance

	Integrate buffer size optimization from datalad-next, leading to
significant performance improvement for status and diff. Fixes
#7190 [https://github.com/datalad/datalad/issues/7190] via PR
#7250 [https://github.com/datalad/datalad/pull/7250] (by
@bpoldrack [https://github.com/bpoldrack])

0.18.0 (2022-12-31)

Breaking Changes

	Move all old-style metadata commands aggregate_metadata,
search, metadata and extract-metadata, as well as the
cfg_metadatatypes procedure and the old metadata extractors into
the datalad-deprecated extension. Now recommended way of handling
metadata is to install the datalad-metalad extension instead. Fixes
#7012 [https://github.com/datalad/datalad/issues/7012] via PR
#7014 [https://github.com/datalad/datalad/pull/7014]

	Automatic reconfiguration of the ORA special remote when cloning from
RIA stores now only applies locally rather than being committed. PR
#7235 [https://github.com/datalad/datalad/pull/7235] (by
@bpoldrack [https://github.com/bpoldrack])

Enhancements and New Features

	A repository description can be specified with a new
--description option when creating siblings using
create-sibling-[gin|gitea|github|gogs]. Fixes
#6816 [https://github.com/datalad/datalad/issues/6816] via PR
#7109 [https://github.com/datalad/datalad/pull/7109] (by
@mslw [https://github.com/mslw])

	Make validation failure of alternative constraints more informative.
Fixes #7092 [https://github.com/datalad/datalad/issues/7092] via
PR #7132 [https://github.com/datalad/datalad/pull/7132] (by
@bpoldrack [https://github.com/bpoldrack])

	Saving removed dataset content was sped-up, and reporting of types of
removed content now accurately states dataset for added and
removed subdatasets, instead of file. Moreover, saving previously
staged deletions is now also reported. PR
#6784 [https://github.com/datalad/datalad/pull/6784] (by
@mih [https://github.com/mih])

	foreach-dataset command got a new possible value for the
–output-streamns|–o-s option ‘relpath’ to capture and pass-through
prefixing with path to subds. Very handy for e.g. running
git grep command across subdatasets. PR
#7071 [https://github.com/datalad/datalad/pull/7071] (by
@yarikoptic [https://github.com/yarikoptic])

	New config
datalad.create-sibling-ghlike.extra-remote-settings.NETLOC.KEY=VALUE
allows to add and/or overwrite local configuration for the created
sibling by the commands
create-sibling-<gin|gitea|github|gitlab|gogs>. PR
#7213 [https://github.com/datalad/datalad/pull/7213] (by
@matrss [https://github.com/matrss])

	The siblings command does not concern the user with messages
about inconsequential failure to annex-enable a remote anymore. PR
#7217 [https://github.com/datalad/datalad/pull/7217] (by
@bpoldrack [https://github.com/bpoldrack])

	ORA special remote now allows to override its configuration locally.
PR #7235 [https://github.com/datalad/datalad/pull/7235] (by
@bpoldrack [https://github.com/bpoldrack])

	Added a ‘ria’ special remote to provide backwards compatibility with
datasets that were set up with the deprecated
ria-remote [https://github.com/datalad/git-annex-ria-remote]. PR
#7235 [https://github.com/datalad/datalad/pull/7235] (by
@bpoldrack [https://github.com/bpoldrack])

Bug Fixes

	When create-sibling-ria was invoked with a sibling name of a
pre-existing sibling, a duplicate key in the result record caused a
crashed. Fixes
#6950 [https://github.com/datalad/datalad/issues/6950] via PR
#6952 [https://github.com/datalad/datalad/pull/6952] (by
@adswa [https://api.github.com/users/adswa])

Documentation

	create-sibling-ria’s docstring now defines the schema of RIA URLs and
clarifies internal layout of a RIA store. PR
#6861 [https://github.com/datalad/datalad/pull/6861] (by
@adswa [https://api.github.com/users/adswa])

	Move maintenance team info from issue to CONTRIBUTING. PR
#6904 [https://github.com/datalad/datalad/pull/6904] (by
@adswa [https://api.github.com/users/adswa])

	Describe specifications for a DataLad GitHub Action. PR
#6931 [https://github.com/datalad/datalad/pull/6931] (by
@thewtex [https://api.github.com/users/thewtex])

	Fix capitalization of some service names. PR
#6936 [https://github.com/datalad/datalad/pull/6936] (by
@aqw [https://api.github.com/users/aqw])

	Command categories in help text are more consistently named. PR
#7027 [https://github.com/datalad/datalad/pull/7027] (by
@aqw [https://api.github.com/users/aqw])

	DOC: Add design document on Tests and CI. PR
#7195 [https://github.com/datalad/datalad/pull/7195] (by
@adswa [https://github.com/adswa])

	CONTRIBUTING.md was extended with up-to-date information on CI
logging, changelog and release procedures. PR
#7204 [https://github.com/datalad/datalad/pull/7204] (by
@yarikoptic [https://github.com/yarikoptic])

Internal

	Allow EnsureDataset constraint to handle Path instances. Fixes
#7069 [https://github.com/datalad/datalad/issues/7069] via PR
#7133 [https://github.com/datalad/datalad/pull/7133] (by
@bpoldrack [https://github.com/bpoldrack])

	Use looseversion.LooseVersion as drop-in replacement for
distutils.version.LooseVersion Fixes
#6307 [https://github.com/datalad/datalad/issues/6307] via PR
#6839 [https://github.com/datalad/datalad/pull/6839] (by
@effigies [https://api.github.com/users/effigies])

	Use –pathspec-from-file where possible instead of passing long lists
of paths to git/git-annex calls. Fixes
#6922 [https://github.com/datalad/datalad/issues/6922] via PR
#6932 [https://github.com/datalad/datalad/pull/6932] (by
@yarikoptic [https://api.github.com/users/yarikoptic])

	Make clone_dataset() better patchable ny extensions and less
monolithic. PR
#7017 [https://github.com/datalad/datalad/pull/7017] (by
@mih [https://api.github.com/users/mih])

	Remove simplejson in favor of using json. Fixes
#7034 [https://github.com/datalad/datalad/issues/7034] via PR
#7035 [https://github.com/datalad/datalad/pull/7035] (by
@christian-monch [https://api.github.com/users/christian-monch])

	Fix an error in the command group names-test. PR
#7044 [https://github.com/datalad/datalad/pull/7044] (by
@christian-monch [https://api.github.com/users/christian-monch])

	Move eval_results() into interface.base to simplify imports for
command implementations. Deprecate use from interface.utils
accordingly. Fixes
#6694 [https://github.com/datalad/datalad/issues/6694] via PR
#7170 [https://github.com/datalad/datalad/pull/7170] (by
@adswa [https://github.com/adswa])

Performance

	Use regular dicts instead of OrderedDicts for speedier operations.
Fixes #6566 [https://github.com/datalad/datalad/issues/6566] via
PR #7174 [https://github.com/datalad/datalad/pull/7174] (by
@adswa [https://github.com/adswa])

	Reimplement get_submodules_() without get_content_info() for
substantial performance boosts especially for large datasets with few
subdatasets. Originally proposed in PR
#6942 [https://github.com/datalad/datalad/pull/6942] by
@mih [https://github.com/mih], fixing
#6940 [https://github.com/datalad/datalad/issues/6940]. PR
#7189 [https://github.com/datalad/datalad/pull/7189] (by
@adswa [https://github.com/adswa]). Complemented with PR
#7220 [https://github.com/datalad/datalad/pull/7220] (by
@yarikoptic [https://github.com/yarikoptic]) to avoid O(N^2)
(instead of O(N*log(N)) performance in some cases.

	Use –include=* or –anything instead of –copies 0 to speed up
get_content_annexinfo. PR
#7230 [https://github.com/datalad/datalad/pull/7230] (by
@yarikoptic [https://github.com/yarikoptic])

Tests

	Re-enable two now-passing core test on Windows CI. PR
#7152 [https://github.com/datalad/datalad/pull/7152] (by
@adswa [https://api.github.com/users/adswa])

	Remove the with_testrepos decorator and associated tests for it
Fixes #6752 [https://github.com/datalad/datalad/issues/6752] via
PR #7176 [https://github.com/datalad/datalad/pull/7176] (by
@adswa [https://api.github.com/users/adswa])

0.17.10 (2022-12-14)

Enhancements and New Features

	Enhance concurrent invocation behavior of ThreadedRunner.run().
If possible invocations are serialized instead of raising re-enter
runtime errors. Deadlock situations are detected and runtime errors
are raised instead of deadlocking. Fixes
#7138 [https://github.com/datalad/datalad/issues/7138] via PR
#7201 [https://github.com/datalad/datalad/pull/7201] (by
@christian-monch [https://github.com/christian-monch])

	Exceptions bubbling up through CLI are now reported on including
their chain of cause. Fixes
#7163 [https://github.com/datalad/datalad/issues/7163] via PR
#7210 [https://github.com/datalad/datalad/pull/7210] (by
@bpoldrack [https://github.com/bpoldrack])

Bug Fixes

	BF: read RIA config from stdin instead of temporary file. Fixes
#6514 [https://github.com/datalad/datalad/issues/6514] via PR
#7147 [https://github.com/datalad/datalad/pull/7147] (by
@adswa [https://github.com/adswa])

	Prevent doomed annex calls on files we already know are untracked.
Fixes #7032 [https://github.com/datalad/datalad/issues/7032] via
PR #7166 [https://github.com/datalad/datalad/pull/7166] (by
@adswa [https://github.com/adswa])

	Comply to Posix-like clone URL formats on Windows. Fixes
#7180 [https://github.com/datalad/datalad/issues/7180] via PR
#7181 [https://github.com/datalad/datalad/pull/7181] (by
@adswa [https://github.com/adswa])

	Ensure that paths used in the datalad-url field of .gitmodules are
posix. Fixes
#7182 [https://github.com/datalad/datalad/issues/7182] via PR
#7183 [https://github.com/datalad/datalad/pull/7183] (by
@adswa [https://github.com/adswa])

	Bandaids for export-to-figshare to restore functionality. PR
#7188 [https://github.com/datalad/datalad/pull/7188] (by
@adswa [https://github.com/adswa])

	Fixes hanging threads when close() or del where called in
BatchedCommand instances. That could lead to hanging tests if the
tests used the @serve_path_via_http()-decorator Fixes
#6804 [https://github.com/datalad/datalad/issues/6804] via PR
#7201 [https://github.com/datalad/datalad/pull/7201] (by
@christian-monch [https://github.com/christian-monch])

	Interpret file-URL path components according to the local operating
system as described in RFC 8089. With this fix,
datalad.network.RI('file:...').localpath returns a correct local
path on Windows if the RI is constructed with a file-URL. Fixes
#7186 [https://github.com/datalad/datalad/issues/7186] via PR
#7206 [https://github.com/datalad/datalad/pull/7206] (by
@christian-monch [https://github.com/christian-monch])

	Fix a bug when retrieving several files from a RIA store via SSH,
when the annex key does not contain size information. Fixes
#7214 [https://github.com/datalad/datalad/issues/7214] via PR
#7215 [https://github.com/datalad/datalad/pull/7215] (by
@mslw [https://github.com/mslw])

	Interface-specific (python vs CLI) doc generation for commands and
their parameters was broken when brackets were used within the
interface markups. Fixes
#7225 [https://github.com/datalad/datalad/issues/7225] via PR
#7226 [https://github.com/datalad/datalad/pull/7226] (by
@bpoldrack [https://github.com/bpoldrack])

Documentation

	Fix documentation of Runner.run() to not accept strings. Instead,
encoding must be ensured by the caller. Fixes
#7145 [https://github.com/datalad/datalad/issues/7145] via PR
#7155 [https://github.com/datalad/datalad/pull/7155] (by
@bpoldrack [https://github.com/bpoldrack])

Internal

	Fix import of the ls command from datalad-deprecated for
benchmarks. Fixes
#7149 [https://github.com/datalad/datalad/issues/7149] via PR
#7154 [https://github.com/datalad/datalad/pull/7154] (by
@bpoldrack [https://github.com/bpoldrack])

	Unify definition of parameter choices with datalad clean. Fixes
#7026 [https://github.com/datalad/datalad/issues/7026] via PR
#7161 [https://github.com/datalad/datalad/pull/7161] (by
@bpoldrack [https://github.com/bpoldrack])

Tests

	Fix test failure with old annex. Fixes
#7157 [https://github.com/datalad/datalad/issues/7157] via PR
#7159 [https://github.com/datalad/datalad/pull/7159] (by
@bpoldrack [https://github.com/bpoldrack])

	Re-enable now passing test_path_diff test on Windows. Fixes
#3725 [https://github.com/datalad/datalad/issues/3725] via PR
#7194 [https://github.com/datalad/datalad/pull/7194] (by
@yarikoptic [https://github.com/yarikoptic])

	Use Plaintext keyring backend in tests to avoid the need for
(interactive) authentication to unlock the keyring during (CI-) test
runs. Fixes
#6623 [https://github.com/datalad/datalad/issues/6623] via PR
#7209 [https://github.com/datalad/datalad/pull/7209] (by
@bpoldrack [https://github.com/bpoldrack])

0.17.9 (2022-11-07)

Bug Fixes

	Various small fixups ran after looking post-release and trying to
build Debian package. PR
#7112 [https://github.com/datalad/datalad/pull/7112] (by
@yarikoptic [https://github.com/yarikoptic])

	BF: Fix add-archive-contents try-finally statement by defining
variable earlier. PR
#7117 [https://github.com/datalad/datalad/pull/7117] (by
@adswa [https://github.com/adswa])

	Fix RIA file URL reporting in exception handling. PR
#7123 [https://github.com/datalad/datalad/pull/7123] (by
@adswa [https://github.com/adswa])

	HTTP download treated ‘429 - too many requests’ as an authentication
issue and was consequently trying to obtain credentials. Fixes
#7129 [https://github.com/datalad/datalad/issues/7129] via PR
#7129 [https://github.com/datalad/datalad/pull/7129] (by
@bpoldrack [https://github.com/bpoldrack])

Dependencies

	Unrestrict pytest and pytest-cov versions. PR
#7125 [https://github.com/datalad/datalad/pull/7125] (by
@jwodder [https://github.com/jwodder])

	Remove remaining references to nose and the implied requirement
for building the documentation Fixes
#7100 [https://github.com/datalad/datalad/issues/7100] via PR
#7136 [https://github.com/datalad/datalad/pull/7136] (by
@bpoldrack [https://github.com/bpoldrack])

Internal

	Use datalad/release-action. Fixes
#7110 [https://github.com/datalad/datalad/issues/7110]. PR
#7111 [https://github.com/datalad/datalad/pull/7111] (by
@jwodder [https://github.com/jwodder])

	Fix all logging to use %-interpolation and not .format, sort imports
in touched files, add pylint-ing for % formatting in log messages to
tox -e lint. PR
#7118 [https://github.com/datalad/datalad/pull/7118] (by
@yarikoptic [https://github.com/yarikoptic])

Tests

	Increase the upper time limit after which we assume that a process is
stalling. That should reduce false positives from
datalad.support.tests.test_parallel.py::test_stalling, without
impacting the runtime of passing tests. PR
#7119 [https://github.com/datalad/datalad/pull/7119] (by
@christian-monch [https://github.com/christian-monch])

	XFAIL a check on length of results in test_gracefull_death. PR
#7126 [https://github.com/datalad/datalad/pull/7126] (by
@yarikoptic [https://github.com/yarikoptic])

	Configure Git to allow for “file” protocol in tests. PR
#7130 [https://github.com/datalad/datalad/pull/7130] (by
@yarikoptic [https://github.com/yarikoptic])

0.17.8 (2022-10-24)

Bug Fixes

	Prevent adding duplicate entries to .gitmodules. PR
#7088 [https://github.com/datalad/datalad/pull/7088] (by
@yarikoptic [https://github.com/yarikoptic])

	[BF] Prevent double yielding of impossible get result Fixes
#5537 [https://github.com/datalad/datalad/issues/5537]. PR
#7093 [https://github.com/datalad/datalad/pull/7093] (by
@jsheunis [https://github.com/jsheunis])

	Stop rendering the output of internal subdatset() call in the
results of run_procedure(). Fixes
#7091 [https://github.com/datalad/datalad/issues/7091] via PR
#7094 [https://github.com/datalad/datalad/pull/7094] (by
@mslw [https://github.com/mslw] & @mih [https://github.com/mih])

	Improve handling of --existing reconfigure in
create-sibling-ria: previously, the command would not make the
underlying git init call for existing local repositories, leading
to some configuration updates not being applied. Partially addresses
https://github.com/datalad/datalad/issues/6967 via
https://github.com/datalad/datalad/pull/7095 (by @mslw)

	Ensure subprocess environments have a valid path in
os.environ['PWD'], even if a Path-like object was given to the
runner on subprocess creation or invocation. Fixes
#7040 [https://github.com/datalad/datalad/issues/7040] via PR
#7107 [https://github.com/datalad/datalad/pull/7107] (by
@christian-monch [https://github.com/christian-monch])

	Improved reporting when using dry-run with github-like
create-sibling* commands (-gin, -gitea, -github,
-gogs). The result messages will now display names of the
repositories which would be created (useful for recursive
operations). PR
#7103 [https://github.com/datalad/datalad/pull/7103] (by
@mslw [https://github.com/mslw])

0.17.7 (2022-10-14)

Bug Fixes

	Let EnsureChoice report the value is failed validating. PR
#7067 [https://github.com/datalad/datalad/pull/7067] (by
@mih [https://github.com/mih])

	Avoid writing to stdout/stderr from within datalad sshrun. This could
lead to broken pipe errors when cloning via SSH and was superfluous
to begin with. Fixes https://github.com/datalad/datalad/issues/6599
via https://github.com/datalad/datalad/pull/7072 (by @bpoldrack)

	BF: lock across threads check/instantiation of Flyweight instances.
Fixes #6598 [https://github.com/datalad/datalad/issues/6598] via
PR #7075 [https://github.com/datalad/datalad/pull/7075] (by
@yarikoptic [https://github.com/yarikoptic])

Internal

	Do not use gen4-metadata methods in datalad metadata-command.
PR #7001 [https://github.com/datalad/datalad/pull/7001] (by
@christian-monch [https://github.com/christian-monch])

	Revert “Remove chardet version upper limit” (introduced in
0.17.6~11^2) to bring back upper limit <= 5.0.0 on chardet. Otherwise
we can get some deprecation warnings from requests PR
#7057 [https://github.com/datalad/datalad/pull/7057] (by
@yarikoptic [https://github.com/yarikoptic])

	Ensure that BatchedCommandError is raised if the subprocesses of
BatchedCommand fails or raises a CommandError. PR
#7068 [https://github.com/datalad/datalad/pull/7068] (by
@christian-monch [https://github.com/christian-monch])

	RF: remove unused code str-ing PurePath. PR
#7073 [https://github.com/datalad/datalad/pull/7073] (by
@yarikoptic [https://github.com/yarikoptic])

	Update GitHub Actions action versions. PR
#7082 [https://github.com/datalad/datalad/pull/7082] (by
@jwodder [https://github.com/jwodder])

Tests

	Fix broken test helpers for result record testing that would falsely
pass. PR #7002 [https://github.com/datalad/datalad/pull/7002] (by
@bpoldrack [https://github.com/bpoldrack])

0.17.6 (2022-09-21)

Bug Fixes

	UX: push - provide specific error with details if push failed due to
permission issue. PR
#7011 [https://github.com/datalad/datalad/pull/7011] (by
@yarikoptic [https://github.com/yarikoptic])

	Fix datalad –help to not have Global options empty with python 3.10
and list options in “options:” section. PR
#7028 [https://github.com/datalad/datalad/pull/7028] (by
@yarikoptic [https://github.com/yarikoptic])

	Let create touch the dataset root, if not saving in parent
dataset. PR #7036 [https://github.com/datalad/datalad/pull/7036]
(by @mih [https://github.com/mih])

	Let get_status_dict() use exception message if none is passed.
PR #7037 [https://github.com/datalad/datalad/pull/7037] (by
@mih [https://github.com/mih])

	Make choices for status|diff --annex and
status|diff --untracked visible. PR
#7039 [https://github.com/datalad/datalad/pull/7039] (by
@mih [https://github.com/mih])

	push: Assume 0 bytes pushed if git-annex does not provide bytesize.
PR #7049 [https://github.com/datalad/datalad/pull/7049] (by
@yarikoptic [https://github.com/yarikoptic])

Internal

	Use scriv for CHANGELOG generation in release workflow. PR
#7009 [https://github.com/datalad/datalad/pull/7009] (by
@jwodder [https://github.com/jwodder])

	Stop using auto. PR
#7024 [https://github.com/datalad/datalad/pull/7024] (by
@jwodder [https://github.com/jwodder])

Tests

	Allow for any 2 from first 3 to be consumed in test_gracefull_death.
PR #7041 [https://github.com/datalad/datalad/pull/7041] (by
@yarikoptic [https://github.com/yarikoptic])

0.17.5 (Fri Sep 02 2022)

Bug Fix

	BF: blacklist 23.9.0 of keyring as introduces regression
#7003 [https://github.com/datalad/datalad/pull/7003]
(@yarikoptic [https://github.com/yarikoptic])

	Make the manpages build reproducible via datalad.source.epoch (to be
used in Debian packaging)
#6997 [https://github.com/datalad/datalad/pull/6997]
(@lamby [https://github.com/lamby] bot@datalad.org
@yarikoptic [https://github.com/yarikoptic])

	BF: backquote path/drive in Changelog
#6997 [https://github.com/datalad/datalad/pull/6997]
(@yarikoptic [https://github.com/yarikoptic])

Authors: 3

	Chris Lamb (@lamby [https://github.com/lamby])

	DataLad Bot (bot@datalad.org)

	Yaroslav Halchenko (@yarikoptic [https://github.com/yarikoptic])

0.17.4 (Tue Aug 30 2022)

Bug Fix

	BF: make logic more consistent for files=[] argument (which is False
but not None)
#6976 [https://github.com/datalad/datalad/pull/6976]
(@yarikoptic [https://github.com/yarikoptic])

	Run pytests in parallel (-n 2) on appveyor
#6987 [https://github.com/datalad/datalad/pull/6987]
(@yarikoptic [https://github.com/yarikoptic])

	Add workflow for autogenerating changelog snippets
#6981 [https://github.com/datalad/datalad/pull/6981]
(@jwodder [https://github.com/jwodder])

	Provide /dev/null (b:\nul on Windows) instead of empty string
as a git-repo to avoid reading local repo configuration
#6986 [https://github.com/datalad/datalad/pull/6986]
(@yarikoptic [https://github.com/yarikoptic])

	RF: call_from_parser - move code into “else” to simplify reading etc
#6982 [https://github.com/datalad/datalad/pull/6982]
(@yarikoptic [https://github.com/yarikoptic])

	BF: if early attempt to parse resulted in error, setup subparsers
#6980 [https://github.com/datalad/datalad/pull/6980]
(@yarikoptic [https://github.com/yarikoptic])

	Run pytests in parallel (-n 2) on Travis
#6915 [https://github.com/datalad/datalad/pull/6915]
(@yarikoptic [https://github.com/yarikoptic])

	Send one character (no newline) to stdout in protocol test to
guarantee a single “message” and thus a single custom value
#6978 [https://github.com/datalad/datalad/pull/6978]
(@christian-monch [https://github.com/christian-monch])

Tests

	TST: test_stalling – wait x10 not just x5 time
#6995 [https://github.com/datalad/datalad/pull/6995]
(@yarikoptic [https://github.com/yarikoptic])

Authors: 3

	Christian Mnch
(@christian-monch [https://github.com/christian-monch])

	John T. Wodder II (@jwodder [https://github.com/jwodder])

	Yaroslav Halchenko (@yarikoptic [https://github.com/yarikoptic])

0.17.3 (Tue Aug 23 2022)

Bug Fix

	BF: git_ignore_check do not overload possible value of stdout/err if
present #6937 [https://github.com/datalad/datalad/pull/6937]
(@yarikoptic [https://github.com/yarikoptic])

	DOCfix: fix docstring GeneratorStdOutErrCapture to say that treats
both stdout and stderr identically
#6930 [https://github.com/datalad/datalad/pull/6930]
(@yarikoptic [https://github.com/yarikoptic])

	Explain purpose of create-sibling-ria’s –post-update-hook
#6958 [https://github.com/datalad/datalad/pull/6958]
(@mih [https://github.com/mih])

	ENH+BF: get_parent_paths - make / into sep option and consistently
use “/” as path separator
#6963 [https://github.com/datalad/datalad/pull/6963]
(@yarikoptic [https://github.com/yarikoptic])

	BF(TEMP): use git-annex from neurodebian -devel to gain fix for bug
detected with datalad-crawler
#6965 [https://github.com/datalad/datalad/pull/6965]
(@yarikoptic [https://github.com/yarikoptic])

	BF(TST): make tests use path helper for Windows “friendliness” of
the tests #6955 [https://github.com/datalad/datalad/pull/6955]
(@yarikoptic [https://github.com/yarikoptic])

	BF(TST): prevent auto-upgrade of “remote” test sibling, do not use
local path for URL
#6957 [https://github.com/datalad/datalad/pull/6957]
(@yarikoptic [https://github.com/yarikoptic])

	Forbid drop operation from symlink’ed annex (e.g. due to being cloned
with –reckless=ephemeral) to prevent data-loss
#6959 [https://github.com/datalad/datalad/pull/6959]
(@mih [https://github.com/mih])

	Acknowledge git-config comment chars
#6944 [https://github.com/datalad/datalad/pull/6944]
(@mih [https://github.com/mih]
@yarikoptic [https://github.com/yarikoptic])

	Minor tuneups to please updated codespell
#6956 [https://github.com/datalad/datalad/pull/6956]
(@yarikoptic [https://github.com/yarikoptic])

	TST: Add a testcase for #6950
#6957 [https://github.com/datalad/datalad/pull/6957]
(@adswa [https://github.com/adswa])

	BF+ENH(TST): fix typo in code of wtf filesystems reports
#6920 [https://github.com/datalad/datalad/pull/6920]
(@yarikoptic [https://github.com/yarikoptic])

	DOC: Datalad -> DataLad
#6937 [https://github.com/datalad/datalad/pull/6937]
(@aqw [https://github.com/aqw])

	BF: fix typo which prevented silently to not show details of
filesystems #6930 [https://github.com/datalad/datalad/pull/6930]
(@yarikoptic [https://github.com/yarikoptic])

	BF(TST): allow for a annex repo version to upgrade if running in
adjusted branches
#6927 [https://github.com/datalad/datalad/pull/6927]
(@yarikoptic [https://github.com/yarikoptic])

	RF extensions github action to centralize configuration for
extensions etc, use pytest for crawler
#6914 [https://github.com/datalad/datalad/pull/6914]
(@yarikoptic [https://github.com/yarikoptic])

	BF: travis - mark our directory as safe to interact with as root
#6919 [https://github.com/datalad/datalad/pull/6919]
(@yarikoptic [https://github.com/yarikoptic])

	BF: do not pretend we know what repo version git-annex would upgrade
to #6902 [https://github.com/datalad/datalad/pull/6902]
(@yarikoptic [https://github.com/yarikoptic])

	BF(TST): do not expect log message for guessing Path to be possibly a
URL on windows
#6911 [https://github.com/datalad/datalad/pull/6911]
(@yarikoptic [https://github.com/yarikoptic])

	ENH(TST): Disable coverage reporting on travis while running pytest
#6898 [https://github.com/datalad/datalad/pull/6898]
(@yarikoptic [https://github.com/yarikoptic])

	RF: just rename internal variable from unclear “op” to “io”
#6907 [https://github.com/datalad/datalad/pull/6907]
(@yarikoptic [https://github.com/yarikoptic])

	DX: Demote loglevel of message on url parameters to DEBUG while
guessing RI #6891 [https://github.com/datalad/datalad/pull/6891]
(@adswa [https://github.com/adswa]
@yarikoptic [https://github.com/yarikoptic])

	Fix and expand datalad.runner type annotations
#6893 [https://github.com/datalad/datalad/pull/6893]
(@christian-monch [https://github.com/christian-monch]
@yarikoptic [https://github.com/yarikoptic])

	Use pytest to test datalad-metalad in test_extensions-workflow
#6892 [https://github.com/datalad/datalad/pull/6892]
(@christian-monch [https://github.com/christian-monch])

	Let push honor multiple publication dependencies declared via
siblings #6869 [https://github.com/datalad/datalad/pull/6869]
(@mih [https://github.com/mih]
@yarikoptic [https://github.com/yarikoptic])

	ENH: upgrade versioneer from versioneer-0.20.dev0 to
versioneer-0.23.dev0
#6888 [https://github.com/datalad/datalad/pull/6888]
(@yarikoptic [https://github.com/yarikoptic])

	ENH: introduce typing checking and GitHub workflow
#6885 [https://github.com/datalad/datalad/pull/6885]
(@yarikoptic [https://github.com/yarikoptic])

	RF,ENH(TST): future proof testing of git annex version upgrade + test
annex init on all supported versions
#6880 [https://github.com/datalad/datalad/pull/6880]
(@yarikoptic [https://github.com/yarikoptic])

	ENH(TST): test against supported git annex repo version 10 + make it
a full sweep over tests
#6881 [https://github.com/datalad/datalad/pull/6881]
(@yarikoptic [https://github.com/yarikoptic])

	BF: RF f-string uses in logger to %-interpolations
#6886 [https://github.com/datalad/datalad/pull/6886]
(@yarikoptic [https://github.com/yarikoptic])

	Merge branch ‘bf-sphinx-5.1.0’ into maint
#6883 [https://github.com/datalad/datalad/pull/6883]
(@yarikoptic [https://github.com/yarikoptic])

	BF(DOC): workaround for #10701 of sphinx in 5.1.0
#6883 [https://github.com/datalad/datalad/pull/6883]
(@yarikoptic [https://github.com/yarikoptic])

	Clarify confusing INFO log message from get() on dataset installation
#6871 [https://github.com/datalad/datalad/pull/6871]
(@mih [https://github.com/mih])

	Protect again failing to load a command interface from an extension
#6879 [https://github.com/datalad/datalad/pull/6879]
(@mih [https://github.com/mih])

	Support unsetting config via datalad -c :<name>
#6864 [https://github.com/datalad/datalad/pull/6864]
(@mih [https://github.com/mih])

	Fix DOC string typo in the path within AnnexRepo.annexstatus, and
replace with proper sphinx reference
#6858 [https://github.com/datalad/datalad/pull/6858]
(@christian-monch [https://github.com/christian-monch])

	Improved support for saving typechanges
#6793 [https://github.com/datalad/datalad/pull/6793]
(@mih [https://github.com/mih])

Pushed to maint

	BF: Remove duplicate ds key from result record
(@adswa [https://github.com/adswa])

	DOC: fix capitalization of service names
(@aqw [https://github.com/aqw])

Tests

	BF(TST,workaround): just xfail failing archives test on NFS
#6912 [https://github.com/datalad/datalad/pull/6912]
(@yarikoptic [https://github.com/yarikoptic])

Authors: 5

	Adina Wagner (@adswa [https://github.com/adswa])

	Alex Waite (@aqw [https://github.com/aqw])

	Christian Mnch
(@christian-monch [https://github.com/christian-monch])

	Michael Hanke (@mih [https://github.com/mih])

	Yaroslav Halchenko (@yarikoptic [https://github.com/yarikoptic])

0.17.2 (Sat Jul 16 2022)

Bug Fix

	BF(TST): do proceed to proper test for error being caught for recent
git-annex on windows with symlinks
#6850 [https://github.com/datalad/datalad/pull/6850]
(@yarikoptic [https://github.com/yarikoptic])

	Addressing problem testing against python 3.10 on Travis (skip more
annex versions)
#6842 [https://github.com/datalad/datalad/pull/6842]
(@yarikoptic [https://github.com/yarikoptic])

	XFAIL test_runner_parametrized_protocol on python3.8 when getting
duplicate output
#6837 [https://github.com/datalad/datalad/pull/6837]
(@yarikoptic [https://github.com/yarikoptic])

	BF: Make create’s check for procedures work with several again
#6841 [https://github.com/datalad/datalad/pull/6841]
(@adswa [https://github.com/adswa])

	Support older pytests
#6836 [https://github.com/datalad/datalad/pull/6836]
(@jwodder [https://github.com/jwodder])

Authors: 3

	Adina Wagner (@adswa [https://github.com/adswa])

	John T. Wodder II (@jwodder [https://github.com/jwodder])

	Yaroslav Halchenko (@yarikoptic [https://github.com/yarikoptic])

0.17.1 (Mon Jul 11 2022)

Bug Fix

	DOC: minor fix - consistent DataLad (not Datalad) in docs and
CHANGELOG #6830 [https://github.com/datalad/datalad/pull/6830]
(@yarikoptic [https://github.com/yarikoptic])

	DOC: fixup/harmonize Changelog for 0.17.0 a little
#6828 [https://github.com/datalad/datalad/pull/6828]
(@yarikoptic [https://github.com/yarikoptic])

	BF: use –python-match minor option in new datalad-installer release
to match outside version of Python
#6827 [https://github.com/datalad/datalad/pull/6827]
(@christian-monch [https://github.com/christian-monch]
@yarikoptic [https://github.com/yarikoptic])

	Do not quote paths for ssh >= 9
#6826 [https://github.com/datalad/datalad/pull/6826]
(@christian-monch [https://github.com/christian-monch]
@yarikoptic [https://github.com/yarikoptic])

	Suppress DeprecationWarning to allow for distutils to be used
#6819 [https://github.com/datalad/datalad/pull/6819]
(@yarikoptic [https://github.com/yarikoptic])

	RM(TST): remove testing of datalad.test which was removed from 0.17.0
#6822 [https://github.com/datalad/datalad/pull/6822]
(@yarikoptic [https://github.com/yarikoptic])

	Avoid import of nose-based tests.utils, make skip_if_no_module() and
skip_if_no_network() allowed at module level
#6817 [https://github.com/datalad/datalad/pull/6817]
(@jwodder [https://github.com/jwodder])

	BF(TST): use higher level asyncio.run instead of
asyncio.get_event_loop in test_inside_async
#6808 [https://github.com/datalad/datalad/pull/6808]
(@yarikoptic [https://github.com/yarikoptic])

Authors: 3

	Christian Mnch
(@christian-monch [https://github.com/christian-monch])

	John T. Wodder II (@jwodder [https://github.com/jwodder])

	Yaroslav Halchenko (@yarikoptic [https://github.com/yarikoptic])

0.17.0 (Thu Jul 7 2022) – pytest migration

Enhancements and new features

	“log” progress bar now reports about starting a specific action as
well. #6756 [https://github.com/datalad/datalad/pull/6756] (by
@yarikoptic)

	Documentation and behavior of traceback reporting for log messages
via DATALAD_LOG_TRACEBACK was improved to yield a more compact
report. The documentation for this feature has been clarified.
#6746 [https://github.com/datalad/datalad/pull/6746] (by @mih)

	datalad unlock gained a progress bar.
#6704 [https://github.com/datalad/datalad/pull/6704] (by @adswa)

	When create-sibling-gitlab is called on non-existing subdatasets
or paths it now returns an impossible result instead of no feedback
at all. #6701 [https://github.com/datalad/datalad/pull/6701] (by
@adswa)

	datalad wtf includes a report on file system types of commonly
used paths. #6664 [https://github.com/datalad/datalad/pull/6664]
(by @adswa)

	Use next generation metadata code in search, if it is available.
#6518 [https://github.com/datalad/datalad/pull/6518] (by
@christian-monch)

Deprecations and removals

	Remove unused and untested log helpers NoProgressLog and
OnlyProgressLog.
#6747 [https://github.com/datalad/datalad/pull/6747] (by @mih)

	Remove unused sorted_files() helper.
#6722 [https://github.com/datalad/datalad/pull/6722] (by @adswa)

	Discontinued the value stdout for use with the config variable
datalad.log.target as its use would inevitably break special
remote implementations.
#6675 [https://github.com/datalad/datalad/pull/6675] (by
@bpoldrack)

	AnnexRepo.add_urls() is deprecated in favor of
AnnexRepo.add_url_to_file() or a direct call to
AnnexRepo.call_annex().
#6667 [https://github.com/datalad/datalad/pull/6667] (by @mih)

	datalad test command and supporting functionality (e.g.,
datalad.test) were removed.
#6273 [https://github.com/datalad/datalad/pull/6273] (by
@jwodder)

Bug Fixes

	export-archive does not rely on normalize_path() methods
anymore and became more robust when called from subdirectories.
#6745 [https://github.com/datalad/datalad/pull/6745] (by @adswa)

	Sanitize keys before checking content availability to ensure that the
content availability of files with URL- or custom backend keys is
correctly determined and marked.
#6663 [https://github.com/datalad/datalad/pull/6663] (by @adswa)

	Ensure saving a new subdataset to a superdataset yields a valid
.gitmodules record regardless of whether and how a path
constraint is given to the save() call. Fixes #6547
#6790 [https://github.com/datalad/datalad/pull/6790] (by @mih)

	save now repairs annex symlinks broken by a git-mv operation
prior recording a new dataset state. Fixes #4967
#6795 [https://github.com/datalad/datalad/pull/6795] (by @mih)

Documentation

	API documentation for log helpers, like log_progress() is now
included in the renderer documentation.
#6746 [https://github.com/datalad/datalad/pull/6746] (by @mih)

	New design document on progress reporting.
#6734 [https://github.com/datalad/datalad/pull/6734] (by @mih)

	Explain downstream consequences of using --fast option in
addurls. #6684 [https://github.com/datalad/datalad/pull/6684]
(by @jdkent)

Internal

	Inline code of create-sibling-ria has been refactored to an
internal helper to check for siblings with particular names across
dataset hierarchies in datalad-next, and is reintroduced into
core to modularize the code base further.
#6706 [https://github.com/datalad/datalad/pull/6706] (by @adswa)

	get_initialized_logger now lets a given logtarget take
precedence over datalad.log.target.
#6675 [https://github.com/datalad/datalad/pull/6675] (by
@bpoldrack)

	Many uses of deprecated call options were replaced with the
recommended ones.
#6273 [https://github.com/datalad/datalad/pull/6273] (by
@jwodder)

	Get rid of asyncio import by defining few noops methods from
asyncio.protocols.SubprocessProtocol directly in
WitlessProtocol.
#6648 [https://github.com/datalad/datalad/pull/6648] (by
@yarikoptic)

	Consolidate GitRepo.remove() and AnnexRepo.remove() into a
single implementation.
#6783 [https://github.com/datalad/datalad/pull/6783] (by @mih) ##
Tests

	Discontinue use of with_testrepos decorator other than for the
deprecation cycle for nose.
#6690 [https://github.com/datalad/datalad/pull/6690] (by @mih
@bpoldrack) See
#6144 [https://github.com/datalad/datalad/issues/6144] for full
list of changes.

	Remove usage of deprecated AnnexRepo.add_urls in tests.
#6683 [https://github.com/datalad/datalad/pull/6683] (by
@bpoldrack)

	Minimalistic (adapters, no assert changes, etc) migration from
nose to pytest. Support functionality possibly used by
extensions and relying on nose helpers is left in place to avoid
affecting their run time and defer migration of their test setups..
#6273 [https://github.com/datalad/datalad/pull/6273] (by
@jwodder)

Authors: 7

	Yaroslav Halchenko (@yarikoptic)

	Michael Hanke (@mih)

	Benjamin Poldrack (@bpoldrack)

	Adina Wagner (@adswa)

	John T. Wodder (@jwodder)

	Christian Mnch (@christian-monch)

	James Kent (@jdkent)

0.16.7 (Wed Jul 06 2022)

Bug Fix

	Fix broken annex symlink after git-mv before saving + fix a race
condition in ssh copy test
#6809 [https://github.com/datalad/datalad/pull/6809]
(@christian-monch [https://github.com/christian-monch]
@mih [https://github.com/mih]
@yarikoptic [https://github.com/yarikoptic])

	Do not ignore already known status info on submodules
#6790 [https://github.com/datalad/datalad/pull/6790]
(@mih [https://github.com/mih])

	Fix “common data source” test to use a valid URL (maint-based &
extended edition)
#6788 [https://github.com/datalad/datalad/pull/6788]
(@mih [https://github.com/mih]
@yarikoptic [https://github.com/yarikoptic])

	Upload coverage from extension tests to Codecov
#6781 [https://github.com/datalad/datalad/pull/6781]
(@jwodder [https://github.com/jwodder])

	Clean up line end handling in GitRepo
#6768 [https://github.com/datalad/datalad/pull/6768]
(@christian-monch [https://github.com/christian-monch])

	Do not skip file-URL tests on windows
#6772 [https://github.com/datalad/datalad/pull/6772]
(@christian-monch [https://github.com/christian-monch])

	Fix test errors caused by updated chardet v5 release
#6777 [https://github.com/datalad/datalad/pull/6777]
(@christian-monch [https://github.com/christian-monch])

	Preserve final trailing slash in call_git() output
#6754 [https://github.com/datalad/datalad/pull/6754]
(@adswa [https://github.com/adswa]
@yarikoptic [https://github.com/yarikoptic]
@christian-monch [https://github.com/christian-monch])

Pushed to maint

	Make sure a subdataset is saved with a complete .gitmodules record
(@mih [https://github.com/mih])

Authors: 5

	Adina Wagner (@adswa [https://github.com/adswa])

	Christian Mnch
(@christian-monch [https://github.com/christian-monch])

	John T. Wodder II (@jwodder [https://github.com/jwodder])

	Michael Hanke (@mih [https://github.com/mih])

	Yaroslav Halchenko (@yarikoptic [https://github.com/yarikoptic])

0.16.6 (Tue Jun 14 2022)

Bug Fix

	Prevent duplicated result rendering when searching in default
datasets #6765 [https://github.com/datalad/datalad/pull/6765]
(@christian-monch [https://github.com/christian-monch])

	BF(workaround): skip test_ria_postclonecfg on OSX for now
(@yarikoptic [https://github.com/yarikoptic])

	BF(workaround to #6759): if saving credential failed, just log error
and continue #6762 [https://github.com/datalad/datalad/pull/6762]
(@yarikoptic [https://github.com/yarikoptic])

	Prevent reentry of a runner instance
#6737 [https://github.com/datalad/datalad/pull/6737]
(@christian-monch [https://github.com/christian-monch])

Authors: 2

	Christian Mnch
(@christian-monch [https://github.com/christian-monch])

	Yaroslav Halchenko (@yarikoptic [https://github.com/yarikoptic])

0.16.5 (Wed Jun 08 2022)

Bug Fix

	BF: push to github - remove datalad-push-default-first config only in
non-dry run to ensure we push default branch separately in next step
#6750 [https://github.com/datalad/datalad/pull/6750]
(@yarikoptic [https://github.com/yarikoptic])

	In addition to default (system) ssh version, report configured ssh;
fix ssh version parsing on Windows
#6729 [https://github.com/datalad/datalad/pull/6729]
(@yarikoptic [https://github.com/yarikoptic])

Authors: 1

	Yaroslav Halchenko (@yarikoptic [https://github.com/yarikoptic])

0.16.4 (Thu Jun 02 2022)

Bug Fix

	BF(TST): RO operations - add test directory into git safe.directory
#6726 [https://github.com/datalad/datalad/pull/6726]
(@yarikoptic [https://github.com/yarikoptic])

	DOC: fixup of docstring for skip_ssh
#6727 [https://github.com/datalad/datalad/pull/6727]
(@yarikoptic [https://github.com/yarikoptic])

	DOC: Set language in Sphinx config to en
#6727 [https://github.com/datalad/datalad/pull/6727]
(@adswa [https://github.com/adswa])

	BF: Catch KeyErrors from unavailable WTF infos
#6712 [https://github.com/datalad/datalad/pull/6712]
(@adswa [https://github.com/adswa])

	Add annex.private to ephemeral clones. That would make git-annex not
assign shared (in git-annex branch) annex uuid.
#6702 [https://github.com/datalad/datalad/pull/6702]
(@bpoldrack [https://github.com/bpoldrack]
@adswa [https://github.com/adswa])

	BF: require argcomplete version at least 1.12.3 to test/operate
correctly #6693 [https://github.com/datalad/datalad/pull/6693]
(@yarikoptic [https://github.com/yarikoptic])

	Replace Zenodo DOI with JOSS for due credit
#6725 [https://github.com/datalad/datalad/pull/6725]
(@adswa [https://github.com/adswa])

Authors: 3

	Adina Wagner (@adswa [https://github.com/adswa])

	Benjamin Poldrack (@bpoldrack [https://github.com/bpoldrack])

	Yaroslav Halchenko (@yarikoptic [https://github.com/yarikoptic])

0.16.3 (Thu May 12 2022)

Bug Fix

	No change for a PR to trigger release
#6692 [https://github.com/datalad/datalad/pull/6692]
(@yarikoptic [https://github.com/yarikoptic])

	Sanitize keys before checking content availability to ensure correct
value for keys with URL or custom backend
#6665 [https://github.com/datalad/datalad/pull/6665]
(@adswa [https://github.com/adswa]
@yarikoptic [https://github.com/yarikoptic])

	Change a key-value pair in drop result record
#6625 [https://github.com/datalad/datalad/pull/6625]
(@mslw [https://github.com/mslw])

	Link docs of datalad-next
#6677 [https://github.com/datalad/datalad/pull/6677]
(@mih [https://github.com/mih])

	Fix GitRepo.get_branch_commits_() to handle branch names
conflicts with paths
#6661 [https://github.com/datalad/datalad/pull/6661]
(@mih [https://github.com/mih])

	OPT: AnnexJsonProtocol - avoid dragging possibly long data around
#6660 [https://github.com/datalad/datalad/pull/6660]
(@yarikoptic [https://github.com/yarikoptic])

	Remove two too prominent create() INFO log message that duplicate
DEBUG log and harmonize some other log messages
#6638 [https://github.com/datalad/datalad/pull/6638]
(@mih [https://github.com/mih]
@yarikoptic [https://github.com/yarikoptic])

	Remove unsupported parameter create_sibling_ria(existing=None)
#6637 [https://github.com/datalad/datalad/pull/6637]
(@mih [https://github.com/mih])

	Add released plugin to .autorc to annotate PRs on when released
#6639 [https://github.com/datalad/datalad/pull/6639]
(@yarikoptic [https://github.com/yarikoptic])

Authors: 4

	Adina Wagner (@adswa [https://github.com/adswa])

	Michael Hanke (@mih [https://github.com/mih])

	Micha Szczepanik (@mslw [https://github.com/mslw])

	Yaroslav Halchenko (@yarikoptic [https://github.com/yarikoptic])

0.16.2 (Thu Apr 21 2022)

Bug Fix

	Demote (to level 1 from DEBUG) and speed-up API doc logging
(parseParameters)
#6635 [https://github.com/datalad/datalad/pull/6635]
(@mih [https://github.com/mih])

	Factor out actual data transfer in push
#6618 [https://github.com/datalad/datalad/pull/6618]
(@christian-monch [https://github.com/christian-monch])

	ENH: include version of datalad in tests teardown Versions: report
#6628 [https://github.com/datalad/datalad/pull/6628]
(@yarikoptic [https://github.com/yarikoptic])

	MNT: Require importlib-metadata >=3.6 for Python < 3.10 for
entry_points taking kwargs
#6631 [https://github.com/datalad/datalad/pull/6631]
(@effigies [https://github.com/effigies])

	Factor out credential handling of create-sibling-ghlike
#6627 [https://github.com/datalad/datalad/pull/6627]
(@mih [https://github.com/mih])

	BF: Fix wrong key name of annex’ JSON records
#6624 [https://github.com/datalad/datalad/pull/6624]
(@bpoldrack [https://github.com/bpoldrack])

Pushed to maint

	Fix typo in changelog (@mih [https://github.com/mih])

	[ci skip] minor typo fix
(@yarikoptic [https://github.com/yarikoptic])

Authors: 5

	Benjamin Poldrack (@bpoldrack [https://github.com/bpoldrack])

	Chris Markiewicz (@effigies [https://github.com/effigies])

	Christian Mnch
(@christian-monch [https://github.com/christian-monch])

	Michael Hanke (@mih [https://github.com/mih])

	Yaroslav Halchenko (@yarikoptic [https://github.com/yarikoptic])

0.16.1 (Fr Apr 8 2022) – April Fools’ Release

	Fixes forgotten changelog in docs

0.16.0 (Fr Apr 8 2022) – Spring cleaning!

Enhancements and new features

	A new set of create-sibling-* commands reimplements the
GitHub-platform support of create-sibling-github and adds support
to interface three new platforms in a unified fashion: GIN
(create-sibling-gin), GOGS (create-sibling-gogs), and Gitea
(create-sibling-gitea). All commands rely on personal access
tokens only for authentication, allow for specifying one of several
stored credentials via a uniform --credential parameter, and
support a uniform --dry-run mode for testing without network.
#5949 [https://github.com/datalad/datalad/pull/5949] (by @mih)

	create-sibling-github now has supports direct specification of
organization repositories via a [<org>/]reposyntax
#5949 [https://github.com/datalad/datalad/pull/5949] (by @mih)

	create-sibling-gitlab gained a --dry-run parameter to match
the corresponding parameters in
create-sibling-{github,gin,gogs,gitea}
#6013 [https://github.com/datalad/datalad/pull/6013] (by @adswa)

	The --new-store-ok parameter of create-sibling-ria only
creates new RIA stores when explicitly provided
#6045 [https://github.com/datalad/datalad/pull/6045] (by @adswa)

	The default performance of status() and diff() commands is
improved by up to 700% removing file-type evaluation as a default
operation, and simplifying the type reporting rule
#6097 [https://github.com/datalad/datalad/pull/6097] (by @mih)

	drop() and remove() were reimplemented in full,
conceptualized as the antagonist commands to get() and
clone(). A new, harmonized set of parameters
(--what ['filecontent', 'allkeys', 'datasets', 'all'],
--reckless ['modification', 'availability', 'undead', 'kill'])
simplifies their API. Both commands include additional safeguards.
uninstall is replaced with a thin shim command around drop()
#6111 [https://github.com/datalad/datalad/pull/6111] (by @mih)

	add_archive_content() was refactored into a dataset method and
gained progress bars
#6105 [https://github.com/datalad/datalad/pull/6105] (by @adswa)

	The datalad and datalad-archives special remotes have been
reimplemented based on AnnexRemote
#6165 [https://github.com/datalad/datalad/pull/6165] (by @mih)

	The result_renderer() semantics were decomplexified and
harmonized. The previous default result renderer was renamed to
generic. #6174 [https://github.com/datalad/datalad/pull/6174]
(by @mih)

	get_status_dict learned to include exit codes in the case of
CommandErrors
#5642 [https://github.com/datalad/datalad/pull/5642] (by
@yarikoptic)

	datalad clone can now pass options to git-clone, adding
support for cloning specific tags or branches, naming siblings other
names than origin, and exposing git clone’s optimization
arguments #6218 [https://github.com/datalad/datalad/pull/6218]
(by @kyleam and @mih)

	Inactive BatchedCommands are cleaned up
#6206 [https://github.com/datalad/datalad/pull/6206] (by
@jwodder)

	export-archive-ora learned to filter files exported to 7z
archives #6234 [https://github.com/datalad/datalad/pull/6234] (by
@mih and @bpinsard)

	datalad run learned to glob recursively
#6262 [https://github.com/datalad/datalad/pull/6262] (by @AKSoo)

	The ORA remote learned to recover from interrupted uploads
#6267 [https://github.com/datalad/datalad/pull/6267] (by @mih)

	A new threaded runner with support for timeouts and generator-based
subprocess communication is introduced and used in BatchedCommand
and AnnexRepo
#6244 [https://github.com/datalad/datalad/pull/6244] (by
@christian-monch)

	A new switch allows to enable librarymode and queries for the
effective API in use
#6213 [https://github.com/datalad/datalad/pull/6213] (by @mih)

	run and rerun now support parallel jobs via --jobs
#6279 [https://github.com/datalad/datalad/pull/6279] (by @AKSoo)

	A new foreach-dataset plumbing command allows to run commands on
each (sub)dataset, similar to git submodule foreach
#5517 [https://github.com/datalad/datalad/pull/5517] (by
@yarikoptic)

	The dataset parameter is not restricted to only locally
resolvable file-URLs anymore
#6276 [https://github.com/datalad/datalad/pull/6276] (by
@christian-monch)

	DataLad’s credential system is now able to query git-credential
by specifying credential type git in the respective provider
configuration
#5796 [https://github.com/datalad/datalad/pull/5796] (by
@bpoldrack)

	DataLad now comes with a git credential helper
git-credential-datalad allowing Git to query DataLad’s credential
system #5796 [https://github.com/datalad/datalad/pull/5796] (by
@bpoldrack and @mih)

	The new runner now allows for multiple threads
#6371 [https://github.com/datalad/datalad/pull/6371] (by
@christian-monch)

	A new configurationcommand provides an interface to manipulate and
query the DataLad configuration.
#6306 [https://github.com/datalad/datalad/pull/6306] (by @mih)

	Unlike the global Python-only datalad.cfg or dataset-specific
Dataset.config configuration managers, this command offers a
uniform API across the Python and the command line interfaces.

	This command was previously available in the mihextras extension
as x-configuration, and has been merged into the core package in
an improved version.
#5489 [https://github.com/datalad/datalad/pull/5489] (by @mih)

	In its default dump mode, the command provides an annotated list
of the effective configuration after considering all configuration
sources, including hints on additional configuration settings and
their supported values.

	The command line interface help-reporting has been sped up by ~20%
#6370 [https://github.com/datalad/datalad/pull/6370]
#6378 [https://github.com/datalad/datalad/pull/6378] (by @mih)

	ConfigManager now supports reading committed dataset
configuration in bare repositories. Analog to reading
.datalad/config from a worktree, blob:HEAD:.datalad/config is
read (e.g., the config committed in the default branch). The support
includes `reload() change detection using the gitsha of this
file. The behavior for non-bare repositories is unchanged.
#6332 [https://github.com/datalad/datalad/pull/6332] (by @mih)

	The CLI help generation has been sped up, and now also supports the
completion of parameter values for a fixed set of choices
#6415 [https://github.com/datalad/datalad/pull/6415] (by @mih)

	Individual command implementations can now declare a specific
“on-failure” behavior by defining Interface.on_failure to be one
of the supported modes (stop, continue, ignore). Previously, such a
modification was only possible on a per-call basis.
#6430 [https://github.com/datalad/datalad/pull/6430] (by @mih)

	The run command changed its default “on-failure” behavior from
continue to stop. This change prevents the execution of a
command in case a declared input can not be obtained. Previously,
only an error result was yielded (and run eventually yielded a
non-zero exit code or an IncompleteResultsException), but the
execution proceeded and potentially saved a dataset modification
despite incomplete inputs, in case the command succeeded. This
previous default behavior can still be achieved by calling run with
the equivalent of --on-failure continue
#6430 [https://github.com/datalad/datalad/pull/6430] (by @mih)

	The `run command now provides readily executable, API-specific
instructions how to save the results of a command execution that
failed expectedly
#6434 [https://github.com/datalad/datalad/pull/6434] (by @mih)

	create-sibling --since=^ mode will now be as fast as
push --since=^ to figure out for which subdatasets to create
siblings #6436 [https://github.com/datalad/datalad/pull/6436] (by
@yarikoptic)

	When file names contain illegal characters or reserved file names
that are incompatible with Windows systems a configurable check for
save (datalad.save.windows-compat-warning) will either do
nothing (none), emit an incompatibility warning (warning,
default), or cause save to error (error)
#6291 [https://github.com/datalad/datalad/pull/6291] (by @adswa)

	Improve responsiveness of datalad drop in datasets with a large
annex. #6580 [https://github.com/datalad/datalad/pull/6580] (by
@christian-monch)

	save code might operate faster on heavy file trees
#6581 [https://github.com/datalad/datalad/pull/6581] (by
@yarikoptic)

	Removed a per-file overhead cost for ORA when downloading over HTTP
#6609 [https://github.com/datalad/datalad/pull/6609] (by
@bpoldrack)

	A new module datalad.support.extensions offers the utility
functions register_config() and has_config() that allow
extension developers to announce additional configuration items to
the central configuration management.
#6601 [https://github.com/datalad/datalad/pull/6601] (by @mih)

	When operating in a dirty dataset, export-to-figshare now yields
and impossible result instead of raising a RunTimeError
#6543 [https://github.com/datalad/datalad/pull/6543] (by @adswa)

	Loading DataLad extension packages has been sped-up leading to
between 2x and 4x faster run times for loading individual extensions
and reporting help output across all installed extensions.
#6591 [https://github.com/datalad/datalad/pull/6591] (by @mih)

	Introduces the configuration key datalad.ssh.executable. This key
allows specifying an ssh-client executable that should be used by
datalad to establish ssh-connections. The default value is ssh
unless on a Windows system where $WINDIR\System32\OpenSSH\ssh.exe
exists. In this case, the value defaults to
$WINDIR\System32\OpenSSH\ssh.exe.
#6553 [https://github.com/datalad/datalad/pull/6553] (by
@christian-monch)

	create-sibling should perform much faster in case of --since
specification since would consider only submodules related to the
changes since that point.
#6528 [https://github.com/datalad/datalad/pull/6528] (by
@yarikoptic)

	A new configuration setting
datalad.ssh.try-use-annex-bundled-git=yes|no can be used to
influence the default remote git-annex bundle sensing for SSH
connections. This was previously done unconditionally for any call to
datalad sshrun (which is also used for any SSH-related Git or
git-annex functionality triggered by DataLad-internal processing) and
could incur a substantial per-call runtime cost. The new default is
to not perform this sensing, because for, e.g., use as
GIT_SSH_COMMAND there is no expectation to have a remote git-annex
installation, and even with an existing git-annex/Git bundle on the
remote, it is not certain that the bundled Git version is to be
preferred over any other Git installation in a user’s PATH.
#6533 [https://github.com/datalad/datalad/pull/6533] (by @mih)

	run now yields a result record immediately after executing a
command. This allows callers to use the standard
--on-failure switch to control whether dataset modifications will
be saved for a command that exited with an error.
#6447 [https://github.com/datalad/datalad/pull/6447] (by @mih)

Deprecations and removals

	The --pbs-runner commandline option (deprecated in 0.15.0)
was removed #5981 [https://github.com/datalad/datalad/pull/5981]
(by @mih)

	The dependency to PyGithub was dropped
#5949 [https://github.com/datalad/datalad/pull/5949] (by @mih)

	create-sibling-github’s credential handling was trimmed down to
only allow personal access tokens, because GitHub discontinued
user/password based authentication
#5949 [https://github.com/datalad/datalad/pull/5949] (by @mih)

	create-sibling-gitlab’s --dryrun parameter is deprecated in
favor or --dry-run
#6013 [https://github.com/datalad/datalad/pull/6013] (by @adswa)

	Internal obsolete Gitrepo.*_submodule methods were moved to
datalad-deprecated
#6010 [https://github.com/datalad/datalad/pull/6010] (by @mih)

	datalad/support/versions.py is unused in DataLad core and removed
#6115 [https://github.com/datalad/datalad/pull/6115] (by
@yarikoptic)

	Support for the undocumented datalad.api.result-renderer config
setting has been dropped
#6174 [https://github.com/datalad/datalad/pull/6174] (by @mih)

	Undocumented use of result_renderer=None is replaced with
result_renderer='disabled'
#6174 [https://github.com/datalad/datalad/pull/6174] (by @mih)

	remove’s --recursive argument has been deprecated
#6257 [https://github.com/datalad/datalad/pull/6257] (by @mih)

	The use of the internal helper get_repo_instance() is
discontinued and deprecated
#6268 [https://github.com/datalad/datalad/pull/6268] (by @mih)

	Support for Python 3.6 has been dropped
(#6286 [https://github.com/datalad/datalad/pull/6286] (by
@christian-monch) and
#6364 [https://github.com/datalad/datalad/pull/6364] (by
@yarikoptic))

	All but one Singularity recipe flavor have been removed due to their
limited value with the end of life of Singularity Hub
#6303 [https://github.com/datalad/datalad/pull/6303] (by @mih)

	All code in module datalad.cmdline was (re)moved, only
datalad.cmdline.helpers.get_repo_instanceis kept for a deprecation
period (by @mih)

	datalad.interface.common_opts.eval_default has been deprecated.
All (command-specific) defaults for common interface parameters can
be read from Interface class attributes
(#6391 [https://github.com/datalad/datalad/pull/6391] (by @mih)

	Remove unused and untested datalad.interface.utils helpers
cls2cmdlinename and path_is_under
#6392 [https://github.com/datalad/datalad/pull/6392] (by @mih)

	An unused code path for result rendering was removed from the CLI
main() #6394 [https://github.com/datalad/datalad/pull/6394]
(by @mih)

	create-sibling will require now "^" instead of an empty
string for since option
#6436 [https://github.com/datalad/datalad/pull/6436] (by
@yarikoptic)

	run no longer raises a CommandError exception for failed
commands, but yields an error result that includes a superset of
the information provided by the exception. This change impacts
command line usage insofar as the exit code of the underlying command
is no longer relayed as the exit code of the run command call –
although run continues to exit with a non-zero exit code in case
of an error. For Python API users, the nature of the raised exception
changes from CommandError to IncompleteResultsError, and the
exception handling is now configurable using the standard
on_failure command argument. The original CommandError
exception remains available via the exception property of the
newly introduced result record for the command execution, and this
result record is available via IncompleteResultsError.failed, if
such an exception is raised.
#6447 [https://github.com/datalad/datalad/pull/6447] (by @mih)

	Custom cast helpers were removed from datalad core and migrated to a
standalone repository https://github.com/datalad/screencaster
#6516 [https://github.com/datalad/datalad/pull/6516] (by @adswa)

	The bundled parameter of get_connection_hash() is now ignored
and will be removed with a future release.
#6532 [https://github.com/datalad/datalad/pull/6532] (by @mih)

	BaseDownloader.fetch() is logging download attempts on DEBUG
(previously INFO) level to avoid polluting output of higher-level
commands. #6564 [https://github.com/datalad/datalad/pull/6564]
(by @mih)

Bug Fixes

	create-sibling-gitlab erroneously overwrote existing sibling
configurations. A safeguard will now prevent overwriting and exit
with an error result
#6015 [https://github.com/datalad/datalad/pull/6015] (by @adswa)

	create-sibling-gogs now relays HTTP500 errors, such as “no space
left on device”
#6019 [https://github.com/datalad/datalad/pull/6019] (by @mih)

	annotate_paths() is removed from the last parts of code base that
still contained it
#6128 [https://github.com/datalad/datalad/pull/6128] (by @mih)

	add_archive_content() doesn’t crash with --key and
--use-current-dir anymore
#6105 [https://github.com/datalad/datalad/pull/6105] (by @adswa)

	run-procedure now returns an error result when a non-existent
procedure name is specified
#6143 [https://github.com/datalad/datalad/pull/6143] (by @mslw)

	A fix for a silent failure of download-url --archive when
extracting the archive
#6172 [https://github.com/datalad/datalad/pull/6172] (by @adswa)

	Uninitialized AnnexRepos can now be dropped
#6183 [https://github.com/datalad/datalad/pull/6183] (by @mih)

	Instead of raising an error, the formatters tests are skipped when
the formatters module is not found
#6212 [https://github.com/datalad/datalad/pull/6212] (by @adswa)

	create-sibling-gin does not disable git-annex availability on Gin
remotes anymore
#6230 [https://github.com/datalad/datalad/pull/6230] (by @mih)

	The ORA special remote messaging is fixed to not break the special
remote protocol anymore and to better relay messages from exceptions
to communicate underlying causes
#6242 [https://github.com/datalad/datalad/pull/6242] (by @mih)

	A keyring.delete() call was fixed to not call an uninitialized
private attribute anymore
#6253 [https://github.com/datalad/datalad/pull/6253] (by
@bpoldrack)

	An erroneous placement of result keyword arguments into a
format() method instead of get_status_dict() of
create-sibling-ria has been fixed
#6256 [https://github.com/datalad/datalad/pull/6256] (by @adswa)

	status, run-procedure, and metadata are no longer
swallowing result-related messages in renderers
#6280 [https://github.com/datalad/datalad/pull/6280] (by @mih)

	uninstall now recommends the new --reckless parameter instead
of the deprecated --nocheck parameter when reporting hints
#6277 [https://github.com/datalad/datalad/pull/6277] (by @adswa)

	download-url learned to handle Pathobjects
#6317 [https://github.com/datalad/datalad/pull/6317] (by @adswa)

	Restore default result rendering behavior broken by Key interface
documentation
#6394 [https://github.com/datalad/datalad/pull/6394] (by @mih)

	Fix a broken check for file presence in the ConfigManager that
could have caused a crash in rare cases when a config file is removed
during the process runtime
#6332 [https://github.com/datalad/datalad/pull/6332] (by @mih)
`- ConfigManager.get_from_source() now accesses the correct
information when using the documented source='local', avoiding a
crash #6332 [https://github.com/datalad/datalad/pull/6332] (by
@mih)

	run no longer let’s the internal call to save render its
results unconditionally, but the parameterization f run determines
the effective rendering format.
#6421 [https://github.com/datalad/datalad/pull/6421] (by @mih)

	Remove an unnecessary and misleading warning from the runner
#6425 [https://github.com/datalad/datalad/pull/6425] (by
@christian-monch)

	A number of commands stopped to double-report results
#6446 [https://github.com/datalad/datalad/pull/6446] (by @adswa)

	create-sibling-ria no longer creates an annex/objects
directory in-store, when called with --no-storage-sibling.
#6495 [https://github.com/datalad/datalad/pull/6495] (by
@bpoldrack)

	Improve error message when an invalid URL is given to clone.
#6500 [https://github.com/datalad/datalad/pull/6500] (by @mih)

	DataLad declares a minimum version dependency to keyring >= 20.0
to ensure that token-based authentication can be used.
#6515 [https://github.com/datalad/datalad/pull/6515] (by @adswa)

	ORA special remote tries to obtain permissions when dropping a key
from a RIA store rather than just failing. Thus having the same
permissions in the store’s object trees as one directly managed by
git-annex would have, works just fine now.
#6493 [https://github.com/datalad/datalad/pull/6493] (by
@bpoldrack)

	require_dataset() now uniformly raises NoDatasetFound when no
dataset was found. Implementations that catch the previously
documented InsufficientArgumentsError or the actually raised
ValueError will continue to work, because NoDatasetFound is
derived from both types.
#6521 [https://github.com/datalad/datalad/pull/6521] (by @mih)

	Keyboard-interactive authentication is now possibly with
non-multiplexed SSH connections (i.e., when no connection sharing is
possible, due to lack of socket support, for example on Windows).
Previously, it was disabled forcefully by DataLad for no valid
reason. #6537 [https://github.com/datalad/datalad/pull/6537] (by
@mih)

	Remove duplicate exception type in reporting of top-level CLI
exception handler.
#6563 [https://github.com/datalad/datalad/pull/6563] (by @mih)

	Fixes DataLad’s parsing of git-annex’ reporting on unknown paths
depending on its version and the value of the annex.skipunknown
config. #6550 [https://github.com/datalad/datalad/pull/6550] (by
@bpoldrack)

	Fix ORA special remote not properly reporting on HTTP failures.
#6535 [https://github.com/datalad/datalad/pull/6535] (by
@bpoldrack)

	ORA special remote didn’t show per-file progress bars when
downloading over HTTP
#6609 [https://github.com/datalad/datalad/pull/6609] (by
@bpoldrack)

	save now can commit the change where file becomes a directory
with a staged for commit file.
#6581 [https://github.com/datalad/datalad/pull/6581] (by
@yarikoptic)

	create-sibling will no longer create siblings for not yet saved
new subdatasets, and will now create sub-datasets nested in the
subdatasets which did not yet have those siblings.
#6603 [https://github.com/datalad/datalad/pull/6603] (by
@yarikoptic)

Documentation

	A new design document sheds light on result records
#6167 [https://github.com/datalad/datalad/pull/6167] (by @mih)

	The disabled result renderer mode is documented
#6174 [https://github.com/datalad/datalad/pull/6174] (by @mih)

	A new design document sheds light on the datalad and
datalad-archives special remotes
#6181 [https://github.com/datalad/datalad/pull/6181] (by @mih)

	A new design document sheds light on BatchedCommand and
BatchedAnnex
#6203 [https://github.com/datalad/datalad/pull/6203] (by
@christian-monch)

	A new design document sheds light on standard parameters
#6214 [https://github.com/datalad/datalad/pull/6214] (by @adswa)

	The DataLad project adopted the Contributor Covenant COC v2.1
#6236 [https://github.com/datalad/datalad/pull/6236] (by @adswa)

	Docstrings learned to include Sphinx’ “version added” and
“deprecated” directives
#6249 [https://github.com/datalad/datalad/pull/6249] (by @mih)

	A design document sheds light on basic docstring handling and
formatting #6249 [https://github.com/datalad/datalad/pull/6249]
(by @mih)

	A new design document sheds light on position versus keyword
parameter usage
#6261 [https://github.com/datalad/datalad/pull/6261] (by
@yarikoptic)

	create-sibling-gin’s examples have been improved to suggest
push as an additional step to ensure proper configuration
#6289 [https://github.com/datalad/datalad/pull/6289] (by @mslw)

	A new document [http://docs.datalad.org/credentials.html]
describes the credential system from a user’s perspective
#5796 [https://github.com/datalad/datalad/pull/5796] (by
@bpoldrack)

	Enhance the design
document [http://docs.datalad.org/design/credentials.html] on
DataLad’s credential system
#5796 [https://github.com/datalad/datalad/pull/5796] (by
@bpoldrack)

	The documentation of the configuration command now details all
locations DataLad is reading configuration items from, and their
respective rules of precedence
#6306 [https://github.com/datalad/datalad/pull/6306] (by @mih)

	API docs for datalad.interface.base are now included in the
documentation
#6378 [https://github.com/datalad/datalad/pull/6378] (by @mih)

	A new design document is provided that describes the basics of the
command line interface implementation
#6382 [https://github.com/datalad/datalad/pull/6382] (by @mih)

	The `datalad.interface.base.Interface class, the basis of all
DataLad command implementations, has been extensively documented to
provide an overview of basic principles and customization
possibilities
#6391 [https://github.com/datalad/datalad/pull/6391] (by @mih)

	--since=^ mode of operation of create-sibling is documented
now #6436 [https://github.com/datalad/datalad/pull/6436] (by
@yarikoptic)

Internal

	The internal status() helper was equipped with docstrings and
promotes “breadth-first” reporting with a new parameter
reporting_order
#6006 [https://github.com/datalad/datalad/pull/6006] (by @mih)

	AnnexRepo.get_file_annexinfo() is introduced for more convenient
queries for single files and replaces a now deprecated
AnnexRepo.get_file_key() to receive information with fewer calls
to Git #6104 [https://github.com/datalad/datalad/pull/6104] (by
@mih)

	A new get_paths_by_ds() helper exposes status’ path
normalization and sorting
#6110 [https://github.com/datalad/datalad/pull/6110] (by @mih)

	status is optimized with a cache for dataset roots
#6137 [https://github.com/datalad/datalad/pull/6137] (by
@yarikoptic)

	The internal get_func_args_doc() helper with Python 2 is removed
from DataLad core
#6175 [https://github.com/datalad/datalad/pull/6175] (by
@yarikoptic)

	Further restructuring of the source tree to better reflect the
internal dependency structure of the code: AddArchiveContent is
moved from datalad/interface to datalad/local
(#6188 [https://github.com/datalad/datalad/pull/6188] (by @mih)),
Clean is moved from datalad/interface to datalad/local
(#6191 [https://github.com/datalad/datalad/pull/6191] (by @mih)),
Unlock is moved from datalad/interface to datalad/local
(#6192 [https://github.com/datalad/datalad/pull/6192] (by @mih)),
DownloadURL is moved from datalad/interface to
datalad/local
(#6217 [https://github.com/datalad/datalad/pull/6217] (by @mih)),
Rerun is moved from datalad/interface to datalad/local
(#6220 [https://github.com/datalad/datalad/pull/6220] (by @mih)),
RunProcedure is moved from datalad/interface to
datalad/local
(#6222 [https://github.com/datalad/datalad/pull/6222] (by @mih)).
The interface command list is restructured and resorted
#6223 [https://github.com/datalad/datalad/pull/6223] (by @mih)

	wrapt is replaced with functools’ wraps
#6190 [https://github.com/datalad/datalad/pull/6190] (by
@yariktopic)

	The unmaintained appdirs library has been replaced with
platformdirs
#6198 [https://github.com/datalad/datalad/pull/6198] (by @adswa)

	Modelines mismatching the code style in source files were fixed
#6263 [https://github.com/datalad/datalad/pull/6263] (by @AKSoo)

	datalad/__init__.py has been cleaned up
#6271 [https://github.com/datalad/datalad/pull/6271] (by @mih)

	GitRepo.call_git_items is implemented with a generator-based
runner #6278 [https://github.com/datalad/datalad/pull/6278] (by
@christian-monch)

	Separate positional from keyword arguments in the Python API to match
CLI with *
#6176 [https://github.com/datalad/datalad/pull/6176] (by
@yarikoptic),
#6304 [https://github.com/datalad/datalad/pull/6304] (by
@christian-monch)

	GitRepo.bare does not require the ConfigManager anymore
#6323 [https://github.com/datalad/datalad/pull/6323] (by @mih)

	_get_dot_git() was reimplemented to be more efficient and
consistent, by testing for common scenarios first and introducing a
consistently applied resolved flag for result path reporting
#6325 [https://github.com/datalad/datalad/pull/6325] (by @mih)

	All data files under datalad are now included when installing
DataLad #6336 [https://github.com/datalad/datalad/pull/6336] (by
@jwodder)

	Add internal method for non-interactive provider/credential storing
#5796 [https://github.com/datalad/datalad/pull/5796] (by
@bpoldrack)

	Allow credential classes to have a context set, consisting of a URL
they are to be used with and a dataset DataLad is operating on,
allowing to consider “local” and “dataset” config locations
#5796 [https://github.com/datalad/datalad/pull/5796] (by
@bpoldrack)

	The Interface method get_refds_path() was deprecated
#6387 [https://github.com/datalad/datalad/pull/6387] (by @adswa)

	datalad.interface.base.Interface is now an abstract class
#6391 [https://github.com/datalad/datalad/pull/6391] (by @mih)

	Simplified the decision making for result rendering, and reduced code
complexity #6394 [https://github.com/datalad/datalad/pull/6394]
(by @mih)

	Reduce code duplication in datalad.support.json_py
#6398 [https://github.com/datalad/datalad/pull/6398] (by @mih)

	Use public ArgumentParser.parse_known_args instead of protected
_parse_known_args
#6414 [https://github.com/datalad/datalad/pull/6414] (by
@yarikoptic)

	add-archive-content does not rely on the deprecated
tempfile.mktemp anymore, but uses the more secure
tempfile.mkdtemp
#6428 [https://github.com/datalad/datalad/pull/6428] (by @adswa)

	AnnexRepo’s internal annexstatus is deprecated. In its place, a
new test helper assists the few tests that rely on it
#6413 [https://github.com/datalad/datalad/pull/6413] (by @adswa)

	config has been refactored from where[="dataset"] to
scope[="branch"]
#5969 [https://github.com/datalad/datalad/pull/5969] (by
@yarikoptic)

	Common command arguments are now uniformly and exhaustively passed to
result renderers and filters for decision making. Previously, the
presence of a particular argument depended on the respective API and
circumstances of a command call.
#6440 [https://github.com/datalad/datalad/pull/6440] (by @mih)

	Entrypoint processing for extensions and metadata extractors has been
consolidated on a uniform helper that is about twice as fast as the
previous implementations.
#6591 [https://github.com/datalad/datalad/pull/6591] (by @mih)

Tests

	A range of Windows tests pass and were enabled
#6136 [https://github.com/datalad/datalad/pull/6136] (by @adswa)

	Invalid escape sequences in some tests were fixed
#6147 [https://github.com/datalad/datalad/pull/6147] (by @mih)

	A cross-platform compatible HTTP-serving test environment is
introduced #6153 [https://github.com/datalad/datalad/pull/6153]
(by @mih)

	A new helper exposes serve_path_via_http to the command line to
deploy an ad-hoc instance of the HTTP server used for internal
testing, with SSL and auth, if desired.
#6169 [https://github.com/datalad/datalad/pull/6169] (by @mih)

	Windows tests were redistributed across worker runs to harmonize
runtime #6200 [https://github.com/datalad/datalad/pull/6200] (by
@adswa)

	Batchedcommand gained a basic test
#6203 [https://github.com/datalad/datalad/pull/6203] (by
@christian-monch)

	The use of with_testrepo is discontinued in all core tests
#6224 [https://github.com/datalad/datalad/pull/6224] (by @mih)

	The new git-annex.filter.annex.process configuration is enabled
by default on Windows to speed up the test suite
#6245 [https://github.com/datalad/datalad/pull/6245] (by @mih)

	If the available Git version supports it, the test suite now uses
GIT_CONFIG_GLOBAL to configure a fake home directory instead of
overwriting HOME on OSX
(#6251 [https://github.com/datalad/datalad/pull/6251] (by
@bpoldrack)) and HOME and USERPROFILE on Windows
#6260 [https://github.com/datalad/datalad/pull/6260] (by @adswa)

	Windows test timeouts of runners were addressed
#6311 [https://github.com/datalad/datalad/pull/6311] (by
@christian-monch)

	A handful of Windows tests were fixed
(#6352 [https://github.com/datalad/datalad/pull/6352] (by
@yarikoptic)) or disabled
(#6353 [https://github.com/datalad/datalad/pull/6353] (by
@yarikoptic))

	download-url’s test under http_proxy are skipped when a
session can’t be established
#6361 [https://github.com/datalad/datalad/pull/6361] (by
@yarikoptic)

	A test for datalad clean was fixed to be invoked within a dataset
#6359 [https://github.com/datalad/datalad/pull/6359] (by
@yarikoptic)

	The new datalad.cli.tests have an improved module coverage of 80%
#6378 [https://github.com/datalad/datalad/pull/6378] (by @mih)

	The test_source_candidate_subdataset has been marked as @slow
#6429 [https://github.com/datalad/datalad/pull/6429] (by
@yarikoptic)

	Dedicated CLI benchmarks exist now
#6381 [https://github.com/datalad/datalad/pull/6381] (by @mih)

	Enable code coverage report for subprocesses
#6546 [https://github.com/datalad/datalad/pull/6546] (by @adswa)

	Skip a test on annex>=10.20220127 due to a bug in annex. See
https://git-annex.branchable.com/bugs/Change_to_annex.largefiles_leaves_repo_modified/

Infra

	A new issue template using GitHub forms prestructures bug reports
#6048 [https://github.com/datalad/datalad/pull/6048] (by
@Remi-Gau)

	DataLad and its dependency stack were packaged for Gentoo Linux
#6088 [https://github.com/datalad/datalad/pull/6088] (by
@TheChymera)

	The readthedocs configuration is modernized to version 2
#6207 [https://github.com/datalad/datalad/pull/6207] (by @adswa)

	The Windows CI setup now runs on Appveyor’s Visual Studio 2022
configuration
#6228 [https://github.com/datalad/datalad/pull/6228] (by @adswa)

	The readthedocs-theme and Sphinx versions were pinned to
re-enable rendering of bullet points in the documentation
#6346 [https://github.com/datalad/datalad/pull/6346] (by @adswa)

	The PR template was updated with a CHANGELOG template. Future PRs
should use it to include a summary for the CHANGELOG
#6396 [https://github.com/datalad/datalad/pull/6396] (by @mih)

Authors: 11

	Michael Hanke (@mih)

	Yaroslav Halchenko (@yarikoptic)

	Adina Wagner (@adswa)

	Remi Gau (@Remi-Gau)

	Horea Christian (@TheChymera)

	Micha Szczepanik (@mslw)

	Christian Mnch (@christian-monch)

	John T. Wodder (@jwodder)

	Benjamin Poldrack (@bpoldrack)

	Sin Kim (@AKSoo)

	Basile Pinsard (@bpinsard)

0.15.6 (Sun Feb 27 2022)

Bug Fix

	BF: do not use BaseDownloader instance wide InterProcessLock -
resolves stalling or errors during parallel installs
#6507 [https://github.com/datalad/datalad/pull/6507]
(@yarikoptic [https://github.com/yarikoptic])

	release workflow: add -vv to auto invocation
(@yarikoptic [https://github.com/yarikoptic])

	Fix version incorrectly incremented by release process in CHANGELOGs
#6459 [https://github.com/datalad/datalad/pull/6459]
(@yarikoptic [https://github.com/yarikoptic])

	BF(TST): add another condition to skip under http_proxy set
#6459 [https://github.com/datalad/datalad/pull/6459]
(@yarikoptic [https://github.com/yarikoptic])

Authors: 1

	Yaroslav Halchenko (@yarikoptic [https://github.com/yarikoptic])

0.15.5 (Wed Feb 09 2022)

Enhancement

	BF: When download-url gets Pathobject as path convert it to a string
#6364 [https://github.com/datalad/datalad/pull/6364]
(@adswa [https://github.com/adswa])

Bug Fix

	Fix AnnexRepo.whereis key=True mode operation, and add batch mode
support #6379 [https://github.com/datalad/datalad/pull/6379]
(@yarikoptic [https://github.com/yarikoptic])

	DOC: run - adjust description for -i/-o to mention that it could be a
directory #6416 [https://github.com/datalad/datalad/pull/6416]
(@yarikoptic [https://github.com/yarikoptic])

	BF: ORA over HTTP tried to check archive
#6355 [https://github.com/datalad/datalad/pull/6355]
(@bpoldrack [https://github.com/bpoldrack]
@yarikoptic [https://github.com/yarikoptic])

	BF: condition access to isatty to have stream eval to True
#6360 [https://github.com/datalad/datalad/pull/6360]
(@yarikoptic [https://github.com/yarikoptic])

	BF: python 3.10 compatibility fixes
#6363 [https://github.com/datalad/datalad/pull/6363]
(@yarikoptic [https://github.com/yarikoptic])

	Remove two(!) copies of a test
#6374 [https://github.com/datalad/datalad/pull/6374]
(@mih [https://github.com/mih])

	Warn just once about incomplete git config
#6343 [https://github.com/datalad/datalad/pull/6343]
(@yarikoptic [https://github.com/yarikoptic])

	Make version detection robust to GIT_DIR specification
#6341 [https://github.com/datalad/datalad/pull/6341]
(@effigies [https://github.com/effigies]
@mih [https://github.com/mih])

	BF(Q&D): do not crash - issue warning - if template fails to format
#6319 [https://github.com/datalad/datalad/pull/6319]
(@yarikoptic [https://github.com/yarikoptic])

Authors: 5

	Adina Wagner (@adswa [https://github.com/adswa])

	Benjamin Poldrack (@bpoldrack [https://github.com/bpoldrack])

	Chris Markiewicz (@effigies [https://github.com/effigies])

	Michael Hanke (@mih [https://github.com/mih])

	Yaroslav Halchenko (@yarikoptic [https://github.com/yarikoptic])

0.15.4 (Thu Dec 16 2021)

Bug Fix

	BF: autorc - replace incorrect releaseTypes with “none”
#6320 [https://github.com/datalad/datalad/pull/6320]
(@yarikoptic [https://github.com/yarikoptic])

	Minor enhancement to CONTRIBUTING.md
#6309 [https://github.com/datalad/datalad/pull/6309]
(@bpoldrack [https://github.com/bpoldrack])

	UX: If a clean repo is dirty after a failed run, give clean-up hints
#6112 [https://github.com/datalad/datalad/pull/6112]
(@adswa [https://github.com/adswa])

	Stop using distutils
#6113 [https://github.com/datalad/datalad/pull/6113]
(@jwodder [https://github.com/jwodder])

	BF: RIARemote - set UI backend to annex to make it interactive
#6287 [https://github.com/datalad/datalad/pull/6287]
(@yarikoptic [https://github.com/yarikoptic]
@bpoldrack [https://github.com/bpoldrack])

	Fix invalid escape sequences
#6293 [https://github.com/datalad/datalad/pull/6293]
(@jwodder [https://github.com/jwodder])

	CI: Update environment for windows CI builds
#6292 [https://github.com/datalad/datalad/pull/6292]
(@bpoldrack [https://github.com/bpoldrack])

	bump the python version used for mac os tests
#6288 [https://github.com/datalad/datalad/pull/6288]
(@christian-monch [https://github.com/christian-monch]
@bpoldrack [https://github.com/bpoldrack])

	ENH(UX): log a hint to use ulimit command in case of “Too long”
exception #6173 [https://github.com/datalad/datalad/pull/6173]
(@yarikoptic [https://github.com/yarikoptic])

	Report correct HTTP URL for RIA store content
#6091 [https://github.com/datalad/datalad/pull/6091]
(@mih [https://github.com/mih])

	BF: Don’t overwrite subdataset source candidates
#6168 [https://github.com/datalad/datalad/pull/6168]
(@bpoldrack [https://github.com/bpoldrack])

	Bump sphinx requirement to bypass readthedocs defaults
#6189 [https://github.com/datalad/datalad/pull/6189]
(@mih [https://github.com/mih])

	infra: Provide custom prefix to auto-related labels
#6151 [https://github.com/datalad/datalad/pull/6151]
(@adswa [https://github.com/adswa])

	Remove all usage of exc_str()
#6142 [https://github.com/datalad/datalad/pull/6142]
(@mih [https://github.com/mih])

	BF: obtain information about annex special remotes also from annex
journal #6135 [https://github.com/datalad/datalad/pull/6135]
(@yarikoptic [https://github.com/yarikoptic]
@mih [https://github.com/mih])

	BF: clone tried to save new subdataset despite failing to clone
#6140 [https://github.com/datalad/datalad/pull/6140]
(@bpoldrack [https://github.com/bpoldrack])

Tests

	RF+BF: use skip_if_no_module helper instead of try/except for libxmp
and boto #6148 [https://github.com/datalad/datalad/pull/6148]
(@yarikoptic [https://github.com/yarikoptic])

	git://github.com -> https://github.com
#6134 [https://github.com/datalad/datalad/pull/6134]
(@mih [https://github.com/mih])

Authors: 6

	Adina Wagner (@adswa [https://github.com/adswa])

	Benjamin Poldrack (@bpoldrack [https://github.com/bpoldrack])

	Christian Mnch
(@christian-monch [https://github.com/christian-monch])

	John T. Wodder II (@jwodder [https://github.com/jwodder])

	Michael Hanke (@mih [https://github.com/mih])

	Yaroslav Halchenko (@yarikoptic [https://github.com/yarikoptic])

0.15.3 (Sat Oct 30 2021)

Bug Fix

	BF: Don’t make create-sibling recursive by default
#6116 [https://github.com/datalad/datalad/pull/6116]
(@adswa [https://github.com/adswa])

	BF: Add dashes to ‘force’ option in non-empty directory error message
#6078 [https://github.com/datalad/datalad/pull/6078]
(@DisasterMo [https://github.com/DisasterMo])

	DOC: Add supported URL types to download-url’s docstring
#6098 [https://github.com/datalad/datalad/pull/6098]
(@adswa [https://github.com/adswa])

	BF: Retain git-annex error messages & don’t show them if operation
successful #6070 [https://github.com/datalad/datalad/pull/6070]
(@DisasterMo [https://github.com/DisasterMo])

	Remove uses of __full_version__ and datalad.version
#6073 [https://github.com/datalad/datalad/pull/6073]
(@jwodder [https://github.com/jwodder])

	BF: ORA shouldn’t crash while handling a failure
#6063 [https://github.com/datalad/datalad/pull/6063]
(@bpoldrack [https://github.com/bpoldrack])

	DOC: Refine –reckless docstring on usage and wording
#6043 [https://github.com/datalad/datalad/pull/6043]
(@adswa [https://github.com/adswa])

	BF: archives upon strip - use rmtree which retries etc instead of
rmdir #6064 [https://github.com/datalad/datalad/pull/6064]
(@yarikoptic [https://github.com/yarikoptic])

	BF: do not leave test in a tmp dir destined for removal
#6059 [https://github.com/datalad/datalad/pull/6059]
(@yarikoptic [https://github.com/yarikoptic])

	Next wave of exc_str() removals
#6022 [https://github.com/datalad/datalad/pull/6022]
(@mih [https://github.com/mih])

Pushed to maint

	CI: Enable new codecov uploader in Appveyor CI
(@adswa [https://github.com/adswa])

Internal

	UX: Log clone-candidate number and URLs
#6092 [https://github.com/datalad/datalad/pull/6092]
(@adswa [https://github.com/adswa])

	UX/ENH: Disable reporting, and don’t do superfluous internal
subdatasets calls
#6094 [https://github.com/datalad/datalad/pull/6094]
(@adswa [https://github.com/adswa])

	Update codecov action to v2
#6072 [https://github.com/datalad/datalad/pull/6072]
(@jwodder [https://github.com/jwodder])

Documentation

	Design document on URL substitution feature
#6065 [https://github.com/datalad/datalad/pull/6065]
(@mih [https://github.com/mih])

Tests

	BF(TST): remove reuse of the same tape across unrelated tests
#6127 [https://github.com/datalad/datalad/pull/6127]
(@yarikoptic [https://github.com/yarikoptic])

	Fail Travis tests on deprecation warnings
#6074 [https://github.com/datalad/datalad/pull/6074]
(@jwodder [https://github.com/jwodder])

	Ux get result handling broken
#6052 [https://github.com/datalad/datalad/pull/6052]
(@christian-monch [https://github.com/christian-monch])

	enable metalad tests again
#6060 [https://github.com/datalad/datalad/pull/6060]
(@christian-monch [https://github.com/christian-monch])

Authors: 7

	Adina Wagner (@adswa [https://github.com/adswa])

	Benjamin Poldrack (@bpoldrack [https://github.com/bpoldrack])

	Christian Mnch
(@christian-monch [https://github.com/christian-monch])

	John T. Wodder II (@jwodder [https://github.com/jwodder])

	Michael Burgardt (@DisasterMo [https://github.com/DisasterMo])

	Michael Hanke (@mih [https://github.com/mih])

	Yaroslav Halchenko (@yarikoptic [https://github.com/yarikoptic])

0.15.2 (Wed Oct 06 2021)

Bug Fix

	BF: Don’t suppress datalad subdatasets output
#6035 [https://github.com/datalad/datalad/pull/6035]
(@DisasterMo [https://github.com/DisasterMo]
@mih [https://github.com/mih])

	Honor datalad.runtime.use-patool if set regardless of OS (was Windows
only) #6033 [https://github.com/datalad/datalad/pull/6033]
(@mih [https://github.com/mih])

	Discontinue usage of deprecated (public) helper
#6032 [https://github.com/datalad/datalad/pull/6032]
(@mih [https://github.com/mih])

	BF: ProgressHandler - close the other handler if was specified
#6020 [https://github.com/datalad/datalad/pull/6020]
(@yarikoptic [https://github.com/yarikoptic])

	UX: Report GitLab weburl of freshly created projects in the result
#6017 [https://github.com/datalad/datalad/pull/6017]
(@adswa [https://github.com/adswa])

	Ensure there’s a blank line between the class __doc__ and
“Parameters” in build_doc docstrings
#6004 [https://github.com/datalad/datalad/pull/6004]
(@jwodder [https://github.com/jwodder])

	Large code-reorganization of everything runner-related
#6008 [https://github.com/datalad/datalad/pull/6008]
(@mih [https://github.com/mih])

	Discontinue exc_str() in all modern parts of the code base
#6007 [https://github.com/datalad/datalad/pull/6007]
(@mih [https://github.com/mih])

Tests

	TST: Add test to ensure functionality with subdatasets starting with
a hyphen (-) #6042 [https://github.com/datalad/datalad/pull/6042]
(@DisasterMo [https://github.com/DisasterMo])

	BF(TST): filter away warning from coverage from analysis of stderr of
–help #6028 [https://github.com/datalad/datalad/pull/6028]
(@yarikoptic [https://github.com/yarikoptic])

	BF: disable outdated SSL root certificate breaking chain on
older/buggy clients
#6027 [https://github.com/datalad/datalad/pull/6027]
(@yarikoptic [https://github.com/yarikoptic])

	BF: start global test_http_server only if not running already
#6023 [https://github.com/datalad/datalad/pull/6023]
(@yarikoptic [https://github.com/yarikoptic])

Authors: 5

	Adina Wagner (@adswa [https://github.com/adswa])

	John T. Wodder II (@jwodder [https://github.com/jwodder])

	Michael Burgardt (@DisasterMo [https://github.com/DisasterMo])

	Michael Hanke (@mih [https://github.com/mih])

	Yaroslav Halchenko (@yarikoptic [https://github.com/yarikoptic])

0.15.1 (Fri Sep 24 2021)

Bug Fix

	BF: downloader - fail to download even on non-crippled FS if symlink
exists #5991 [https://github.com/datalad/datalad/pull/5991]
(@yarikoptic [https://github.com/yarikoptic])

	ENH: import datalad.api to bind extensions methods for discovery of
dataset methods
#5999 [https://github.com/datalad/datalad/pull/5999]
(@yarikoptic [https://github.com/yarikoptic])

	Restructure cmdline API presentation
#5988 [https://github.com/datalad/datalad/pull/5988]
(@mih [https://github.com/mih])

	Close file descriptors after process exit
#5983 [https://github.com/datalad/datalad/pull/5983]
(@mih [https://github.com/mih])

Pushed to maint

	Discontinue testing of hirni extension
(@mih [https://github.com/mih])

Internal

	Add debugging information to release step
#5980 [https://github.com/datalad/datalad/pull/5980]
(@jwodder [https://github.com/jwodder])

Documentation

	Coarse description of the credential subsystem’s functionality
#5998 [https://github.com/datalad/datalad/pull/5998]
(@mih [https://github.com/mih])

Tests

	BF(TST): use sys.executable, mark test_ria_basics.test_url_keys as
requiring network
#5986 [https://github.com/datalad/datalad/pull/5986]
(@yarikoptic [https://github.com/yarikoptic])

Authors: 3

	John T. Wodder II (@jwodder [https://github.com/jwodder])

	Michael Hanke (@mih [https://github.com/mih])

	Yaroslav Halchenko (@yarikoptic [https://github.com/yarikoptic])

0.15.0 (Tue Sep 14 2021) – We miss you Kyle!

Enhancements and new features

	Command execution is now performed by a new Runner implementation
that is no longer based on the asyncio framework, which was found
to exhibit fragile performance in interaction with other
asyncio-using code, such as Jupyter notebooks. The new
implementation is based on threads. It also supports the
specification of “protocols” that were introduced with the switch to
the asyncio implementation in 0.14.0.
(#5667 [https://github.com/datalad/datalad/issues/5667])

	clone now supports arbitrary URL transformations based on regular
expressions. One or more transformation steps can be defined via
datalad.clone.url-substitute.<label> configuration settings. The
feature can be (and is now) used to support convenience mappings,
such as https://osf.io/q8xnk/ (displayed in a browser window) to
osf://q8xnk (clonable via the datalad-osf extension.
(#5749 [https://github.com/datalad/datalad/issues/5749])

	Homogenize SSH use and configurability between DataLad and git-annex,
by instructing git-annex to use DataLad’s sshrun for SSH calls
(instead of SSH directly).
(#5389 [https://github.com/datalad/datalad/issues/5389])

	The ORA special remote has received several new features:

	It now support a push-url setting as an alternative to url
for write access. An analog parameter was also added to
create-sibling-ria.
(#5420 [https://github.com/datalad/datalad/issues/5420],
#5428 [https://github.com/datalad/datalad/issues/5428])

	Access of RIA stores now performs homogeneous availability checks,
regardless of access protocol. Before, broken HTTP-based access
due to misspecified URLs could have gone unnoticed.
(#5459 [https://github.com/datalad/datalad/issues/5459],
#5672 [https://github.com/datalad/datalad/issues/5672])

	Error reporting was introduce to inform about undesirable
conditions in remote RIA stores.
(#5683 [https://github.com/datalad/datalad/issues/5683])

	create-sibling-ria now supports --alias for the specification
of a convenience dataset alias name in a RIA store.
(#5592 [https://github.com/datalad/datalad/issues/5592])

	Analog to git commit, save now features an --amend mode
to support incremental updates of a dataset state.
(#5430 [https://github.com/datalad/datalad/issues/5430])

	run now supports a dry-run mode that can be used to inspect the
result of parameter expansion on the effective command to ease the
composition of more complicated command lines.
(#5539 [https://github.com/datalad/datalad/issues/5539])

	run now supports a --assume-ready switch to avoid the
(possibly expensive) preparation of inputs and outputs with large
datasets that have already been readied through other means.
(#5431 [https://github.com/datalad/datalad/issues/5431])

	update now features --how and --how-subds parameters to
configure how an update shall be performed. Supported modes are
fetch (unchanged default), and merge (previously also
possible via --merge), but also new strategies like reset or
checkout.
(#5534 [https://github.com/datalad/datalad/issues/5534])

	update has a new --follow=parentds-lazy mode that only
performs a fetch operation in subdatasets when the desired commit is
not yet present. During recursive updates involving many subdatasets
this can substantially speed up performance.
(#5474 [https://github.com/datalad/datalad/issues/5474])

	DataLad’s command line API can now report the version for individual
commands via datalad <cmd> --version. The output has been
homogenized to <providing package> <version>.
(#5543 [https://github.com/datalad/datalad/issues/5543])

	create-sibling now logs information on an auto-generated sibling
name, in the case that no --name/-s was provided.
(#5550 [https://github.com/datalad/datalad/issues/5550])

	create-sibling-github has been updated to emit result records
like any standard DataLad command. Previously it was implemented as a
“plugin”, which did not support all standard API parameters.
(#5551 [https://github.com/datalad/datalad/issues/5551])

	copy-file now also works with content-less files in datasets on
crippled filesystems (adjusted mode), when a recent enough git-annex
(8.20210428 or later) is available.
(#5630 [https://github.com/datalad/datalad/issues/5630])

	addurls can now be instructed how to behave in the event of file
name collision via a new parameter --on-collision.
(#5675 [https://github.com/datalad/datalad/issues/5675])

	addurls reporting now informs which particular subdatasets were
created. (#5689 [https://github.com/datalad/datalad/issues/5689])

	Credentials can now be provided or overwritten via all means
supported by ConfigManager. Importantly,
datalad.credential.<name>.<field> configuration settings and
analog specification via environment variables are now supported
(rather than custom environment variables only). Previous
specification methods are still supported too.
(#5680 [https://github.com/datalad/datalad/issues/5680])

	A new datalad.credentials.force-ask configuration flag can now be
used to force re-entry of already known credentials. This simplifies
credential updates without having to use an approach native to
individual credential stores.
(#5777 [https://github.com/datalad/datalad/issues/5777])

	Suppression of rendering repeated similar results is now configurable
via the configuration switches
datalad.ui.suppress-similar-results (bool), and
datalad.ui.suppress-similar-results-threshold (int).
(#5681 [https://github.com/datalad/datalad/issues/5681])

	The performance of status and similar functionality when
determining local file availability has been improved.
(#5692 [https://github.com/datalad/datalad/issues/5692])

	push now renders a result summary on completion.
(#5696 [https://github.com/datalad/datalad/issues/5696])

	A dedicated info log message indicates when dataset repositories are
subjected to an annex version upgrade.
(#5698 [https://github.com/datalad/datalad/issues/5698])

	Error reporting improvements:

	The NoDatasetFound exception now provides information for
which purpose a dataset is required.
(#5708 [https://github.com/datalad/datalad/issues/5708])

	Wording of the MissingExternalDependeny error was rephrased to
account for cases of non-functional installations.
(#5803 [https://github.com/datalad/datalad/issues/5803])

	push reports when a --to parameter specification was
(likely) forgotten.
(#5726 [https://github.com/datalad/datalad/issues/5726])

	Detailed information is now given when DataLad fails to obtain a
lock for credential entry in a timely fashion. Previously only a
generic debug log message was emitted.
(#5884 [https://github.com/datalad/datalad/issues/5884])

	Clarified error message when create-sibling-gitlab was called
without --project.
(#5907 [https://github.com/datalad/datalad/issues/5907])

	add-readme now provides a README template with more information
on the nature and use of DataLad datasets. A README file is no longer
annex’ed by default, but can be using the new --annex switch.
([#5723][], [#5725][])

	clean now supports a --dry-run mode to inform about cleanable
content. (#5738 [https://github.com/datalad/datalad/issues/5738])

	A new configuration setting datalad.locations.locks can be used
to control the placement of lock files.
(#5740 [https://github.com/datalad/datalad/issues/5740])

	wtf now also reports branch names and states.
(#5804 [https://github.com/datalad/datalad/issues/5804])

	AnnexRepo.whereis() now supports batch mode.
(#5533 [https://github.com/datalad/datalad/issues/5533])

Deprecations and removals

	The minimum supported git-annex version is now 8.20200309.
(#5512 [https://github.com/datalad/datalad/issues/5512])

	ORA special remote configuration items ssh-host, and
base-path are deprecated. They are completely replaced by
ria+<protocol>:// URL specifications.
(#5425 [https://github.com/datalad/datalad/issues/5425])

	The deprecated no_annex parameter of create() was removed
from the Python API.
(#5441 [https://github.com/datalad/datalad/issues/5441])

	The unused GitRepo.pull() method has been removed.
(#5558 [https://github.com/datalad/datalad/issues/5558])

	Residual support for “plugins” (a mechanism used before DataLad
supported extensions) was removed. This includes the configuration
switches datalad.locations.{system,user}-plugins.
(#5554 [https://github.com/datalad/datalad/issues/5554],
#5564 [https://github.com/datalad/datalad/issues/5564])

	Several features and comments have been moved to the
datalad-deprecated package. This package must now be installed to
be able to use keep using this functionality.

	The publish command. Use push instead.
(#5837 [https://github.com/datalad/datalad/issues/5837])

	The ls command.
(#5569 [https://github.com/datalad/datalad/issues/5569])

	The web UI that is deployable via datalad create-sibling --ui.
(#5555 [https://github.com/datalad/datalad/issues/5555])

	The “automagic IO” feature.
(#5577 [https://github.com/datalad/datalad/issues/5577])

	AnnexRepo.copy_to() has been deprecated. The push command
should be used instead.
(#5560 [https://github.com/datalad/datalad/issues/5560])

	AnnexRepo.sync() has been deprecated.
AnnexRepo.call_annex(['sync', ...]) should be used instead.
(#5461 [https://github.com/datalad/datalad/issues/5461])

	All GitRepo.*_submodule() methods have been deprecated and will
be removed in a future release.
(#5559 [https://github.com/datalad/datalad/issues/5559])

	create-sibling-github’s --dryrun switch was deprecated, use
--dry-run instead.
(#5551 [https://github.com/datalad/datalad/issues/5551])

	The datalad --pbs-runner option has been deprecated, use
condor_run (or similar) instead.
(#5956 [https://github.com/datalad/datalad/issues/5956])

Fixes

	Prevent invalid declaration of a publication dependencies for
‘origin’ on any auto-detected ORA special remotes, when cloing from a
RIA store. An ORA remote is now checked whether it actually points to
the RIA store the clone was made from.
(#5415 [https://github.com/datalad/datalad/issues/5415])

	The ORA special remote implementation has received several fixes:

	It can now handle HTTP redirects.
(#5792 [https://github.com/datalad/datalad/issues/5792])

	Prevents failure when URL-type annex keys contain the ‘/’
character.
(#5823 [https://github.com/datalad/datalad/issues/5823])

	Properly support the specification of usernames, passwords and
ports in ria+<protocol>:// URLs.
(#5902 [https://github.com/datalad/datalad/issues/5902])

	It is now possible to specifically select the default (or generic)
result renderer via datalad -f default and with that override a
tailored result renderer that may be preconfigured for a
particular command.
(#5476 [https://github.com/datalad/datalad/issues/5476])

	Starting with 0.14.0, original URLs given to clone were recorded
in a subdataset record. This was initially done in a second commit,
leading to inflation of commits and slowdown in superdatasets with
many subdatasets. Such subdataset record annotation is now collapsed
into a single commits.
(#5480 [https://github.com/datalad/datalad/issues/5480])

	run now longer removes leading empty directories as part of the
output preparation. This was surprising behavior for commands that do
not ensure on their own that output directories exist.
(#5492 [https://github.com/datalad/datalad/issues/5492])

	A potentially existing message property is no longer removed when
using the json or json_pp result renderer to avoid undesired
withholding of relevant information.
(#5536 [https://github.com/datalad/datalad/issues/5536])

	subdatasets now reports state=present, rather than
state=clean, for installed subdatasets to complement
state=absent reports for uninstalled dataset.
(#5655 [https://github.com/datalad/datalad/issues/5655])

	create-sibling-ria now executes commands with a consistent
environment setup that matches all other command execution in other
DataLad commands.
(#5682 [https://github.com/datalad/datalad/issues/5682])

	save no longer saves unspecified subdatasets when called with an
explicit path (list). The fix required a behavior change of
GitRepo.get_content_info() in its interpretation of None
vs. [] path argument values that now aligns the behavior of
GitRepo.diff|status() with their respective documentation.
(#5693 [https://github.com/datalad/datalad/issues/5693])

	get now prefers the location of a subdatasets that is recorded in
a superdataset’s .gitmodules record. Previously, DataLad tried to
obtain a subdataset from an assumed checkout of the superdataset’s
origin. This new default order is (re-)configurable via the
datalad.get.subdataset-source-candidate-<priority-label>
configuration mechanism.
(#5760 [https://github.com/datalad/datalad/issues/5760])

	create-sibling-gitlab no longer skips the root dataset when .
is given as a path.
(#5789 [https://github.com/datalad/datalad/issues/5789])

	siblings now rejects a value given to --as-common-datasrc
that clashes with the respective Git remote.
(#5805 [https://github.com/datalad/datalad/issues/5805])

	The usage synopsis reported by siblings now lists all supported
actions. (#5913 [https://github.com/datalad/datalad/issues/5913])

	siblings now renders non-ok results to avoid silent failure.
(#5915 [https://github.com/datalad/datalad/issues/5915])

	.gitattribute file manipulations no longer leave the file without
a trailing newline.
(#5847 [https://github.com/datalad/datalad/issues/5847])

	Prevent crash when trying to delete a non-existing keyring credential
field. (#5892 [https://github.com/datalad/datalad/issues/5892])

	git-annex is no longer called with an unconditional annex.retry=3
configuration. Instead, this parameterization is now limited to
annex get and annex copy calls.
(#5904 [https://github.com/datalad/datalad/issues/5904])

Tests

	file:// URLs are no longer the predominant test case for
AnnexRepo functionality. A built-in HTTP server now used in most
cases. (#5332 [https://github.com/datalad/datalad/issues/5332])

0.14.8 (Sun Sep 12 2021)

Bug Fix

	BF: add-archive-content on .xz and other non-.gz stream compressed
files #5930 [https://github.com/datalad/datalad/pull/5930]
(@yarikoptic [https://github.com/yarikoptic])

	BF(UX): do not keep logging ERROR possibly present in progress
records #5936 [https://github.com/datalad/datalad/pull/5936]
(@yarikoptic [https://github.com/yarikoptic])

	Annotate datalad_core as not needing actual data – just uses annex
whereis #5971 [https://github.com/datalad/datalad/pull/5971]
(@yarikoptic [https://github.com/yarikoptic])

	BF: limit CMD_MAX_ARG if obnoxious value is encountered.
#5945 [https://github.com/datalad/datalad/pull/5945]
(@yarikoptic [https://github.com/yarikoptic])

	Download session/credentials locking – inform user if locking is
“failing” to be obtained, fail upon ~5min timeout
#5884 [https://github.com/datalad/datalad/pull/5884]
(@yarikoptic [https://github.com/yarikoptic])

	Render siblings()’s non-ok results with the default renderer
#5915 [https://github.com/datalad/datalad/pull/5915]
(@mih [https://github.com/mih])

	BF: do not crash, just skip whenever trying to delete non existing
field in the underlying keyring
#5892 [https://github.com/datalad/datalad/pull/5892]
(@yarikoptic [https://github.com/yarikoptic])

	Fix argument-spec for siblings and improve usage synopsis
#5913 [https://github.com/datalad/datalad/pull/5913]
(@mih [https://github.com/mih])

	Clarify error message re unspecified gitlab project
#5907 [https://github.com/datalad/datalad/pull/5907]
(@mih [https://github.com/mih])

	Support username, password and port specification in RIA URLs
#5902 [https://github.com/datalad/datalad/pull/5902]
(@mih [https://github.com/mih])

	BF: take path from SSHRI, test URLs not only on Windows
#5881 [https://github.com/datalad/datalad/pull/5881]
(@yarikoptic [https://github.com/yarikoptic])

	ENH(UX): warn user if keyring returned a “null” keyring
#5875 [https://github.com/datalad/datalad/pull/5875]
(@yarikoptic [https://github.com/yarikoptic])

	ENH(UX): state original purpose in NoDatasetFound exception + detail
it for get #5708 [https://github.com/datalad/datalad/pull/5708]
(@yarikoptic [https://github.com/yarikoptic])

Pushed to maint

	Merge branch ‘bf-http-headers-agent’ into maint
(@yarikoptic [https://github.com/yarikoptic])

	RF(BF?)+DOC: provide User-Agent to entire session headers + use those
if provided (@yarikoptic [https://github.com/yarikoptic])

Internal

	Pass --no-changelog to auto shipit if changelog already has
entry #5952 [https://github.com/datalad/datalad/pull/5952]
(@jwodder [https://github.com/jwodder])

	Add isort config to match current convention + run isort via
pre-commit (if configured)
#5923 [https://github.com/datalad/datalad/pull/5923]
(@jwodder [https://github.com/jwodder])

	.travis.yml: use python -m {nose,coverage} invocations, and always
show combined report
#5888 [https://github.com/datalad/datalad/pull/5888]
(@yarikoptic [https://github.com/yarikoptic])

	Add project URLs into the package metadata for convenience links on
Pypi #5866 [https://github.com/datalad/datalad/pull/5866]
(@adswa [https://github.com/adswa]
@yarikoptic [https://github.com/yarikoptic])

Tests

	BF: do use OBSCURE_FILENAME instead of hardcoded unicode
#5944 [https://github.com/datalad/datalad/pull/5944]
(@yarikoptic [https://github.com/yarikoptic])

	BF(TST): Skip testing for having PID listed if no psutil
#5920 [https://github.com/datalad/datalad/pull/5920]
(@yarikoptic [https://github.com/yarikoptic])

	BF(TST): Boost version of git-annex to 8.20201129 to test an error
message #5894 [https://github.com/datalad/datalad/pull/5894]
(@yarikoptic [https://github.com/yarikoptic])

Authors: 4

	Adina Wagner (@adswa [https://github.com/adswa])

	John T. Wodder II (@jwodder [https://github.com/jwodder])

	Michael Hanke (@mih [https://github.com/mih])

	Yaroslav Halchenko (@yarikoptic [https://github.com/yarikoptic])

0.14.7 (Tue Aug 03 2021)

Bug Fix

	UX: When two or more clone URL templates are found, error out more
gracefully #5839 [https://github.com/datalad/datalad/pull/5839]
(@adswa [https://github.com/adswa])

	BF: http_auth - follow redirect (just 1) to re-authenticate after
initial attempt
#5852 [https://github.com/datalad/datalad/pull/5852]
(@yarikoptic [https://github.com/yarikoptic])

	addurls Formatter - provide value repr in exception
#5850 [https://github.com/datalad/datalad/pull/5850]
(@yarikoptic [https://github.com/yarikoptic])

	ENH: allow for “patch” level semver for “master” branch
#5839 [https://github.com/datalad/datalad/pull/5839]
(@yarikoptic [https://github.com/yarikoptic])

	BF: Report info from annex JSON error message in CommandError
#5809 [https://github.com/datalad/datalad/pull/5809]
(@mih [https://github.com/mih])

	RF(TST): do not test for no EASY and pkg_resources in shims
#5817 [https://github.com/datalad/datalad/pull/5817]
(@yarikoptic [https://github.com/yarikoptic])

	http downloaders: Provide custom informative User-Agent, do not claim
to be “Authenticated access”
#5802 [https://github.com/datalad/datalad/pull/5802]
(@yarikoptic [https://github.com/yarikoptic])

	ENH(UX,DX): inform user with a warning if version is 0+unknown
#5787 [https://github.com/datalad/datalad/pull/5787]
(@yarikoptic [https://github.com/yarikoptic])

	shell-completion: add argcomplete to ‘misc’ extra_depends, log an
ERROR if argcomplete fails to import
#5781 [https://github.com/datalad/datalad/pull/5781]
(@yarikoptic [https://github.com/yarikoptic])

	ENH (UX): add python-gitlab dependency
#5776 [https://github.com/datalad/datalad/pull/5776]
(s.heunis@fz-juelich.de)

Internal

	BF: Fix reported paths in ORA remote
#5821 [https://github.com/datalad/datalad/pull/5821]
(@adswa [https://github.com/adswa])

	BF: import importlib.metadata not importlib_metadata whenever
available #5818 [https://github.com/datalad/datalad/pull/5818]
(@yarikoptic [https://github.com/yarikoptic])

Tests

	TST: set –allow-unrelated-histories in the mk_push_target setup for
Windows #5855 [https://github.com/datalad/datalad/pull/5855]
(@adswa [https://github.com/adswa])

	Tests: Allow for version to contain + as a separator and provide more
information for version related comparisons
#5786 [https://github.com/datalad/datalad/pull/5786]
(@yarikoptic [https://github.com/yarikoptic])

Authors: 4

	Adina Wagner (@adswa [https://github.com/adswa])

	Michael Hanke (@mih [https://github.com/mih])

	Stephan Heunis (@jsheunis [https://github.com/jsheunis])

	Yaroslav Halchenko (@yarikoptic [https://github.com/yarikoptic])

0.14.6 (Sun Jun 27 2021)

Internal

	BF: update changelog conversion from .md to .rst (for sphinx)
#5757 [https://github.com/datalad/datalad/pull/5757]
(@yarikoptic [https://github.com/yarikoptic]
@jwodder [https://github.com/jwodder])

Authors: 2

	John T. Wodder II (@jwodder [https://github.com/jwodder])

	Yaroslav Halchenko (@yarikoptic [https://github.com/yarikoptic])

0.14.5 (Mon Jun 21 2021)

Bug Fix

	BF(TST): parallel - take longer for producer to produce
#5747 [https://github.com/datalad/datalad/pull/5747]
(@yarikoptic [https://github.com/yarikoptic])

	add –on-failure default value and document it
#5690 [https://github.com/datalad/datalad/pull/5690]
(@christian-monch [https://github.com/christian-monch]
@yarikoptic [https://github.com/yarikoptic])

	ENH: harmonize “purpose” statements to imperative form
#5733 [https://github.com/datalad/datalad/pull/5733]
(@yarikoptic [https://github.com/yarikoptic])

	ENH(TST): populate heavy tree with 100 unique keys (not just 1) among
10,000 #5734 [https://github.com/datalad/datalad/pull/5734]
(@yarikoptic [https://github.com/yarikoptic])

	BF: do not use .acquired - just get state from acquire()
#5718 [https://github.com/datalad/datalad/pull/5718]
(@yarikoptic [https://github.com/yarikoptic])

	BF: account for annex now “scanning for annexed” instead of
“unlocked” files
#5705 [https://github.com/datalad/datalad/pull/5705]
(@yarikoptic [https://github.com/yarikoptic])

	interface: Don’t repeat custom summary for non-generator results
#5688 [https://github.com/datalad/datalad/pull/5688]
(@kyleam [https://github.com/kyleam])

	RF: just pip install datalad-installer
#5676 [https://github.com/datalad/datalad/pull/5676]
(@yarikoptic [https://github.com/yarikoptic])

	DOC: addurls.extract: Drop mention of removed ‘stream’ parameter
#5690 [https://github.com/datalad/datalad/pull/5690]
(@kyleam [https://github.com/kyleam])

	Merge pull request #5674 from kyleam/test-addurls-copy-fix
#5674 [https://github.com/datalad/datalad/pull/5674]
(@kyleam [https://github.com/kyleam])

	Merge pull request #5663 from kyleam/status-ds-equal-path
#5663 [https://github.com/datalad/datalad/pull/5663]
(@kyleam [https://github.com/kyleam])

	Merge pull request #5671 from kyleam/update-fetch-fail
#5671 [https://github.com/datalad/datalad/pull/5671]
(@kyleam [https://github.com/kyleam])

	BF: update: Honor –on-failure if fetch fails
#5671 [https://github.com/datalad/datalad/pull/5671]
(@kyleam [https://github.com/kyleam])

	RF: update: Avoid fetch’s deprecated kwargs
#5671 [https://github.com/datalad/datalad/pull/5671]
(@kyleam [https://github.com/kyleam])

	CLN: update: Drop an unused import
#5671 [https://github.com/datalad/datalad/pull/5671]
(@kyleam [https://github.com/kyleam])

	Merge pull request #5664 from kyleam/addurls-better-url-parts-error
#5664 [https://github.com/datalad/datalad/pull/5664]
(@kyleam [https://github.com/kyleam])

	Merge pull request #5661 from kyleam/sphinx-fix-plugin-refs
#5661 [https://github.com/datalad/datalad/pull/5661]
(@kyleam [https://github.com/kyleam])

	BF: status: Provide special treatment of “this dataset” path
#5663 [https://github.com/datalad/datalad/pull/5663]
(@kyleam [https://github.com/kyleam])

	BF: addurls: Provide better placeholder error for special keys
#5664 [https://github.com/datalad/datalad/pull/5664]
(@kyleam [https://github.com/kyleam])

	RF: addurls: Simply construction of placeholder exception message
#5664 [https://github.com/datalad/datalad/pull/5664]
(@kyleam [https://github.com/kyleam])

	RF: addurls._get_placeholder_exception: Rename a parameter
#5664 [https://github.com/datalad/datalad/pull/5664]
(@kyleam [https://github.com/kyleam])

	RF: status: Avoid repeated Dataset.path access
#5663 [https://github.com/datalad/datalad/pull/5663]
(@kyleam [https://github.com/kyleam])

	DOC: Reference plugins via datalad.api
#5661 [https://github.com/datalad/datalad/pull/5661]
(@kyleam [https://github.com/kyleam])

	download-url: Set up datalad special remote if needed
#5648 [https://github.com/datalad/datalad/pull/5648]
(@kyleam [https://github.com/kyleam]
@yarikoptic [https://github.com/yarikoptic])

Pushed to maint

	MNT: Post-release dance (@kyleam [https://github.com/kyleam])

Internal

	Switch to versioneer and auto
#5669 [https://github.com/datalad/datalad/pull/5669]
(@jwodder [https://github.com/jwodder]
@yarikoptic [https://github.com/yarikoptic])

	MNT: setup.py: Temporarily avoid Sphinx 4
#5649 [https://github.com/datalad/datalad/pull/5649]
(@kyleam [https://github.com/kyleam])

Tests

	BF(TST): skip testing for showing “Scanning for …” since not shown if
too quick #5727 [https://github.com/datalad/datalad/pull/5727]
(@yarikoptic [https://github.com/yarikoptic])

	Revert “TST: test_partial_unlocked: Document and avoid recent
git-annex failure”
#5651 [https://github.com/datalad/datalad/pull/5651]
(@kyleam [https://github.com/kyleam])

Authors: 4

	Christian Mnch
(@christian-monch [https://github.com/christian-monch])

	John T. Wodder II (@jwodder [https://github.com/jwodder])

	Kyle Meyer (@kyleam [https://github.com/kyleam])

	Yaroslav Halchenko (@yarikoptic [https://github.com/yarikoptic])

0.14.4 (May 10, 2021) – .

Fixes

	Following an internal call to git-clone,
clone [http://datalad.readthedocs.io/en/latest/generated/man/datalad-clone.html]
assumed that the remote name was “origin”, but this may not be the
case if clone.defaultRemoteName is configured (available as of
Git 2.30).
(#5572 [https://github.com/datalad/datalad/issues/5572])

	Several test fixes, including updates for changes in git-annex.
(#5612 [https://github.com/datalad/datalad/issues/5612])
(#5632 [https://github.com/datalad/datalad/issues/5632])
(#5639 [https://github.com/datalad/datalad/issues/5639])

0.14.3 (April 28, 2021) – .

Fixes

	For outputs that include a glob,
run [http://datalad.readthedocs.io/en/latest/generated/man/datalad-run.html]
didn’t re-glob after executing the command, which is necessary to
catch changes if --explicit or --expand={outputs,both} is
specified.
(#5594 [https://github.com/datalad/datalad/issues/5594])

	run [http://datalad.readthedocs.io/en/latest/generated/man/datalad-run.html]
now gives an error result rather than a warning when an input glob
doesn’t match.
(#5594 [https://github.com/datalad/datalad/issues/5594])

	The procedure for creating a RIA store checks for an existing
ria-layout-version file and makes sure its version matches the
desired version. This check wasn’t done correctly for SSH hosts.
(#5607 [https://github.com/datalad/datalad/issues/5607])

	A helper for transforming git-annex JSON records into DataLad results
didn’t account for the unusual case where the git-annex record
doesn’t have a “file” key.
(#5580 [https://github.com/datalad/datalad/issues/5580])

	The test suite required updates for recent changes in PyGithub and
git-annex.
(#5603 [https://github.com/datalad/datalad/issues/5603])
(#5609 [https://github.com/datalad/datalad/issues/5609])

Enhancements and new features

	The DataLad source repository has long had a tools/cmdline-completion
helper. This functionality is now exposed as a command,
datalad shell-completion.
(#5544 [https://github.com/datalad/datalad/issues/5544])

0.14.2 (April 14, 2021) – .

Fixes

	push [http://datalad.readthedocs.io/en/latest/generated/man/datalad-push.html]
now works bottom-up, pushing submodules first so that hooks on the
remote can aggregate updated subdataset information.
(#5416 [https://github.com/datalad/datalad/issues/5416])

	run-procedure [http://datalad.readthedocs.io/en/latest/generated/man/datalad-run-procedure.html]
didn’t ensure that the configuration of subdatasets was reloaded.
(#5552 [https://github.com/datalad/datalad/issues/5552])

0.14.1 (April 01, 2021) – .

Fixes

	The recent default branch changes on GitHub’s side can lead to
“git-annex” being selected over “master” as the default branch on
GitHub when setting up a sibling with
create-sibling-github [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create-sibling-github.html].
To work around this, the current branch is now pushed first.
(#5010 [https://github.com/datalad/datalad/issues/5010])

	The logic for reading in a JSON line from git-annex failed if the
response exceeded the buffer size (256 KB on *nix systems).

	Calling
unlock [http://datalad.readthedocs.io/en/latest/generated/man/datalad-unlock.html]
with a path of “.” from within an untracked subdataset incorrectly
aborted, complaining that the “dataset containing given paths is not
underneath the reference dataset”.
(#5458 [https://github.com/datalad/datalad/issues/5458])

	clone [http://datalad.readthedocs.io/en/latest/generated/man/datalad-clone.html]
didn’t account for the possibility of multiple accessible ORA remotes
or the fact that none of them may be associated with the RIA store
being cloned.
(#5488 [https://github.com/datalad/datalad/issues/5488])

	create-sibling-ria [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create-sibling-ria.html]
didn’t call git update-server-info after setting up the remote
repository and, as a result, the repository couldn’t be fetched until
something else (e.g., a push) triggered a call to
git update-server-info.
(#5531 [https://github.com/datalad/datalad/issues/5531])

	The parser for git-config output didn’t properly handle multi-line
values and got thrown off by unexpected and unrelated lines.
(#5509 [https://github.com/datalad/datalad/issues/5509])

	The 0.14 release introduced regressions in the handling of progress
bars for git-annex actions, including collapsing progress bars for
concurrent operations.
(#5421 [https://github.com/datalad/datalad/issues/5421])
(#5438 [https://github.com/datalad/datalad/issues/5438])

	save [http://datalad.readthedocs.io/en/latest/generated/man/datalad-save.html]
failed if the user configured Git’s diff.ignoreSubmodules to a
non-default value.
(#5453 [https://github.com/datalad/datalad/issues/5453])

	A interprocess lock is now used to prevent a race between checking
for an SSH socket’s existence and creating it.
(#5466 [https://github.com/datalad/datalad/issues/5466])

	If a Python procedure script is executable,
run-procedure [http://datalad.readthedocs.io/en/latest/generated/man/datalad-run-procedure.html]
invokes it directly rather than passing it to sys.executable. The
non-executable Python procedures that ship with DataLad now include
shebangs so that invoking them has a chance of working on file
systems that present all files as executable.
(#5436 [https://github.com/datalad/datalad/issues/5436])

	DataLad’s wrapper around argparse failed if an underscore was
used in a positional argument.
(#5525 [https://github.com/datalad/datalad/issues/5525])

Enhancements and new features

	DataLad’s method for mapping environment variables to configuration
options (e.g., DATALAD_FOO_X__Y to datalad.foo.x-y) doesn’t
work if the subsection name (“FOO”) has an underscore. This
limitation can be sidestepped with the new
DATALAD_CONFIG_OVERRIDES_JSON environment variable, which can be
set to a JSON record of configuration values.
(#5505 [https://github.com/datalad/datalad/issues/5505])

0.14.0 (February 02, 2021) – .

Major refactoring and deprecations

	Git versions below v2.19.1 are no longer supported.
(#4650 [https://github.com/datalad/datalad/issues/4650])

	The minimum git-annex version is still 7.20190503, but, if you’re on
Windows (or use adjusted branches in general), please upgrade to at
least 8.20200330 but ideally 8.20210127 to get subdataset-related
fixes. (#4292 [https://github.com/datalad/datalad/issues/4292])
(#5290 [https://github.com/datalad/datalad/issues/5290])

	The minimum supported version of Python is now 3.6.
(#4879 [https://github.com/datalad/datalad/issues/4879])

	publish [http://datalad.readthedocs.io/en/latest/generated/man/datalad-publish.html]
is now deprecated in favor of
push [http://datalad.readthedocs.io/en/latest/generated/man/datalad-push.html].
It will be removed in the 0.15.0 release at the earliest.

	A new command runner was added in v0.13. Functionality related to the
old runner has now been removed: Runner, GitRunner, and
run_gitcommand_on_file_list_chunks from the datalad.cmd
module along with the datalad.tests.protocolremote,
datalad.cmd.protocol, and datalad.cmd.protocol.prefix
configuration options.
(#5229 [https://github.com/datalad/datalad/issues/5229])

	The --no-storage-sibling switch of create-sibling-ria is
deprecated in favor of --storage-sibling=off and will be removed
in a later release.
(#5090 [https://github.com/datalad/datalad/issues/5090])

	The get_git_dir static method of GitRepo is deprecated and
will be removed in a later release. Use the dot_git attribute of
an instance instead.
(#4597 [https://github.com/datalad/datalad/issues/4597])

	The ProcessAnnexProgressIndicators helper from
datalad.support.annexrepo has been removed.
(#5259 [https://github.com/datalad/datalad/issues/5259])

	The save argument of
install [http://datalad.readthedocs.io/en/latest/generated/man/datalad-install.html],
a noop since v0.6.0, has been dropped.
(#5278 [https://github.com/datalad/datalad/issues/5278])

	The get_URLS method of AnnexCustomRemote is deprecated and
will be removed in a later release.
(#4955 [https://github.com/datalad/datalad/issues/4955])

	ConfigManager.get now returns a single value rather than a tuple
when there are multiple values for the same key, as very few callers
correctly accounted for the possibility of a tuple return value.
Callers can restore the old behavior by passing get_all=True.
(#4924 [https://github.com/datalad/datalad/issues/4924])

	In 0.12.0, all of the assure_* functions in datalad.utils
were renamed as ensure_*, keeping the old names around as
compatibility aliases. The assure_* variants are now marked as
deprecated and will be removed in a later release.
(#4908 [https://github.com/datalad/datalad/issues/4908])

	The datalad.interface.run module, which was deprecated in 0.12.0
and kept as a compatibility shim for datalad.core.local.run, has
been removed.
(#4583 [https://github.com/datalad/datalad/issues/4583])

	The saver argument of datalad.core.local.run.run_command,
marked as obsolete in 0.12.0, has been removed.
(#4583 [https://github.com/datalad/datalad/issues/4583])

	The dataset_only argument of the ConfigManager class was
deprecated in 0.12 and has now been removed.
(#4828 [https://github.com/datalad/datalad/issues/4828])

	The linux_distribution_name, linux_distribution_release, and
on_debian_wheezy attributes in datalad.utils are no longer
set at import time and will be removed in a later release. Use
datalad.utils.get_linux_distribution instead.
(#4696 [https://github.com/datalad/datalad/issues/4696])

	datalad.distribution.clone, which was marked as obsolete in v0.12
in favor of datalad.core.distributed.clone, has been removed.
(#4904 [https://github.com/datalad/datalad/issues/4904])

	datalad.support.annexrepo.N_AUTO_JOBS, announced as deprecated in
v0.12.6, has been removed.
(#4904 [https://github.com/datalad/datalad/issues/4904])

	The compat parameter of GitRepo.get_submodules, added in
v0.12 as a temporary compatibility layer, has been removed.
(#4904 [https://github.com/datalad/datalad/issues/4904])

	The long-deprecated (and non-functional) url parameter of
GitRepo.__init__ has been removed.
(#5342 [https://github.com/datalad/datalad/issues/5342])

Fixes

	Cloning onto a system that enters adjusted branches by default (as
Windows does) did not properly record the clone URL.
(#5128 [https://github.com/datalad/datalad/issues/5128])

	The RIA-specific handling after calling
clone [http://datalad.readthedocs.io/en/latest/generated/man/datalad-clone.html]
was correctly triggered by ria+http URLs but not ria+https
URLs. (#4977 [https://github.com/datalad/datalad/issues/4977])

	If the registered commit wasn’t found when cloning a subdataset, the
failed attempt was left around.
(#5391 [https://github.com/datalad/datalad/issues/5391])

	The remote calls to cp and chmod in
create-sibling [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create-sibling.html]
were not portable and failed on macOS.
(#5108 [https://github.com/datalad/datalad/issues/5108])

	A more reliable check is now done to decide if configuration files
need to be reloaded.
(#5276 [https://github.com/datalad/datalad/issues/5276])

	The internal command runner’s handling of the event loop has been
improved to play nicer with outside applications and scripts that use
asyncio. (#5350 [https://github.com/datalad/datalad/issues/5350])
(#5367 [https://github.com/datalad/datalad/issues/5367])

Enhancements and new features

	The subdataset handling for adjusted branches, which is particularly
important on Windows where git-annex enters an adjusted branch by
default, has been improved. A core piece of the new approach is
registering the commit of the primary branch, not its checked out
adjusted branch, in the superdataset. Note: This means that
git status will always consider a subdataset on an adjusted
branch as dirty while datalad status will look more closely and
see if the tip of the primary branch matches the registered commit.
(#5241 [https://github.com/datalad/datalad/issues/5241])

	The performance of the
subdatasets [http://datalad.readthedocs.io/en/latest/generated/man/datalad-subdatasets.html]
command has been improved, with substantial speedups for recursive
processing of many subdatasets.
(#4868 [https://github.com/datalad/datalad/issues/4868])
(#5076 [https://github.com/datalad/datalad/issues/5076])

	Adding new subdatasets via
save [http://datalad.readthedocs.io/en/latest/generated/man/datalad-save.html]
has been sped up.
(#4793 [https://github.com/datalad/datalad/issues/4793])

	get [http://datalad.readthedocs.io/en/latest/generated/man/datalad-get.html],
save [http://datalad.readthedocs.io/en/latest/generated/man/datalad-save.html],
and
addurls [http://datalad.readthedocs.io/en/latest/generated/man/datalad-addurls.html]
gained support for parallel operations that can be enabled via the
--jobs command-line option or the new
datalad.runtime.max-jobs configuration option.
(#5022 [https://github.com/datalad/datalad/issues/5022])

	addurls [http://datalad.readthedocs.io/en/latest/generated/man/datalad-addurls.html]

	learned how to read data from standard input.
(#4669 [https://github.com/datalad/datalad/issues/4669])

	now supports tab-separated input.
(#4845 [https://github.com/datalad/datalad/issues/4845])

	now lets Python callers pass in a list of records rather than a
file name.
(#5285 [https://github.com/datalad/datalad/issues/5285])

	gained a --drop-after switch that signals to drop a file’s
content after downloading and adding it to the annex.
(#5081 [https://github.com/datalad/datalad/issues/5081])

	is now able to construct a tree of files from known checksums
without downloading content via its new --key option.
(#5184 [https://github.com/datalad/datalad/issues/5184])

	records the URL file in the commit message as provided by the
caller rather than using the resolved absolute path.
(#5091 [https://github.com/datalad/datalad/issues/5091])

	is now speedier.
(#4867 [https://github.com/datalad/datalad/issues/4867])
(#5022 [https://github.com/datalad/datalad/issues/5022])

	create-sibling-github [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create-sibling-github.html]
learned how to create private repositories (thanks to Nolan Nichols).
(#4769 [https://github.com/datalad/datalad/issues/4769])

	create-sibling-ria [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create-sibling-ria.html]
gained a --storage-sibling option. When
--storage-sibling=only is specified, the storage sibling is
created without an accompanying Git sibling. This enables using hosts
without Git installed for storage.
(#5090 [https://github.com/datalad/datalad/issues/5090])

	The download machinery (and thus the datalad special remote)
gained support for a new scheme, shub://, which follows the same
format used by singularity run and friends. In contrast to the
short-lived URLs obtained by querying Singularity Hub directly,
shub:// URLs are suitable for registering with git-annex.
(#4816 [https://github.com/datalad/datalad/issues/4816])

	A provider is now included for https://registry-1.docker.io URLs.
This is useful for storing an image’s blobs in a dataset and
registering the URLs with git-annex.
(#5129 [https://github.com/datalad/datalad/issues/5129])

	The add-readme command now links to the DataLad
handbook [http://handbook.datalad.org] rather than
http://docs.datalad.org.
(#4991 [https://github.com/datalad/datalad/issues/4991])

	New option datalad.locations.extra-procedures specifies an
additional location that should be searched for procedures.
(#5156 [https://github.com/datalad/datalad/issues/5156])

	The class for handling configuration values, ConfigManager, now
takes a lock before writes to allow for multiple processes to modify
the configuration of a dataset.
(#4829 [https://github.com/datalad/datalad/issues/4829])

	clone [http://datalad.readthedocs.io/en/latest/generated/man/datalad-clone.html]
now records the original, unresolved URL for a subdataset under
submodule.<name>.datalad-url in the parent’s .gitmodules,
enabling later
get [http://datalad.readthedocs.io/en/latest/generated/man/datalad-get.html]
calls to use the original URL. This is particularly useful for
ria+ URLs.
(#5346 [https://github.com/datalad/datalad/issues/5346])

	Installing a subdataset now uses custom handling rather than calling
git submodule update --init. This avoids some locking issues when
running
get [http://datalad.readthedocs.io/en/latest/generated/man/datalad-get.html]
in parallel and enables more accurate source URLs to be recorded.
(#4853 [https://github.com/datalad/datalad/issues/4853])

	GitRepo.get_content_info, a helper that gets triggered by many
commands, got faster by tweaking its git ls-files call.
(#5067 [https://github.com/datalad/datalad/issues/5067])

	wtf [http://datalad.readthedocs.io/en/latest/generated/man/datalad-wtf.html]
now includes credentials-related information (e.g. active backends)
in the its output.
(#4982 [https://github.com/datalad/datalad/issues/4982])

	The call_git* methods of GitRepo now have a read_only
parameter. Callers can set this to True to promise that the
provided command does not write to the repository, bypassing the cost
of some checks and locking.
(#5070 [https://github.com/datalad/datalad/issues/5070])

	New call_annex* methods in the AnnexRepo class provide an
interface for running git-annex commands similar to that of the
GitRepo.call_git* methods.
(#5163 [https://github.com/datalad/datalad/issues/5163])

	It’s now possible to register a custom metadata indexer that is
discovered by
search [http://datalad.readthedocs.io/en/latest/generated/man/datalad-search.html]
and used to generate an index.
(#4963 [https://github.com/datalad/datalad/issues/4963])

	The ConfigManager methods get, getbool, getfloat, and
getint now return a single value (with same precedence as
git config --get) when there are multiple values for the same
key (in the non-committed git configuration, if the key is present
there, or in the dataset configuration). For get, the old
behavior can be restored by specifying get_all=True.
(#4924 [https://github.com/datalad/datalad/issues/4924])

	Command-line scripts are now defined via the entry_points
argument of setuptools.setup instead of the scripts argument.
(#4695 [https://github.com/datalad/datalad/issues/4695])

	Interactive use of --help on the command-line now invokes a pager
on more systems and installation setups.
(#5344 [https://github.com/datalad/datalad/issues/5344])

	The datalad special remote now tries to eliminate some
unnecessary interactions with git-annex by being smarter about how it
queries for URLs associated with a key.
(#4955 [https://github.com/datalad/datalad/issues/4955])

	The GitRepo class now does a better job of handling bare
repositories, a step towards bare repositories support in DataLad.
(#4911 [https://github.com/datalad/datalad/issues/4911])

	More internal work to move the code base over to the new command
runner. (#4699 [https://github.com/datalad/datalad/issues/4699])
(#4855 [https://github.com/datalad/datalad/issues/4855])
(#4900 [https://github.com/datalad/datalad/issues/4900])
(#4996 [https://github.com/datalad/datalad/issues/4996])
(#5002 [https://github.com/datalad/datalad/issues/5002])
(#5141 [https://github.com/datalad/datalad/issues/5141])
(#5142 [https://github.com/datalad/datalad/issues/5142])
(#5229 [https://github.com/datalad/datalad/issues/5229])

0.13.7 (January 04, 2021) – .

Fixes

	Cloning from a RIA store on the local file system initialized annex
in the Git sibling of the RIA source, which is problematic because
all annex-related functionality should go through the storage
sibling.
clone [http://datalad.readthedocs.io/en/latest/generated/man/datalad-clone.html]
now sets remote.origin.annex-ignore to true after cloning
from RIA stores to prevent this.
(#5255 [https://github.com/datalad/datalad/issues/5255])

	create-sibling [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create-sibling.html]
invoked cp in a way that was not compatible with macOS.
(#5269 [https://github.com/datalad/datalad/issues/5269])

	Due to a bug in older Git versions (before 2.25), calling
status [http://datalad.readthedocs.io/en/latest/generated/man/datalad-status.html]
with a file under .git/ (e.g., datalad status .git/config)
incorrectly reported the file as untracked. A workaround has been
added. (#5258 [https://github.com/datalad/datalad/issues/5258])

	Update tests for compatibility with latest git-annex.
(#5254 [https://github.com/datalad/datalad/issues/5254])

Enhancements and new features

	copy-file [http://datalad.readthedocs.io/en/latest/generated/man/datalad-copy-file.html]
now aborts if .git/ is in the target directory, adding to its
existing .git/ safety checks.
(#5258 [https://github.com/datalad/datalad/issues/5258])

0.13.6 (December 14, 2020) – .

Fixes

	An assortment of fixes for Windows compatibility.
(#5113 [https://github.com/datalad/datalad/issues/5113])
(#5119 [https://github.com/datalad/datalad/issues/5119])
(#5125 [https://github.com/datalad/datalad/issues/5125])
(#5127 [https://github.com/datalad/datalad/issues/5127])
(#5136 [https://github.com/datalad/datalad/issues/5136])
(#5201 [https://github.com/datalad/datalad/issues/5201])
(#5200 [https://github.com/datalad/datalad/issues/5200])
(#5214 [https://github.com/datalad/datalad/issues/5214])

	Adding a subdataset on a system that defaults to using an adjusted
branch (i.e. doesn’t support symlinks) didn’t properly set up the
submodule URL if the source dataset was not in an adjusted state.
(#5127 [https://github.com/datalad/datalad/issues/5127])

	push [http://datalad.readthedocs.io/en/latest/generated/man/datalad-push.html]
failed to push to a remote that did not have an annex-uuid value
in the local .git/config.
(#5148 [https://github.com/datalad/datalad/issues/5148])

	The default renderer has been improved to avoid a spurious leading
space, which led to the displayed path being incorrect in some cases.
(#5121 [https://github.com/datalad/datalad/issues/5121])

	siblings [http://datalad.readthedocs.io/en/latest/generated/man/datalad-siblings.html]
showed an uninformative error message when asked to configure an
unknown remote.
(#5146 [https://github.com/datalad/datalad/issues/5146])

	drop [http://datalad.readthedocs.io/en/latest/generated/man/datalad-drop.html]
confusingly relayed a suggestion from git annex drop to use
--force, an option that does not exist in datalad drop.
(#5194 [https://github.com/datalad/datalad/issues/5194])

	create-sibling-github [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create-sibling-github.html]
no longer offers user/password authentication because it is no longer
supported by GitHub.
(#5218 [https://github.com/datalad/datalad/issues/5218])

	The internal command runner’s handling of the event loop has been
tweaked to hopefully fix issues with running DataLad from IPython.
(#5106 [https://github.com/datalad/datalad/issues/5106])

	SSH cleanup wasn’t reliably triggered by the ORA special remote on
failure, leading to a stall with a particular version of git-annex,
8.20201103. (This is also resolved on git-annex’s end as of
8.20201127.)
(#5151 [https://github.com/datalad/datalad/issues/5151])

Enhancements and new features

	The credential helper no longer asks the user to repeat tokens or AWS
keys. (#5219 [https://github.com/datalad/datalad/issues/5219])

	The new option datalad.locations.sockets controls where DataLad
stores SSH sockets, allowing users to more easily work around file
system and path length restrictions.
(#5238 [https://github.com/datalad/datalad/issues/5238])

0.13.5 (October 30, 2020) – .

Fixes

	SSH connection handling has been reworked to fix cloning on Windows.
A new configuration option, datalad.ssh.multiplex-connections,
defaults to false on Windows.
(#5042 [https://github.com/datalad/datalad/issues/5042])

	The ORA special remote and post-clone RIA configuration now provide
authentication via DataLad’s credential mechanism and better handling
of HTTP status codes.
(#5025 [https://github.com/datalad/datalad/issues/5025])
(#5026 [https://github.com/datalad/datalad/issues/5026])

	By default, if a git executable is present in the same location as
git-annex, DataLad modifies PATH when running git and git-annex
so that the bundled git is used. This logic has been tightened to
avoid unnecessarily adjusting the path, reducing the cases where the
adjustment interferes with the local environment, such as special
remotes in a virtual environment being masked by the system-wide
variants.
(#5035 [https://github.com/datalad/datalad/issues/5035])

	git-annex is now consistently invoked as “git annex” rather than
“git-annex” to work around failures on Windows.
(#5001 [https://github.com/datalad/datalad/issues/5001])

	push [http://datalad.readthedocs.io/en/latest/generated/man/datalad-push.html]
called git annex sync ... on plain git repositories.
(#5051 [https://github.com/datalad/datalad/issues/5051])

	save [http://datalad.readthedocs.io/en/latest/generated/man/datalad-save.html]
in genernal doesn’t support registering multiple levels of untracked
subdatasets, but it can now properly register nested subdatasets when
all of the subdataset paths are passed explicitly (e.g.,
datalad save -d. sub-a sub-a/sub-b).
(#5049 [https://github.com/datalad/datalad/issues/5049])

	When called with --sidecar and --explicit,
run [http://datalad.readthedocs.io/en/latest/generated/man/datalad-run.html]
didn’t save the sidecar.
(#5017 [https://github.com/datalad/datalad/issues/5017])

	A couple of spots didn’t properly quote format fields when combining
substrings into a format string.
(#4957 [https://github.com/datalad/datalad/issues/4957])

	The default credentials configured for indi-s3 prevented
anonymous access.
(#5045 [https://github.com/datalad/datalad/issues/5045])

Enhancements and new features

	Messages about suppressed similar results are now rate limited to
improve performance when there are many similar results coming
through quickly.
(#5060 [https://github.com/datalad/datalad/issues/5060])

	create-sibling-github [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create-sibling-github.html]
can now be told to replace an existing sibling by passing
--existing=replace.
(#5008 [https://github.com/datalad/datalad/issues/5008])

	Progress bars now react to changes in the terminal’s width (requires
tqdm 2.1 or later).
(#5057 [https://github.com/datalad/datalad/issues/5057])

0.13.4 (October 6, 2020) – .

Fixes

	Ephemeral clones mishandled bare repositories.
(#4899 [https://github.com/datalad/datalad/issues/4899])

	The post-clone logic for configuring RIA stores didn’t consider
https:// URLs.
(#4977 [https://github.com/datalad/datalad/issues/4977])

	DataLad custom remotes didn’t escape newlines in messages sent to
git-annex.
(#4926 [https://github.com/datalad/datalad/issues/4926])

	The datalad-archives special remote incorrectly treated file names as
percent-encoded.
(#4953 [https://github.com/datalad/datalad/issues/4953])

	The result handler didn’t properly escape “%” when constructing its
message template.
(#4953 [https://github.com/datalad/datalad/issues/4953])

	In v0.13.0, the tailored rendering for specific subtypes of external
command failures (e.g., “out of space” or “remote not available”) was
unintentionally switched to the default rendering.
(#4966 [https://github.com/datalad/datalad/issues/4966])

	Various fixes and updates for the NDA authenticator.
(#4824 [https://github.com/datalad/datalad/issues/4824])

	The helper for getting a versioned S3 URL did not support anonymous
access or buckets with “.” in their name.
(#4985 [https://github.com/datalad/datalad/issues/4985])

	Several issues with the handling of S3 credentials and token
expiration have been addressed.
(#4927 [https://github.com/datalad/datalad/issues/4927])
(#4931 [https://github.com/datalad/datalad/issues/4931])
(#4952 [https://github.com/datalad/datalad/issues/4952])

Enhancements and new features

	A warning is now given if the detected Git is below v2.13.0 to let
users that run into problems know that their Git version is likely
the culprit.
(#4866 [https://github.com/datalad/datalad/issues/4866])

	A fix to
push [http://datalad.readthedocs.io/en/latest/generated/man/datalad-push.html]
in v0.13.2 introduced a regression that surfaces when
push.default is configured to “matching” and prevents the
git-annex branch from being pushed. Note that, as part of the fix,
the current branch is now always pushed even when it wouldn’t be
based on the configured refspec or push.default value.
(#4896 [https://github.com/datalad/datalad/issues/4896])

	publish [http://datalad.readthedocs.io/en/latest/generated/man/datalad-publish.html]

	now allows spelling the empty string value of --since= as
^ for consistency with
push [http://datalad.readthedocs.io/en/latest/generated/man/datalad-push.html].
(#4683 [https://github.com/datalad/datalad/issues/4683])

	compares a revision given to --since= with HEAD rather
than the working tree to speed up the operation.
(#4448 [https://github.com/datalad/datalad/issues/4448])

	rerun [https://datalad.readthedocs.io/en/latest/generated/man/datalad-rerun.html]

	emits more INFO-level log messages.
(#4764 [https://github.com/datalad/datalad/issues/4764])

	provides better handling of adjusted branches and aborts with a
clear error for cases that are not supported.
(#5328 [https://github.com/datalad/datalad/issues/5328])

	The archives are handled with p7zip, if available, since DataLad
v0.12.0. This implementation now supports .tgz and .tbz2 archives.
(#4877 [https://github.com/datalad/datalad/issues/4877])

0.13.3 (August 28, 2020) – .

Fixes

	Work around a Python bug that led to our asyncio-based command runner
intermittently failing to capture the output of commands that exit
very quickly.
(#4835 [https://github.com/datalad/datalad/issues/4835])

	push [http://datalad.readthedocs.io/en/latest/generated/man/datalad-push.html]
displayed an overestimate of the transfer size when multiple files
pointed to the same key.
(#4821 [https://github.com/datalad/datalad/issues/4821])

	When
download-url [https://datalad.readthedocs.io/en/latest/generated/man/datalad-download-url.html]
calls git annex addurl, it catches and reports any failures
rather than crashing. A change in v0.12.0 broke this handling in a
particular case.
(#4817 [https://github.com/datalad/datalad/issues/4817])

Enhancements and new features

	The wrapper functions returned by decorators are now given more
meaningful names to hopefully make tracebacks easier to digest.
(#4834 [https://github.com/datalad/datalad/issues/4834])

0.13.2 (August 10, 2020) – .

Deprecations

	The allow_quick parameter of AnnexRepo.file_has_content and
AnnexRepo.is_under_annex is now ignored and will be removed in a
later release. This parameter was only relevant for git-annex
versions before 7.20190912.
(#4736 [https://github.com/datalad/datalad/issues/4736])

Fixes

	Updates for compatibility with recent git and git-annex releases.
(#4746 [https://github.com/datalad/datalad/issues/4746])
(#4760 [https://github.com/datalad/datalad/issues/4760])
(#4684 [https://github.com/datalad/datalad/issues/4684])

	push [http://datalad.readthedocs.io/en/latest/generated/man/datalad-push.html]
didn’t sync the git-annex branch when --data=nothing was
specified.
(#4786 [https://github.com/datalad/datalad/issues/4786])

	The datalad.clone.reckless configuration wasn’t stored in
non-annex datasets, preventing the values from being inherited by
annex subdatasets.
(#4749 [https://github.com/datalad/datalad/issues/4749])

	Running the post-update hook installed by create-sibling --ui
could overwrite web log files from previous runs in the unlikely
event that the hook was executed multiple times in the same second.
(#4745 [https://github.com/datalad/datalad/issues/4745])

	clone [http://datalad.readthedocs.io/en/latest/generated/man/datalad-clone.html]
inspected git’s standard error in a way that could cause an attribute
error. (#4775 [https://github.com/datalad/datalad/issues/4775])

	When cloning a repository whose HEAD points to a branch without
commits,
clone [http://datalad.readthedocs.io/en/latest/generated/man/datalad-clone.html]
tries to find a more useful branch to check out. It unwisely
considered adjusted branches.
(#4792 [https://github.com/datalad/datalad/issues/4792])

	Since v0.12.0, SSHManager.close hasn’t closed connections when
the ctrl_path argument was explicitly given.
(#4757 [https://github.com/datalad/datalad/issues/4757])

	When working in a dataset in which git annex init had not yet
been called, the file_has_content and is_under_annex methods
of AnnexRepo incorrectly took the “allow quick” code path on file
systems that did not support it
(#4736 [https://github.com/datalad/datalad/issues/4736])

Enhancements

	create [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create.html]
now assigns version 4 (random) UUIDs instead of version 1 UUIDs that
encode the time and hardware address.
(#4790 [https://github.com/datalad/datalad/issues/4790])

	The documentation for
create [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create.html]
now does a better job of describing the interaction between
--dataset and PATH.
(#4763 [https://github.com/datalad/datalad/issues/4763])

	The format_commit and get_hexsha methods of GitRepo have
been sped up.
(#4807 [https://github.com/datalad/datalad/issues/4807])
(#4806 [https://github.com/datalad/datalad/issues/4806])

	A better error message is now shown when the ^ or ^.
shortcuts for --dataset do not resolve to a dataset.
(#4759 [https://github.com/datalad/datalad/issues/4759])

	A more helpful error message is now shown if a caller tries to
download an ftp:// link but does not have request_ftp
installed.
(#4788 [https://github.com/datalad/datalad/issues/4788])

	clone [http://datalad.readthedocs.io/en/latest/generated/man/datalad-clone.html]
now tries harder to get up-to-date availability information after
auto-enabling type=git special remotes.
(#2897 [https://github.com/datalad/datalad/issues/2897])

0.13.1 (July 17, 2020) – .

Fixes

	Cloning a subdataset should inherit the parent’s
datalad.clone.reckless value, but that did not happen when
cloning via datalad get rather than datalad install or
datalad clone.
(#4657 [https://github.com/datalad/datalad/issues/4657])

	The default result renderer crashed when the result did not have a
path key.
(#4666 [https://github.com/datalad/datalad/issues/4666])
(#4673 [https://github.com/datalad/datalad/issues/4673])

	datalad push didn’t show information about git push errors
when the output was not in the format that it expected.
(#4674 [https://github.com/datalad/datalad/issues/4674])

	datalad push silently accepted an empty string for --since
even though it is an invalid value.
(#4682 [https://github.com/datalad/datalad/issues/4682])

	Our JavaScript testing setup on Travis grew stale and has now been
updated. (Thanks to Xiao Gui.)
(#4687 [https://github.com/datalad/datalad/issues/4687])

	The new class for running Git commands (added in v0.13.0) ignored any
changes to the process environment that occurred after instantiation.
(#4703 [https://github.com/datalad/datalad/issues/4703])

Enhancements and new features

	datalad push now avoids unnecessary git push dry runs and
pushes all refspecs with a single git push call rather than
invoking git push for each one.
(#4692 [https://github.com/datalad/datalad/issues/4692])
(#4675 [https://github.com/datalad/datalad/issues/4675])

	The readability of SSH error messages has been improved.
(#4729 [https://github.com/datalad/datalad/issues/4729])

	datalad.support.annexrepo avoids calling
datalad.utils.get_linux_distribution at import time and caches
the result once it is called because, as of Python 3.8, the function
uses distro underneath, adding noticeable overhead.
(#4696 [https://github.com/datalad/datalad/issues/4696])

Third-party code should be updated to use get_linux_distribution
directly in the unlikely event that the code relied on the
import-time call to get_linux_distribution setting the
linux_distribution_name, linux_distribution_release, or
on_debian_wheezy attributes in `datalad.utils.

0.13.0 (June 23, 2020) – .

A handful of new commands, including copy-file, push, and
create-sibling-ria, along with various fixes and enhancements

Major refactoring and deprecations

	The no_annex parameter of
create [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create.html],
which is exposed in the Python API but not the command line, is
deprecated and will be removed in a later release. Use the new
annex argument instead, flipping the value. Command-line callers
that use --no-annex are unaffected.
(#4321 [https://github.com/datalad/datalad/issues/4321])

	datalad add, which was deprecated in 0.12.0, has been removed.
(#4158 [https://github.com/datalad/datalad/issues/4158])
(#4319 [https://github.com/datalad/datalad/issues/4319])

	The following GitRepo and AnnexRepo methods have been
removed: get_changed_files, get_missing_files, and
get_deleted_files.
(#4169 [https://github.com/datalad/datalad/issues/4169])
(#4158 [https://github.com/datalad/datalad/issues/4158])

	The get_branch_commits method of GitRepo and AnnexRepo
has been renamed to get_branch_commits_.
(#3834 [https://github.com/datalad/datalad/issues/3834])

	The custom commit method of AnnexRepo has been removed, and
AnnexRepo.commit now resolves to the parent method,
GitRepo.commit.
(#4168 [https://github.com/datalad/datalad/issues/4168])

	GitPython’s git.repo.base.Repo class is no longer available via
the .repo attribute of GitRepo and AnnexRepo.
(#4172 [https://github.com/datalad/datalad/issues/4172])

	AnnexRepo.get_corresponding_branch now returns None rather
than the current branch name when a managed branch is not checked
out. (#4274 [https://github.com/datalad/datalad/issues/4274])

	The special UUID for git-annex web remotes is now available as
datalad.consts.WEB_SPECIAL_REMOTE_UUID. It remains accessible as
AnnexRepo.WEB_UUID for compatibility, but new code should use
consts.WEB_SPECIAL_REMOTE_UUID
(#4460 [https://github.com/datalad/datalad/issues/4460]).

Fixes

	Widespread improvements in functionality and test coverage on Windows
and crippled file systems in general.
(#4057 [https://github.com/datalad/datalad/issues/4057])
(#4245 [https://github.com/datalad/datalad/issues/4245])
(#4268 [https://github.com/datalad/datalad/issues/4268])
(#4276 [https://github.com/datalad/datalad/issues/4276])
(#4291 [https://github.com/datalad/datalad/issues/4291])
(#4296 [https://github.com/datalad/datalad/issues/4296])
(#4301 [https://github.com/datalad/datalad/issues/4301])
(#4303 [https://github.com/datalad/datalad/issues/4303])
(#4304 [https://github.com/datalad/datalad/issues/4304])
(#4305 [https://github.com/datalad/datalad/issues/4305])
(#4306 [https://github.com/datalad/datalad/issues/4306])

	AnnexRepo.get_size_from_key incorrectly handled file chunks.
(#4081 [https://github.com/datalad/datalad/issues/4081])

	create-sibling [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create-sibling.html]
would too readily clobber existing paths when called with
--existing=replace. It now gets confirmation from the user before
doing so if running interactively and unconditionally aborts when
running non-interactively.
(#4147 [https://github.com/datalad/datalad/issues/4147])

	update [http://datalad.readthedocs.io/en/latest/generated/man/datalad-update.html]
(#4159 [https://github.com/datalad/datalad/issues/4159])

	queried the incorrect branch configuration when updating non-annex
repositories.

	didn’t account for the fact that the local repository can be
configured as the upstream “remote” for a branch.

	When the caller included --bare as a git init option,
create [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create.html]
crashed creating the bare repository, which is currently unsupported,
rather than aborting with an informative error message.
(#4065 [https://github.com/datalad/datalad/issues/4065])

	The logic for automatically propagating the ‘origin’ remote when
cloning a local source could unintentionally trigger a fetch of a
non-local remote.
(#4196 [https://github.com/datalad/datalad/issues/4196])

	All remaining get_submodules() call sites that relied on the
temporary compatibility layer added in v0.12.0 have been updated.
(#4348 [https://github.com/datalad/datalad/issues/4348])

	The custom result summary renderer for
get [http://datalad.readthedocs.io/en/latest/generated/man/datalad-get.html],
which was visible with --output-format=tailored, displayed
incorrect and confusing information in some cases. The custom
renderer has been removed entirely.
(#4471 [https://github.com/datalad/datalad/issues/4471])

	The documentation for the Python interface of a command listed an
incorrect default when the command overrode the value of command
parameters such as result_renderer.
(#4480 [https://github.com/datalad/datalad/issues/4480])

Enhancements and new features

	The default result renderer learned to elide a chain of results after
seeing ten consecutive results that it considers similar, which
improves the display of actions that have many results (e.g., saving
hundreds of files).
(#4337 [https://github.com/datalad/datalad/issues/4337])

	The default result renderer, in addition to “tailored” result
renderer, now triggers the custom summary renderer, if any.
(#4338 [https://github.com/datalad/datalad/issues/4338])

	The new command
create-sibling-ria [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create-sibling-ria.html]
provides support for creating a sibling in a RIA
store [http://handbook.datalad.org/en/latest/usecases/datastorage_for_institutions.html].
(#4124 [https://github.com/datalad/datalad/issues/4124])

	DataLad ships with a new special remote, git-annex-remote-ora, for
interacting with RIA
stores [http://handbook.datalad.org/en/latest/usecases/datastorage_for_institutions.html]
and a new command
export-archive-ora [http://datalad.readthedocs.io/en/latest/generated/man/datalad-export-archive-ora.html]
for exporting an archive from a local annex object store.
(#4260 [https://github.com/datalad/datalad/issues/4260])
(#4203 [https://github.com/datalad/datalad/issues/4203])

	The new command
push [http://datalad.readthedocs.io/en/latest/generated/man/datalad-push.html]
provides an alternative interface to
publish [http://datalad.readthedocs.io/en/latest/generated/man/datalad-publish.html]
for pushing a dataset hierarchy to a sibling.
(#4206 [https://github.com/datalad/datalad/issues/4206])
(#4581 [https://github.com/datalad/datalad/issues/4581])
(#4617 [https://github.com/datalad/datalad/issues/4617])
(#4620 [https://github.com/datalad/datalad/issues/4620])

	The new command
copy-file [http://datalad.readthedocs.io/en/latest/generated/man/datalad-copy-file.html]
copies files and associated availability information from one dataset
to another.
(#4430 [https://github.com/datalad/datalad/issues/4430])

	The command examples have been expanded and improved.
(#4091 [https://github.com/datalad/datalad/issues/4091])
(#4314 [https://github.com/datalad/datalad/issues/4314])
(#4464 [https://github.com/datalad/datalad/issues/4464])

	The tooling for linking to the DataLad
Handbook [http://handbook.datalad.org] from DataLad’s
documentation has been improved.
(#4046 [https://github.com/datalad/datalad/issues/4046])

	The --reckless parameter of
clone [http://datalad.readthedocs.io/en/latest/generated/man/datalad-clone.html]
and
install [http://datalad.readthedocs.io/en/latest/generated/man/datalad-install.html]
learned two new modes:

	“ephemeral”, where the .git/annex/ of the cloned repository is
symlinked to the local source repository’s.
(#4099 [https://github.com/datalad/datalad/issues/4099])

	“shared-{group|all|…}” that can be used to set up datasets for
collaborative write access.
(#4324 [https://github.com/datalad/datalad/issues/4324])

	clone [http://datalad.readthedocs.io/en/latest/generated/man/datalad-clone.html]

	learned to handle dataset aliases in RIA stores when given a URL
of the form ria+<protocol>://<storelocation>#~<aliasname>.
(#4459 [https://github.com/datalad/datalad/issues/4459])

	now checks datalad.get.subdataset-source-candidate-NAME to see
if NAME starts with three digits, which is taken as a “cost”.
Sources with lower costs will be tried first.
(#4619 [https://github.com/datalad/datalad/issues/4619])

	update [http://datalad.readthedocs.io/en/latest/generated/man/datalad-update.html]
(#4167 [https://github.com/datalad/datalad/issues/4167])

	learned to disallow non-fast-forward updates when ff-only is
given to the --merge option.

	gained a --follow option that controls how --merge
behaves, adding support for merging in the revision that is
registered in the parent dataset rather than merging in the
configured branch from the sibling.

	now provides a result record for merge events.

	create-sibling [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create-sibling.html]
now supports local paths as targets in addition to SSH URLs.
(#4187 [https://github.com/datalad/datalad/issues/4187])

	siblings [http://datalad.readthedocs.io/en/latest/generated/man/datalad-siblings.html]
now

	shows a warning if the caller requests to delete a sibling that
does not exist.
(#4257 [https://github.com/datalad/datalad/issues/4257])

	phrases its warning about non-annex repositories in a less
alarming way.
(#4323 [https://github.com/datalad/datalad/issues/4323])

	The rendering of command errors has been improved.
(#4157 [https://github.com/datalad/datalad/issues/4157])

	save [http://datalad.readthedocs.io/en/latest/generated/man/datalad-save.html]
now

	displays a message to signal that the working tree is clean,
making it more obvious that no results being rendered corresponds
to a clean state.
(#4106 [https://github.com/datalad/datalad/issues/4106])

	provides a stronger warning against using --to-git.
(#4290 [https://github.com/datalad/datalad/issues/4290])

	diff [http://datalad.readthedocs.io/en/latest/generated/man/datalad-diff.html]
and
save [http://datalad.readthedocs.io/en/latest/generated/man/datalad-save.html]
learned about scenarios where they could avoid unnecessary and
expensive work.
(#4526 [https://github.com/datalad/datalad/issues/4526])
(#4544 [https://github.com/datalad/datalad/issues/4544])
(#4549 [https://github.com/datalad/datalad/issues/4549])

	Calling
diff [http://datalad.readthedocs.io/en/latest/generated/man/datalad-diff.html]
without --recursive but with a path constraint within a
subdataset (“/”) now traverses into the subdataset, as “/” would,
restricting its report to “/”.
(#4235 [https://github.com/datalad/datalad/issues/4235])

	New option datalad.annex.retry controls how many times git-annex
will retry on a failed transfer. It defaults to 3 and can be set to 0
to restore the previous behavior.
(#4382 [https://github.com/datalad/datalad/issues/4382])

	wtf [http://datalad.readthedocs.io/en/latest/generated/man/datalad-wtf.html]
now warns when the specified dataset does not exist.
(#4331 [https://github.com/datalad/datalad/issues/4331])

	The repr and str output of the dataset and repo classes got a
facelift.
(#4420 [https://github.com/datalad/datalad/issues/4420])
(#4435 [https://github.com/datalad/datalad/issues/4435])
(#4439 [https://github.com/datalad/datalad/issues/4439])

	The DataLad Singularity container now comes with p7zip-full.

	DataLad emits a log message when the current working directory is
resolved to a different location due to a symlink. This is now logged
at the DEBUG rather than WARNING level, as it typically does not
indicate a problem.
(#4426 [https://github.com/datalad/datalad/issues/4426])

	DataLad now lets the caller know that git annex init is scanning
for unlocked files, as this operation can be slow in some
repositories.
(#4316 [https://github.com/datalad/datalad/issues/4316])

	The log_progress helper learned how to set the starting point to
a non-zero value and how to update the total of an existing progress
bar, two features needed for planned improvements to how some
commands display their progress.
(#4438 [https://github.com/datalad/datalad/issues/4438])

	The ExternalVersions object, which is used to check versions of
Python modules and external tools (e.g., git-annex), gained an
add method that enables DataLad extensions and other third-party
code to include other programs of interest.
(#4441 [https://github.com/datalad/datalad/issues/4441])

	All of the remaining spots that use GitPython have been rewritten
without it. Most notably, this includes rewrites of the clone,
fetch, and push methods of GitRepo.
(#4080 [https://github.com/datalad/datalad/issues/4080])
(#4087 [https://github.com/datalad/datalad/issues/4087])
(#4170 [https://github.com/datalad/datalad/issues/4170])
(#4171 [https://github.com/datalad/datalad/issues/4171])
(#4175 [https://github.com/datalad/datalad/issues/4175])
(#4172 [https://github.com/datalad/datalad/issues/4172])

	When GitRepo.commit splits its operation across multiple calls to
avoid exceeding the maximum command line length, it now amends to
initial commit rather than creating multiple commits.
(#4156 [https://github.com/datalad/datalad/issues/4156])

	GitRepo gained a get_corresponding_branch method (which
always returns None), allowing a caller to invoke the method without
needing to check if the underlying repo class is GitRepo or
AnnexRepo.
(#4274 [https://github.com/datalad/datalad/issues/4274])

	A new helper function datalad.core.local.repo.repo_from_path
returns a repo class for a specified path.
(#4273 [https://github.com/datalad/datalad/issues/4273])

	New AnnexRepo method localsync performs a git annex sync
that disables external interaction and is particularly useful for
propagating changes on an adjusted branch back to the main branch.
(#4243 [https://github.com/datalad/datalad/issues/4243])

0.12.7 (May 22, 2020) – .

Fixes

	Requesting tailored output (--output=tailored) from a command
with a custom result summary renderer produced repeated output.
(#4463 [https://github.com/datalad/datalad/issues/4463])

	A longstanding regression in argcomplete-based command-line
completion for Bash has been fixed. You can enable completion by
configuring a Bash startup file to run
eval "$(register-python-argcomplete datalad)" or source
DataLad’s tools/cmdline-completion. The latter should work for
Zsh as well.
(#4477 [https://github.com/datalad/datalad/issues/4477])

	publish [http://datalad.readthedocs.io/en/latest/generated/man/datalad-publish.html]
didn’t prevent git-fetch from recursing into submodules, leading
to a failure when the registered submodule was not present locally
and the submodule did not have a remote named ‘origin’.
(#4560 [https://github.com/datalad/datalad/issues/4560])

	addurls [http://datalad.readthedocs.io/en/latest/generated/man/datalad-addurls.html]
botched path handling when the file name format started with “./” and
the call was made from a subdirectory of the dataset.
(#4504 [https://github.com/datalad/datalad/issues/4504])

	Double dash options in manpages were unintentionally escaped.
(#4332 [https://github.com/datalad/datalad/issues/4332])

	The check for HTTP authentication failures crashed in situations
where content came in as bytes rather than unicode.
(#4543 [https://github.com/datalad/datalad/issues/4543])

	A check in AnnexRepo.whereis could lead to a type error.
(#4552 [https://github.com/datalad/datalad/issues/4552])

	When installing a dataset to obtain a subdataset,
get [http://datalad.readthedocs.io/en/latest/generated/man/datalad-get.html]
confusingly displayed a message that described the containing dataset
as “underneath” the subdataset.
(#4456 [https://github.com/datalad/datalad/issues/4456])

	A couple of Makefile rules didn’t properly quote paths.
(#4481 [https://github.com/datalad/datalad/issues/4481])

	With DueCredit support enabled (DUECREDIT_ENABLE=1), the query
for metadata information could flood the output with warnings if
datasets didn’t have aggregated metadata. The warnings are now
silenced, with the overall failure of a
metadata [http://datalad.readthedocs.io/en/latest/generated/man/datalad-metadata.html]
call logged at the debug level.
(#4568 [https://github.com/datalad/datalad/issues/4568])

Enhancements and new features

	The resource identifier helper learned to recognize URLs with
embedded Git transport information, such as
gcrypt::https://example.com.
(#4529 [https://github.com/datalad/datalad/issues/4529])

	When running non-interactively, a more informative error is now
signaled when the UI backend, which cannot display a question, is
asked to do so.
(#4553 [https://github.com/datalad/datalad/issues/4553])

0.12.6 (April 23, 2020) – .

Major refactoring and deprecations

	The value of datalad.support.annexrep.N_AUTO_JOBS is no longer
considered. The variable will be removed in a later release.
(#4409 [https://github.com/datalad/datalad/issues/4409])

Fixes

	Staring with v0.12.0, datalad save recorded the current branch of
a parent dataset as the branch value in the .gitmodules entry for
a subdataset. This behavior is problematic for a few reasons and has
been reverted.
(#4375 [https://github.com/datalad/datalad/issues/4375])

	The default for the --jobs option, “auto”, instructed DataLad to
pass a value to git-annex’s --jobs equal to
min(8, max(3, <number of CPUs>)), which could lead to issues
due to the large number of child processes spawned and file
descriptors opened. To avoid this behavior, --jobs=auto now
results in git-annex being called with --jobs=1 by default.
Configure the new option datalad.runtime.max-annex-jobs to
control the maximum value that will be considered when
--jobs='auto'.
(#4409 [https://github.com/datalad/datalad/issues/4409])

	Various commands have been adjusted to better handle the case where a
remote’s HEAD ref points to an unborn branch.
(#4370 [https://github.com/datalad/datalad/issues/4370])

	search [http://datalad.readthedocs.io/en/latest/generated/man/datalad-search.html]

	learned to use the query as a regular expression that restricts
the keys that are shown for --show-keys short.
(#4354 [https://github.com/datalad/datalad/issues/4354])

	gives a more helpful message when query is an invalid regular
expression.
(#4398 [https://github.com/datalad/datalad/issues/4398])

	The code for parsing Git configuration did not follow Git’s behavior
of accepting a key with no value as shorthand for key=true.
(#4421 [https://github.com/datalad/datalad/issues/4421])

	AnnexRepo.info needed a compatibility update for a change in how
git-annex reports file names.
(#4431 [https://github.com/datalad/datalad/issues/4431])

	create-sibling-github [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create-sibling-github.html]
did not gracefully handle a token that did not have the necessary
permissions.
(#4400 [https://github.com/datalad/datalad/issues/4400])

Enhancements and new features

	search [http://datalad.readthedocs.io/en/latest/generated/man/datalad-search.html]
learned to use the query as a regular expression that restricts the
keys that are shown for --show-keys short.
(#4354 [https://github.com/datalad/datalad/issues/4354])

	datalad <subcommand> learned to point to the
datalad-container [https://github.com/datalad/datalad-container]
extension when a subcommand from that extension is given but the
extension is not installed.
(#4400 [https://github.com/datalad/datalad/issues/4400])
(#4174 [https://github.com/datalad/datalad/issues/4174])

0.12.5 (Apr 02, 2020) – a small step for datalad …

Fix some bugs and make the world an even better place.

Fixes

	Our log_progress helper mishandled the initial display and step
of the progress bar.
(#4326 [https://github.com/datalad/datalad/issues/4326])

	AnnexRepo.get_content_annexinfo is designed to accept
init=None, but passing that led to an error.
(#4330 [https://github.com/datalad/datalad/issues/4330])

	Update a regular expression to handle an output change in Git
v2.26.0. (#4328 [https://github.com/datalad/datalad/issues/4328])

	We now set LC_MESSAGES to ‘C’ while running git to avoid failures
when parsing output that is marked for translation.
(#4342 [https://github.com/datalad/datalad/issues/4342])

	The helper for decoding JSON streams loaded the last line of input
without decoding it if the line didn’t end with a new line, a
regression introduced in the 0.12.0 release.
(#4361 [https://github.com/datalad/datalad/issues/4361])

	The clone command failed to git-annex-init a fresh clone whenever it
considered to add the origin of the origin as a remote.
(#4367 [https://github.com/datalad/datalad/issues/4367])

0.12.4 (Mar 19, 2020) – Windows?!

The main purpose of this release is to have one on PyPi that has no
associated wheel to enable a working installation on Windows
(#4315 [https://github.com/datalad/datalad/issues/4315]).

Fixes

	The description of the log.outputs config switch did not keep up
with code changes and incorrectly stated that the output would be
logged at the DEBUG level; logging actually happens at a lower level.
(#4317 [https://github.com/datalad/datalad/issues/4317])

0.12.3 (March 16, 2020) – .

Updates for compatibility with the latest git-annex, along with a few
miscellaneous fixes

Major refactoring and deprecations

	All spots that raised a NoDatasetArgumentFound exception now
raise a NoDatasetFound exception to better reflect the situation:
it is the dataset rather than the argument that is not found. For
compatibility, the latter inherits from the former, but new code
should prefer the latter.
(#4285 [https://github.com/datalad/datalad/issues/4285])

Fixes

	Updates for compatibility with git-annex version 8.20200226.
(#4214 [https://github.com/datalad/datalad/issues/4214])

	datalad export-to-figshare failed to export if the generated
title was fewer than three characters. It now queries the caller for
the title and guards against titles that are too short.
(#4140 [https://github.com/datalad/datalad/issues/4140])

	Authentication was requested multiple times when git-annex launched
parallel downloads from the datalad special remote.
(#4308 [https://github.com/datalad/datalad/issues/4308])

	At verbose logging levels, DataLad requests that git-annex display
debugging information too. Work around a bug in git-annex that
prevented that from happening.
(#4212 [https://github.com/datalad/datalad/issues/4212])

	The internal command runner looked in the wrong place for some
configuration variables, including datalad.log.outputs, resulting
in the default value always being used.
(#4194 [https://github.com/datalad/datalad/issues/4194])

	publish [http://datalad.readthedocs.io/en/latest/generated/man/datalad-publish.html]
failed when trying to publish to a git-lfs special remote for the
first time.
(#4200 [https://github.com/datalad/datalad/issues/4200])

	AnnexRepo.set_remote_url is supposed to establish shared SSH
connections but failed to do so.
(#4262 [https://github.com/datalad/datalad/issues/4262])

Enhancements and new features

	The message provided when a command cannot determine what dataset to
operate on has been improved.
(#4285 [https://github.com/datalad/datalad/issues/4285])

	The “aws-s3” authentication type now allows specifying the host
through “aws-s3_host”, which was needed to work around an
authorization error due to a longstanding upstream bug.
(#4239 [https://github.com/datalad/datalad/issues/4239])

	The xmp metadata extractor now recognizes “.wav” files.

0.12.2 (Jan 28, 2020) – Smoothen the ride

Mostly a bugfix release with various robustifications, but also makes
the first step towards versioned dataset installation requests.

Major refactoring and deprecations

	The minimum required version for GitPython is now 2.1.12.
(#4070 [https://github.com/datalad/datalad/issues/4070])

Fixes

	The class for handling configuration values, ConfigManager,
inappropriately considered the current working directory’s dataset,
if any, for both reading and writing when instantiated with
dataset=None. This misbehavior is fairly inaccessible through
typical use of DataLad. It affects datalad.cfg, the top-level
configuration instance that should not consider repository-specific
values. It also affects Python users that call Dataset with a
path that does not yet exist and persists until that dataset is
created. (#4078 [https://github.com/datalad/datalad/issues/4078])

	update [http://datalad.readthedocs.io/en/latest/generated/man/datalad-update.html]
saved the dataset when called with --merge, which is unnecessary
and risks committing unrelated changes.
(#3996 [https://github.com/datalad/datalad/issues/3996])

	Confusing and irrelevant information about Python defaults have been
dropped from the command-line help.
(#4002 [https://github.com/datalad/datalad/issues/4002])

	The logic for automatically propagating the ‘origin’ remote when
cloning a local source didn’t properly account for relative paths.
(#4045 [https://github.com/datalad/datalad/issues/4045])

	Various fixes to file name handling and quoting on Windows.
(#4049 [https://github.com/datalad/datalad/issues/4049])
(#4050 [https://github.com/datalad/datalad/issues/4050])

	When cloning failed, error lines were not bubbled up to the user in
some scenarios.
(#4060 [https://github.com/datalad/datalad/issues/4060])

Enhancements and new features

	clone [http://datalad.readthedocs.io/en/latest/generated/man/datalad-clone.html]
(and thus
install [http://datalad.readthedocs.io/en/latest/generated/man/datalad-install.html])

	now propagates the reckless mode from the superdataset when
cloning a dataset into it.
(#4037 [https://github.com/datalad/datalad/issues/4037])

	gained support for ria+<protocol>:// URLs that point to
RIA [http://handbook.datalad.org/en/latest/usecases/datastorage_for_institutions.html]
stores.
(#4022 [https://github.com/datalad/datalad/issues/4022])

	learned to read “@version” from ria+ URLs and install that
version of a dataset
(#4036 [https://github.com/datalad/datalad/issues/4036]) and
to apply URL rewrites configured through Git’s url.*.insteadOf
mechanism
(#4064 [https://github.com/datalad/datalad/issues/4064]).

	now copies datalad.get.subdataset-source-candidate-<name>
options configured within the superdataset into the subdataset.
This is particularly useful for RIA data stores.
(#4073 [https://github.com/datalad/datalad/issues/4073])

	Archives are now (optionally) handled with 7-Zip instead of
patool. 7-Zip will be used by default, but patool will be
used on non-Windows systems if the datalad.runtime.use-patool
option is set or the 7z executable is not found.
(#4041 [https://github.com/datalad/datalad/issues/4041])

0.12.1 (Jan 15, 2020) – Small bump after big bang

Fix some fallout after major release.

Fixes

	Revert incorrect relative path adjustment to URLs in
clone [http://datalad.readthedocs.io/en/latest/generated/man/datalad-clone.html].
(#3538 [https://github.com/datalad/datalad/issues/3538])

	Various small fixes to internal helpers and test to run on Windows
(#2566 [https://github.com/datalad/datalad/issues/2566])
(#2534 [https://github.com/datalad/datalad/issues/2534])

0.12.0 (Jan 11, 2020) – Krakatoa

This release is the result of more than a year of development that
includes fixes for a large number of issues, yielding more robust
behavior across a wider range of use cases, and introduces major changes
in API and behavior. It is the first release for which extensive user
documentation is available in a dedicated DataLad
Handbook [http://handbook.datalad.org]. Python 3 (3.5 and later) is
now the only supported Python flavor.

Major changes 0.12 vs 0.11

	save [http://datalad.readthedocs.io/en/latest/generated/man/datalad-save.html]
fully replaces
add [http://datalad.readthedocs.io/en/latest/generated/man/datalad-add.html]
(which is obsolete now, and will be removed in a future release).

	A new Git-annex aware
status [http://datalad.readthedocs.io/en/latest/generated/man/datalad-status.html]
command enables detailed inspection of dataset hierarchies. The
previously available
diff [http://datalad.readthedocs.io/en/latest/generated/man/datalad-diff.html]
command has been adjusted to match
status [http://datalad.readthedocs.io/en/latest/generated/man/datalad-status.html]
in argument semantics and behavior.

	The ability to configure dataset procedures prior and after the
execution of particular commands has been replaced by a flexible
“hook” mechanism that is able to run arbitrary DataLad commands
whenever command results are detected that match a specification.

	Support of the Windows platform has been improved substantially.
While performance and feature coverage on Windows still falls behind
Unix-like systems, typical data consumer use cases, and standard
dataset operations, such as
create [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create.html]
and
save [http://datalad.readthedocs.io/en/latest/generated/man/datalad-save.html],
are now working. Basic support for data provenance capture via
run [http://datalad.readthedocs.io/en/latest/generated/man/datalad-run.html]
is also functional.

	Support for Git-annex direct mode repositories has been removed,
following the end of support in Git-annex itself.

	The semantics of relative paths in command line arguments have
changed. Previously, a call
datalad save --dataset /tmp/myds some/relpath would have been
interpreted as saving a file at /tmp/myds/some/relpath into
dataset /tmp/myds. This has changed to saving
$PWD/some/relpath into dataset /tmp/myds. More generally,
relative paths are now always treated as relative to the current
working directory, except for path arguments of
Dataset [http://docs.datalad.org/en/latest/generated/datalad.api.Dataset.html]
class instance methods of the Python API. The resulting partial
duplication of path specifications between path and dataset arguments
is mitigated by the introduction of two special symbols that can be
given as dataset argument: ^ and ^., which identify the
topmost superdataset and the closest dataset that contains the
working directory, respectively.

	The concept of a “core API” has been introduced. Commands situated in
the module datalad.core (such as
create [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create.html],
save [http://datalad.readthedocs.io/en/latest/generated/man/datalad-save.html],
run [http://datalad.readthedocs.io/en/latest/generated/man/datalad-run.html],
status [http://datalad.readthedocs.io/en/latest/generated/man/datalad-status.html],
diff [http://datalad.readthedocs.io/en/latest/generated/man/datalad-diff.html])
receive additional scrutiny regarding API and implementation, and are
meant to provide longer-term stability. Application developers are
encouraged to preferentially build on these commands.

Major refactoring and deprecations since 0.12.0rc6

	clone [http://datalad.readthedocs.io/en/latest/generated/man/datalad-clone.html]
has been incorporated into the growing core API. The public
--alternative-source parameter has been removed, and a
clone_dataset function with multi-source capabilities is provided
instead. The --reckless parameter can now take literal mode
labels instead of just being a binary flag, but backwards
compatibility is maintained.

	The get_file_content method of GitRepo was no longer used
internally or in any known DataLad extensions and has been removed.
(#3812 [https://github.com/datalad/datalad/issues/3812])

	The function get_dataset_root has been replaced by
rev_get_dataset_root. rev_get_dataset_root remains as a
compatibility alias and will be removed in a later release.
(#3815 [https://github.com/datalad/datalad/issues/3815])

	The add_sibling module, marked obsolete in v0.6.0, has been
removed. (#3871 [https://github.com/datalad/datalad/issues/3871])

	mock is no longer declared as an external dependency because we
can rely on it being in the standard library now that our minimum
required Python version is 3.5.
(#3860 [https://github.com/datalad/datalad/issues/3860])

	download-url [https://datalad.readthedocs.io/en/latest/generated/man/datalad-download-url.html]
now requires that directories be indicated with a trailing slash
rather than interpreting a path as directory when it doesn’t exist.
This avoids confusion that can result from typos and makes it
possible to support directory targets that do not exist.
(#3854 [https://github.com/datalad/datalad/issues/3854])

	The dataset_only argument of the ConfigManager class is
deprecated. Use source="dataset" instead.
(#3907 [https://github.com/datalad/datalad/issues/3907])

	The --proc-pre and --proc-post options have been removed, and
configuration values for datalad.COMMAND.proc-pre and
datalad.COMMAND.proc-post are no longer honored. The new result
hook mechanism provides an alternative for proc-post procedures.
(#3963 [https://github.com/datalad/datalad/issues/3963])

Fixes since 0.12.0rc6

	publish [http://datalad.readthedocs.io/en/latest/generated/man/datalad-publish.html]
crashed when called with a detached HEAD. It now aborts with an
informative message.
(#3804 [https://github.com/datalad/datalad/issues/3804])

	Since 0.12.0rc6 the call to
update [http://datalad.readthedocs.io/en/latest/generated/man/datalad-update.html]
in
siblings [http://datalad.readthedocs.io/en/latest/generated/man/datalad-siblings.html]
resulted in a spurious warning.
(#3877 [https://github.com/datalad/datalad/issues/3877])

	siblings [http://datalad.readthedocs.io/en/latest/generated/man/datalad-siblings.html]
crashed if it encountered an annex repository that was marked as
dead. (#3892 [https://github.com/datalad/datalad/issues/3892])

	The update of
rerun [https://datalad.readthedocs.io/en/latest/generated/man/datalad-rerun.html]
in v0.12.0rc3 for the rewritten
diff [http://datalad.readthedocs.io/en/latest/generated/man/datalad-diff.html]
command didn’t account for a change in the output of diff,
leading to rerun --report unintentionally including unchanged
files in its diff values.
(#3873 [https://github.com/datalad/datalad/issues/3873])

	In 0.12.0rc5
download-url [https://datalad.readthedocs.io/en/latest/generated/man/datalad-download-url.html]
was updated to follow the new path handling logic, but its calls to
AnnexRepo weren’t properly adjusted, resulting in incorrect path
handling when the called from a dataset subdirectory.
(#3850 [https://github.com/datalad/datalad/issues/3850])

	download-url [https://datalad.readthedocs.io/en/latest/generated/man/datalad-download-url.html]
called git annex addurl in a way that failed to register a URL
when its header didn’t report the content size.
(#3911 [https://github.com/datalad/datalad/issues/3911])

	With Git v2.24.0, saving new subdatasets failed due to a bug in that
Git release.
(#3904 [https://github.com/datalad/datalad/issues/3904])

	With DataLad configured to stop on failure (e.g., specifying
--on-failure=stop from the command line), a failing result record
was not rendered.
(#3863 [https://github.com/datalad/datalad/issues/3863])

	Installing a subdataset yielded an “ok” status in cases where the
repository was not yet in its final state, making it ineffective for
a caller to operate on the repository in response to the result.
(#3906 [https://github.com/datalad/datalad/issues/3906])

	The internal helper for converting git-annex’s JSON output did not
relay information from the “error-messages” field.
(#3931 [https://github.com/datalad/datalad/issues/3931])

	run-procedure [http://datalad.readthedocs.io/en/latest/generated/man/datalad-run-procedure.html]
reported relative paths that were confusingly not relative to the
current directory in some cases. It now always reports absolute
paths. (#3959 [https://github.com/datalad/datalad/issues/3959])

	diff [http://datalad.readthedocs.io/en/latest/generated/man/datalad-diff.html]
inappropriately reported files as deleted in some cases when to
was a value other than None.
(#3999 [https://github.com/datalad/datalad/issues/3999])

	An assortment of fixes for Windows compatibility.
(#3971 [https://github.com/datalad/datalad/issues/3971])
(#3974 [https://github.com/datalad/datalad/issues/3974])
(#3975 [https://github.com/datalad/datalad/issues/3975])
(#3976 [https://github.com/datalad/datalad/issues/3976])
(#3979 [https://github.com/datalad/datalad/issues/3979])

	Subdatasets installed from a source given by relative path will now
have this relative path used as ‘url’ in their .gitmodules record,
instead of an absolute path generated by Git.
(#3538 [https://github.com/datalad/datalad/issues/3538])

	clone [http://datalad.readthedocs.io/en/latest/generated/man/datalad-clone.html]
will now correctly interpret ‘~/…’ paths as absolute path
specifications.
(#3958 [https://github.com/datalad/datalad/issues/3958])

	run-procedure [http://datalad.readthedocs.io/en/latest/generated/man/datalad-run-procedure.html]
mistakenly reported a directory as a procedure.
(#3793 [https://github.com/datalad/datalad/issues/3793])

	The cleanup for batched git-annex processes has been improved.
(#3794 [https://github.com/datalad/datalad/issues/3794])
(#3851 [https://github.com/datalad/datalad/issues/3851])

	The function for adding a version ID to an AWS S3 URL doesn’t support
URLs with an “s3://” scheme and raises a NotImplementedError
exception when it encounters one. The function learned to return a
URL untouched if an “s3://” URL comes in with a version ID.
(#3842 [https://github.com/datalad/datalad/issues/3842])

	A few spots needed to be adjusted for compatibility with git-annex’s
new --sameas
feature [https://git-annex.branchable.com/tips/multiple_remotes_accessing_the_same_data_store/],
which allows special remotes to share a data store.
(#3856 [https://github.com/datalad/datalad/issues/3856])

	The swallow_logs utility failed to capture some log messages due
to an incompatibility with Python 3.7.
(#3935 [https://github.com/datalad/datalad/issues/3935])

	siblings [http://datalad.readthedocs.io/en/latest/generated/man/datalad-siblings.html]

	crashed if --inherit was passed but the parent dataset did not
have a remote with a matching name.
(#3954 [https://github.com/datalad/datalad/issues/3954])

	configured the wrong pushurl and annexurl values in some cases.
(#3955 [https://github.com/datalad/datalad/issues/3955])

Enhancements and new features since 0.12.0rc6

	By default, datasets cloned from local source paths will now get a
configured remote for any recursively discoverable ‘origin’ sibling
that is also available from a local path in order to maximize
automatic file availability across local annexes.
(#3926 [https://github.com/datalad/datalad/issues/3926])

	The new result hooks
mechanism [http://handbook.datalad.org/en/latest/basics/101-145-hooks.html]
allows callers to specify, via local Git configuration values,
DataLad command calls that will be triggered in response to matching
result records (i.e., what you see when you call a command with
-f json_pp).
(#3903 [https://github.com/datalad/datalad/issues/3903])

	The command interface classes learned to use a new _examples_
attribute to render documentation examples for both the Python and
command-line API.
(#3821 [https://github.com/datalad/datalad/issues/3821])

	Candidate URLs for cloning a submodule can now be generated based on
configured templates that have access to various properties of the
submodule, including its dataset ID.
(#3828 [https://github.com/datalad/datalad/issues/3828])

	DataLad’s check that the user’s Git identity is configured has been
sped up and now considers the appropriate environment variables as
well. (#3807 [https://github.com/datalad/datalad/issues/3807])

	The tag method of GitRepo can now tag revisions other than
HEAD and accepts a list of arbitrary git tag options.
(#3787 [https://github.com/datalad/datalad/issues/3787])

	When get clones a subdataset and the subdataset’s HEAD differs
from the commit that is registered in the parent, the active branch
of the subdataset is moved to the registered commit if the registered
commit is an ancestor of the subdataset’s HEAD commit. This handling
has been moved to a more central location within GitRepo, and now
applies to any update_submodule(..., init=True) call.
(#3831 [https://github.com/datalad/datalad/issues/3831])

	The output of datalad -h has been reformatted to improve
readability.
(#3862 [https://github.com/datalad/datalad/issues/3862])

	unlock [http://datalad.readthedocs.io/en/latest/generated/man/datalad-unlock.html]
has been sped up.
(#3880 [https://github.com/datalad/datalad/issues/3880])

	run-procedure [http://datalad.readthedocs.io/en/latest/generated/man/datalad-run-procedure.html]
learned to provide and render more information about discovered
procedures, including whether the procedure is overridden by another
procedure with the same base name.
(#3960 [https://github.com/datalad/datalad/issues/3960])

	save [http://datalad.readthedocs.io/en/latest/generated/man/datalad-save.html]
now (#3817 [https://github.com/datalad/datalad/issues/3817])

	records the active branch in the superdataset when registering a
new subdataset.

	calls git annex sync when saving a dataset on an adjusted
branch so that the changes are brought into the mainline branch.

	subdatasets [http://datalad.readthedocs.io/en/latest/generated/man/datalad-subdatasets.html]
now aborts when its dataset argument points to a non-existent
dataset. (#3940 [https://github.com/datalad/datalad/issues/3940])

	wtf [http://datalad.readthedocs.io/en/latest/generated/man/datalad-wtf.html]
now

	reports the dataset ID if the current working directory is
visiting a dataset.
(#3888 [https://github.com/datalad/datalad/issues/3888])

	outputs entries deterministically.
(#3927 [https://github.com/datalad/datalad/issues/3927])

	The ConfigManager class

	learned to exclude .datalad/config as a source of
configuration values, restricting the sources to standard Git
configuration files, when called with source="local".
(#3907 [https://github.com/datalad/datalad/issues/3907])

	accepts a value of “override” for its where argument to allow
Python callers to more convenient override configuration.
(#3970 [https://github.com/datalad/datalad/issues/3970])

	Commands now accept a dataset value of “^.” as shorthand for “the
dataset to which the current directory belongs”.
(#3242 [https://github.com/datalad/datalad/issues/3242])

0.12.0rc6 (Oct 19, 2019) – some releases are better than the others

bet we will fix some bugs and make a world even a better place.

Major refactoring and deprecations

	DataLad no longer supports Python 2. The minimum supported version of
Python is now 3.5.
(#3629 [https://github.com/datalad/datalad/issues/3629])

	Much of the user-focused content at http://docs.datalad.org has been
removed in favor of more up to date and complete material available
in the DataLad Handbook [http://handbook.datalad.org]. Going
forward, the plan is to restrict http://docs.datalad.org to technical
documentation geared at developers.
(#3678 [https://github.com/datalad/datalad/issues/3678])

	update [http://datalad.readthedocs.io/en/latest/generated/man/datalad-update.html]
used to allow the caller to specify which dataset(s) to update as a
PATH argument or via the the --dataset option; now only the
latter is supported. Path arguments only serve to restrict which
subdataset are updated when operating recursively.
(#3700 [https://github.com/datalad/datalad/issues/3700])

	Result records from a
get [http://datalad.readthedocs.io/en/latest/generated/man/datalad-get.html]
call no longer have a “state” key.
(#3746 [https://github.com/datalad/datalad/issues/3746])

	update [http://datalad.readthedocs.io/en/latest/generated/man/datalad-update.html]
and
get [http://datalad.readthedocs.io/en/latest/generated/man/datalad-get.html]
no longer support operating on independent hierarchies of datasets.
(#3700 [https://github.com/datalad/datalad/issues/3700])
(#3746 [https://github.com/datalad/datalad/issues/3746])

	The
run [http://datalad.readthedocs.io/en/latest/generated/man/datalad-run.html]
update in 0.12.0rc4 for the new path resolution logic broke the
handling of inputs and outputs for calls from a subdirectory.
(#3747 [https://github.com/datalad/datalad/issues/3747])

	The is_submodule_modified method of GitRepo as well as two
helper functions in gitrepo.py, kwargs_to_options and
split_remote_branch, were no longer used internally or in any
known DataLad extensions and have been removed.
(#3702 [https://github.com/datalad/datalad/issues/3702])
(#3704 [https://github.com/datalad/datalad/issues/3704])

	The only_remote option of GitRepo.is_with_annex was not used
internally or in any known extensions and has been dropped.
(#3768 [https://github.com/datalad/datalad/issues/3768])

	The get_tags method of GitRepo used to sort tags by committer
date. It now sorts them by the tagger date for annotated tags and the
committer date for lightweight tags.
(#3715 [https://github.com/datalad/datalad/issues/3715])

	The rev_resolve_path substituted resolve_path helper.
(#3797 [https://github.com/datalad/datalad/issues/3797])

Fixes

	Correctly handle relative paths in
publish [http://datalad.readthedocs.io/en/latest/generated/man/datalad-publish.html].
(#3799 [https://github.com/datalad/datalad/issues/3799])
(#3102 [https://github.com/datalad/datalad/issues/3102])

	Do not erroneously discover directory as a procedure.
(#3793 [https://github.com/datalad/datalad/issues/3793])

	Correctly extract version from manpage to trigger use of manpages for
--help.
(#3798 [https://github.com/datalad/datalad/issues/3798])

	The cfg_yoda procedure saved all modifications in the repository
rather than saving only the files it modified.
(#3680 [https://github.com/datalad/datalad/issues/3680])

	Some spots in the documentation that were supposed appear as two
hyphens were incorrectly rendered in the HTML output en-dashs.
(#3692 [https://github.com/datalad/datalad/issues/3692])

	create [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create.html],
install [http://datalad.readthedocs.io/en/latest/generated/man/datalad-install.html],
and
clone [http://datalad.readthedocs.io/en/latest/generated/man/datalad-clone.html]
treated paths as relative to the dataset even when the string form
was given, violating the new path handling rules.
(#3749 [https://github.com/datalad/datalad/issues/3749])
(#3777 [https://github.com/datalad/datalad/issues/3777])
(#3780 [https://github.com/datalad/datalad/issues/3780])

	Providing the “^” shortcut to --dataset didn’t work properly when
called from a subdirectory of a subdataset.
(#3772 [https://github.com/datalad/datalad/issues/3772])

	We failed to propagate some errors from git-annex when working with
its JSON output.
(#3751 [https://github.com/datalad/datalad/issues/3751])

	With the Python API, callers are allowed to pass a string or list of
strings as the cfg_proc argument to
create [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create.html],
but the string form was mishandled.
(#3761 [https://github.com/datalad/datalad/issues/3761])

	Incorrect command quoting for SSH calls on Windows that rendered
basic SSH-related functionality (e.g.,
sshrun [http://datalad.readthedocs.io/en/latest/generated/man/datalad-sshrun.html])
on Windows unusable.
(#3688 [https://github.com/datalad/datalad/issues/3688])

	Annex JSON result handling assumed platform-specific paths on Windows
instead of the POSIX-style that is happening across all platforms.
(#3719 [https://github.com/datalad/datalad/issues/3719])

	path_is_under() was incapable of comparing Windows paths with
different drive letters.
(#3728 [https://github.com/datalad/datalad/issues/3728])

Enhancements and new features

	Provide a collection of “public” call_git* helpers within GitRepo
and replace use of “private” and less specific
_git_custom_command calls.
(#3791 [https://github.com/datalad/datalad/issues/3791])

	status [http://datalad.readthedocs.io/en/latest/generated/man/datalad-status.html]
gained a --report-filetype. Setting it to “raw” can give a
performance boost for the price of no longer distinguishing symlinks
that point to annexed content from other symlinks.
(#3701 [https://github.com/datalad/datalad/issues/3701])

	save [http://datalad.readthedocs.io/en/latest/generated/man/datalad-save.html]
disables file type reporting by
status [http://datalad.readthedocs.io/en/latest/generated/man/datalad-status.html]
to improve performance.
(#3712 [https://github.com/datalad/datalad/issues/3712])

	subdatasets [http://datalad.readthedocs.io/en/latest/generated/man/datalad-subdatasets.html]
(#3743 [https://github.com/datalad/datalad/issues/3743])

	now extends its result records with a contains field that
lists which contains arguments matched a given subdataset.

	yields an ‘impossible’ result record when a contains argument
wasn’t matched to any of the reported subdatasets.

	install [http://datalad.readthedocs.io/en/latest/generated/man/datalad-install.html]
now shows more readable output when cloning fails.
(#3775 [https://github.com/datalad/datalad/issues/3775])

	SSHConnection now displays a more informative error message when
it cannot start the ControlMaster process.
(#3776 [https://github.com/datalad/datalad/issues/3776])

	If the new configuration option datalad.log.result-level is set
to a single level, all result records will be logged at that level.
If you’ve been bothered by DataLad’s double reporting of failures,
consider setting this to “debug”.
(#3754 [https://github.com/datalad/datalad/issues/3754])

	Configuration values from datalad -c OPTION=VALUE ... are now
validated to provide better errors.
(#3695 [https://github.com/datalad/datalad/issues/3695])

	rerun [https://datalad.readthedocs.io/en/latest/generated/man/datalad-rerun.html]
learned how to handle history with merges. As was already the case
when cherry picking non-run commits, re-creating merges may results
in conflicts, and rerun does not yet provide an interface to let
the user handle these.
(#2754 [https://github.com/datalad/datalad/issues/2754])

	The fsck method of AnnexRepo has been enhanced to expose more
features of the underlying git fsck command.
(#3693 [https://github.com/datalad/datalad/issues/3693])

	GitRepo now has a for_each_ref_ method that wraps
git for-each-ref, which is used in various spots that used to
rely on GitPython functionality.
(#3705 [https://github.com/datalad/datalad/issues/3705])

	Do not pretend to be able to work in optimized (python -O) mode,
crash early with an informative message.
(#3803 [https://github.com/datalad/datalad/issues/3803])

0.12.0rc5 (September 04, 2019) – .

Various fixes and enhancements that bring the 0.12.0 release closer.

Major refactoring and deprecations

	The two modules below have a new home. The old locations still exist
as compatibility shims and will be removed in a future release.

	datalad.distribution.subdatasets has been moved to
datalad.local.subdatasets
(#3429 [https://github.com/datalad/datalad/issues/3429])

	datalad.interface.run has been moved to
datalad.core.local.run
(#3444 [https://github.com/datalad/datalad/issues/3444])

	The lock method of AnnexRepo and the options parameter of
AnnexRepo.unlock were unused internally and have been removed.
(#3459 [https://github.com/datalad/datalad/issues/3459])

	The get_submodules method of GitRepo has been rewritten
without GitPython. When the new compat flag is true (the current
default), the method returns a value that is compatible with the old
return value. This backwards-compatible return value and the
compat flag will be removed in a future release.
(#3508 [https://github.com/datalad/datalad/issues/3508])

	The logic for resolving relative paths given to a command has changed
(#3435 [https://github.com/datalad/datalad/issues/3435]). The new
rule is that relative paths are taken as relative to the dataset only
if a dataset instance is passed by the caller. In all other
scenarios they’re considered relative to the current directory.

The main user-visible difference from the command line is that using
the --dataset argument does not result in relative paths being
taken as relative to the specified dataset. (The undocumented
distinction between “rel/path” and “./rel/path” no longer exists.)

All commands under datalad.core and datalad.local, as well as
unlock and addurls, follow the new logic. The goal is for all
commands to eventually do so.

Fixes

	The function for loading JSON streams wasn’t clever enough to handle
content that included a Unicode line separator like U2028.
(#3524 [https://github.com/datalad/datalad/issues/3524])

	When
unlock [http://datalad.readthedocs.io/en/latest/generated/man/datalad-unlock.html]
was called without an explicit target (i.e., a directory or no paths
at all), the call failed if any of the files did not have content
present. (#3459 [https://github.com/datalad/datalad/issues/3459])

	AnnexRepo.get_content_info failed in the rare case of a key
without size information.
(#3534 [https://github.com/datalad/datalad/issues/3534])

	save [http://datalad.readthedocs.io/en/latest/generated/man/datalad-save.html]
ignored --on-failure in its underlying call to
status [http://datalad.readthedocs.io/en/latest/generated/man/datalad-status.html].
(#3470 [https://github.com/datalad/datalad/issues/3470])

	Calling
remove [http://datalad.readthedocs.io/en/latest/generated/man/datalad-remove.html]
with a subdirectory displayed spurious warnings about the
subdirectory files not existing.
(#3586 [https://github.com/datalad/datalad/issues/3586])

	Our processing of git-annex --json output mishandled info
messages from special remotes.
(#3546 [https://github.com/datalad/datalad/issues/3546])

	create [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create.html]

	didn’t bypass the “existing subdataset” check when called with
--force as of 0.12.0rc3
(#3552 [https://github.com/datalad/datalad/issues/3552])

	failed to register the up-to-date revision of a subdataset when
--cfg-proc was used with --dataset
(#3591 [https://github.com/datalad/datalad/issues/3591])

	The base downloader had some error handling that wasn’t compatible
with Python 3.
(#3622 [https://github.com/datalad/datalad/issues/3622])

	Fixed a number of Unicode py2-compatibility issues.
(#3602 [https://github.com/datalad/datalad/issues/3602])

	AnnexRepo.get_content_annexinfo did not properly chunk file
arguments to avoid exceeding the command-line character limit.
(#3587 [https://github.com/datalad/datalad/issues/3587])

Enhancements and new features

	New command create-sibling-gitlab provides an interface for
creating a publication target on a GitLab instance.
(#3447 [https://github.com/datalad/datalad/issues/3447])

	subdatasets [http://datalad.readthedocs.io/en/latest/generated/man/datalad-subdatasets.html]
(#3429 [https://github.com/datalad/datalad/issues/3429])

	now supports path-constrained queries in the same manner as
commands like save and status

	gained a --contains=PATH option that can be used to restrict
the output to datasets that include a specific path.

	now narrows the listed subdatasets to those underneath the current
directory when called with no arguments

	status [http://datalad.readthedocs.io/en/latest/generated/man/datalad-status.html]
learned to accept a plain --annex (no value) as shorthand for
--annex basic.
(#3534 [https://github.com/datalad/datalad/issues/3534])

	The .dirty property of GitRepo and AnnexRepo has been
sped up. (#3460 [https://github.com/datalad/datalad/issues/3460])

	The get_content_info method of GitRepo, used by status
and commands that depend on status, now restricts its git calls
to a subset of files, if possible, for a performance gain in
repositories with many files.
(#3508 [https://github.com/datalad/datalad/issues/3508])

	Extensions that do not provide a command, such as those that provide
only metadata extractors, are now supported.
(#3531 [https://github.com/datalad/datalad/issues/3531])

	When calling git-annex with --json, we log standard error at the
debug level rather than the warning level if a non-zero exit is
expected behavior.
(#3518 [https://github.com/datalad/datalad/issues/3518])

	create [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create.html]
no longer refuses to create a new dataset in the odd scenario of an
empty .git/ directory upstairs.
(#3475 [https://github.com/datalad/datalad/issues/3475])

	As of v2.22.0 Git treats a sub-repository on an unborn branch as a
repository rather than as a directory. Our documentation and tests
have been updated appropriately.
(#3476 [https://github.com/datalad/datalad/issues/3476])

	addurls [http://datalad.readthedocs.io/en/latest/generated/man/datalad-addurls.html]
learned to accept a --cfg-proc value and pass it to its
create calls.
(#3562 [https://github.com/datalad/datalad/issues/3562])

0.12.0rc4 (May 15, 2019) – the revolution is over

With the replacement of the save command implementation with
rev-save the revolution effort is now over, and the set of key
commands for local dataset operations (create, run, save,
status, diff) is now complete. This new core API is available
from datalad.core.local (and also via datalad.api, as any other
command).

Major refactoring and deprecations

	The add command is now deprecated. It will be removed in a future
release.

Fixes

	Remove hard-coded dependencies on POSIX path conventions in SSH
support code
(#3400 [https://github.com/datalad/datalad/issues/3400])

	Emit an add result when adding a new subdataset during
save [http://datalad.readthedocs.io/en/latest/generated/man/datalad-save.html]
(#3398 [https://github.com/datalad/datalad/issues/3398])

	SSH file transfer now actually opens a shared connection, if none
exists yet
(#3403 [https://github.com/datalad/datalad/issues/3403])

Enhancements and new features

	SSHConnection now offers methods for file upload and download
(get(), put(). The previous copy() method only supported
upload and was discontinued
(#3401 [https://github.com/datalad/datalad/issues/3401])

0.12.0rc3 (May 07, 2019) – the revolution continues

Continues API consolidation and replaces the create and diff
command with more performant implementations.

Major refactoring and deprecations

	The previous diff command has been replaced by the diff variant
from the
datalad-revolution [http://github.com/datalad/datalad-revolution]
extension.
(#3366 [https://github.com/datalad/datalad/issues/3366])

	rev-create has been renamed to create, and the previous
create has been removed.
(#3383 [https://github.com/datalad/datalad/issues/3383])

	The procedure setup_yoda_dataset has been renamed to cfg_yoda
(#3353 [https://github.com/datalad/datalad/issues/3353]).

	The --nosave of addurls now affects only added content, not
newly created subdatasets
(#3259 [https://github.com/datalad/datalad/issues/3259]).

	Dataset.get_subdatasets (deprecated since v0.9.0) has been
removed. (#3336 [https://github.com/datalad/datalad/issues/3336])

	The .is_dirty method of GitRepo and AnnexRepo has been
replaced by .status or, for a subset of cases, the .dirty
property.
(#3330 [https://github.com/datalad/datalad/issues/3330])

	AnnexRepo.get_status has been replaced by AnnexRepo.status.
(#3330 [https://github.com/datalad/datalad/issues/3330])

Fixes

	status [http://datalad.readthedocs.io/en/latest/generated/man/datalad-status.html]

	reported on directories that contained only ignored files
(#3238 [https://github.com/datalad/datalad/issues/3238])

	gave a confusing failure when called from a subdataset with an
explicitly specified dataset argument and “.” as a path
(#3325 [https://github.com/datalad/datalad/issues/3325])

	misleadingly claimed that the locally present content size was
zero when --annex basic was specified
(#3378 [https://github.com/datalad/datalad/issues/3378])

	An informative error wasn’t given when a download provider was
invalid. (#3258 [https://github.com/datalad/datalad/issues/3258])

	Calling rev-save PATH saved unspecified untracked subdatasets.
(#3288 [https://github.com/datalad/datalad/issues/3288])

	The available choices for command-line options that take values are
now displayed more consistently in the help output.
(#3326 [https://github.com/datalad/datalad/issues/3326])

	The new pathlib-based code had various encoding issues on Python 2.
(#3332 [https://github.com/datalad/datalad/issues/3332])

Enhancements and new features

	wtf [http://datalad.readthedocs.io/en/latest/generated/man/datalad-wtf.html]
now includes information about the Python version.
(#3255 [https://github.com/datalad/datalad/issues/3255])

	When operating in an annex repository, checking whether git-annex is
available is now delayed until a call to git-annex is actually
needed, allowing systems without git-annex to operate on annex
repositories in a restricted fashion.
(#3274 [https://github.com/datalad/datalad/issues/3274])

	The load_stream on helper now supports auto-detection of
compressed files.
(#3289 [https://github.com/datalad/datalad/issues/3289])

	create (formerly rev-create)

	learned to be speedier by passing a path to status
(#3294 [https://github.com/datalad/datalad/issues/3294])

	gained a --cfg-proc (or -c) convenience option for running
configuration procedures (or more accurately any procedure that
begins with “cfg_”) in the newly created dataset
(#3353 [https://github.com/datalad/datalad/issues/3353])

	AnnexRepo.set_metadata now returns a list while
AnnexRepo.set_metadata_ returns a generator, a behavior which is
consistent with the add and add_ method pair.
(#3298 [https://github.com/datalad/datalad/issues/3298])

	AnnexRepo.get_metadata now supports batch querying of known annex
files. Note, however, that callers should carefully validate the
input paths because the batch call will silently hang if given
non-annex files.
(#3364 [https://github.com/datalad/datalad/issues/3364])

	status [http://datalad.readthedocs.io/en/latest/generated/man/datalad-status.html]

	now reports a “bytesize” field for files tracked by Git
(#3299 [https://github.com/datalad/datalad/issues/3299])

	gained a new option eval_subdataset_state that controls how
the subdataset state is evaluated. Depending on the information
you need, you can select a less expensive mode to make status
faster.
(#3324 [https://github.com/datalad/datalad/issues/3324])

	colors deleted files “red”
(#3334 [https://github.com/datalad/datalad/issues/3334])

	Querying repository content is faster due to batching of
git cat-file calls.
(#3301 [https://github.com/datalad/datalad/issues/3301])

	The dataset ID of a subdataset is now recorded in the superdataset.
(#3304 [https://github.com/datalad/datalad/issues/3304])

	GitRepo.diffstatus

	now avoids subdataset recursion when the comparison is not with
the working tree, which substantially improves performance when
diffing large dataset hierarchies
(#3314 [https://github.com/datalad/datalad/issues/3314])

	got smarter and faster about labeling a subdataset as “modified”
(#3343 [https://github.com/datalad/datalad/issues/3343])

	GitRepo.get_content_info now supports disabling the file type
evaluation, which gives a performance boost in cases where this
information isn’t needed.
(#3362 [https://github.com/datalad/datalad/issues/3362])

	The XMP metadata extractor now filters based on file name to improve
its performance.
(#3329 [https://github.com/datalad/datalad/issues/3329])

0.12.0rc2 (Mar 18, 2019) – revolution!

Fixes

	GitRepo.dirty does not report on nested empty directories
(#3196 [https://github.com/datalad/datalad/issues/3196]).

	GitRepo.save() reports results on deleted files.

Enhancements and new features

	Absorb a new set of core commands from the datalad-revolution
extension:

	rev-status: like git status, but simpler and working with
dataset hierarchies

	rev-save: a 2-in-1 replacement for save and add

	rev-create: a ~30% faster create

	JSON support tools can now read and write compressed files.

0.12.0rc1 (Mar 03, 2019) – to boldly go …

Major refactoring and deprecations

	Discontinued support for git-annex direct-mode (also no longer
supported upstream).

Enhancements and new features

	Dataset and Repo object instances are now hashable, and can be
created based on pathlib Path object instances

	Imported various additional methods for the Repo classes to query
information and save changes.

0.11.8 (Oct 11, 2019) – annex-we-are-catching-up

Fixes

	Our internal command runner failed to capture output in some cases.
(#3656 [https://github.com/datalad/datalad/issues/3656])

	Workaround in the tests around python in cPython >= 3.7.5 ‘;’ in the
filename confusing mimetypes
(#3769 [https://github.com/datalad/datalad/issues/3769])
(#3770 [https://github.com/datalad/datalad/issues/3770])

Enhancements and new features

	Prepared for upstream changes in git-annex, including support for the
latest git-annex

	7.20190912 auto-upgrades v5 repositories to v7.
(#3648 [https://github.com/datalad/datalad/issues/3648])
(#3682 [https://github.com/datalad/datalad/issues/3682])

	7.20191009 fixed treatment of (larger/smaller)than in
.gitattributes
(#3765 [https://github.com/datalad/datalad/issues/3765])

	The cfg_text2git procedure, as well the --text-no-annex
option of
create [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create.html],
now configure .gitattributes so that empty files are stored in git
rather than annex.
(#3667 [https://github.com/datalad/datalad/issues/3667])

0.11.7 (Sep 06, 2019) – python2-we-still-love-you-but-…

Primarily bugfixes with some optimizations and refactorings.

Fixes

	addurls [http://datalad.readthedocs.io/en/latest/generated/man/datalad-addurls.html]

	now provides better handling when the URL file isn’t in the
expected format.
(#3579 [https://github.com/datalad/datalad/issues/3579])

	always considered a relative file for the URL file argument as
relative to the current working directory, which goes against the
convention used by other commands of taking relative paths as
relative to the dataset argument.
(#3582 [https://github.com/datalad/datalad/issues/3582])

	run-procedure [http://datalad.readthedocs.io/en/latest/generated/man/datalad-run-procedure.html]

	hard coded “python” when formatting the command for non-executable
procedures ending with “.py”. sys.executable is now used.
(#3624 [https://github.com/datalad/datalad/issues/3624])

	failed if arguments needed more complicated quoting than simply
surrounding the value with double quotes. This has been resolved
for systems that support shlex.quote, but note that on Windows
values are left unquoted.
(#3626 [https://github.com/datalad/datalad/issues/3626])

	siblings [http://datalad.readthedocs.io/en/latest/generated/man/datalad-siblings.html]
now displays an informative error message if a local path is given to
--url but --name isn’t specified.
(#3555 [https://github.com/datalad/datalad/issues/3555])

	sshrun [http://datalad.readthedocs.io/en/latest/generated/man/datalad-sshrun.html],
the command DataLad uses for GIT_SSH_COMMAND, didn’t support all
the parameters that Git expects it to.
(#3616 [https://github.com/datalad/datalad/issues/3616])

	Fixed a number of Unicode py2-compatibility issues.
(#3597 [https://github.com/datalad/datalad/issues/3597])

	download-url [https://datalad.readthedocs.io/en/latest/generated/man/datalad-download-url.html]
now will create leading directories of the output path if they do not
exist (#3646 [https://github.com/datalad/datalad/issues/3646])

Enhancements and new features

	The
annotate-paths [http://docs.datalad.org/en/latest/generated/man/datalad-annotate-paths.html]
helper now caches subdatasets it has seen to avoid unnecessary calls.
(#3570 [https://github.com/datalad/datalad/issues/3570])

	A repeated configuration query has been dropped from the handling of
--proc-pre and --proc-post.
(#3576 [https://github.com/datalad/datalad/issues/3576])

	Calls to git annex find now use --in=. instead of the alias
--in=here to take advantage of an optimization that git-annex (as
of the current release, 7.20190730) applies only to the former.
(#3574 [https://github.com/datalad/datalad/issues/3574])

	addurls [http://datalad.readthedocs.io/en/latest/generated/man/datalad-addurls.html]
now suggests close matches when the URL or file format contains an
unknown field.
(#3594 [https://github.com/datalad/datalad/issues/3594])

	Shared logic used in the setup.py files of DataLad and its extensions
has been moved to modules in the _datalad_build_support/ directory.
(#3600 [https://github.com/datalad/datalad/issues/3600])

	Get ready for upcoming git-annex dropping support for direct mode
(#3631 [https://github.com/datalad/datalad/issues/3631])

0.11.6 (Jul 30, 2019) – am I the last of 0.11.x?

Primarily bug fixes to achieve more robust performance

Fixes

	Our tests needed various adjustments to keep up with upstream changes
in Travis and Git.
(#3479 [https://github.com/datalad/datalad/issues/3479])
(#3492 [https://github.com/datalad/datalad/issues/3492])
(#3493 [https://github.com/datalad/datalad/issues/3493])

	AnnexRepo.is_special_annex_remote was too selective in what it
considered to be a special remote.
(#3499 [https://github.com/datalad/datalad/issues/3499])

	We now provide information about unexpected output when git-annex is
called with --json.
(#3516 [https://github.com/datalad/datalad/issues/3516])

	Exception logging in the __del__ method of GitRepo and
AnnexRepo no longer fails if the names it needs are no longer
bound. (#3527 [https://github.com/datalad/datalad/issues/3527])

	addurls [http://datalad.readthedocs.io/en/latest/generated/man/datalad-addurls.html]
botched the construction of subdataset paths that were more than two
levels deep and failed to create datasets in a reliable,
breadth-first order.
(#3561 [https://github.com/datalad/datalad/issues/3561])

	Cloning a type=git special remote showed a spurious warning about
the remote not being enabled.
(#3547 [https://github.com/datalad/datalad/issues/3547])

Enhancements and new features

	For calls to git and git-annex, we disable automatic garbage
collection due to past issues with GitPython’s state becoming stale,
but doing so results in a larger .git/objects/ directory that isn’t
cleaned up until garbage collection is triggered outside of DataLad.
Tests with the latest GitPython didn’t reveal any state issues, so
we’ve re-enabled automatic garbage collection.
(#3458 [https://github.com/datalad/datalad/issues/3458])

	rerun [https://datalad.readthedocs.io/en/latest/generated/man/datalad-rerun.html]
learned an --explicit flag, which it relays to its calls to
[run][[]]. This makes it possible to call rerun in a dirty
working tree
(#3498 [https://github.com/datalad/datalad/issues/3498]).

	The
metadata [http://datalad.readthedocs.io/en/latest/generated/man/datalad-metadata.html]
command aborts earlier if a metadata extractor is unavailable.
(#3525 [https://github.com/datalad/datalad/issues/3525])

0.11.5 (May 23, 2019) – stability is not overrated

Should be faster and less buggy, with a few enhancements.

Fixes

	create-sibling [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create-sibling.html]
(#3318 [https://github.com/datalad/datalad/issues/3318])

	Siblings are no longer configured with a post-update hook unless a
web interface is requested with --ui.

	git submodule update --init is no longer called from the
post-update hook.

	If --inherit is given for a dataset without a superdataset, a
warning is now given instead of raising an error.

	The internal command runner failed on Python 2 when its env
argument had unicode values.
(#3332 [https://github.com/datalad/datalad/issues/3332])

	The safeguard that prevents creating a dataset in a subdirectory that
already contains tracked files for another repository failed on Git
versions before 2.14. For older Git versions, we now warn the caller
that the safeguard is not active.
(#3347 [https://github.com/datalad/datalad/issues/3347])

	A regression introduced in v0.11.1 prevented
save [http://datalad.readthedocs.io/en/latest/generated/man/datalad-save.html]
from committing changes under a subdirectory when the subdirectory
was specified as a path argument.
(#3106 [https://github.com/datalad/datalad/issues/3106])

	A workaround introduced in v0.11.1 made it possible for
save [http://datalad.readthedocs.io/en/latest/generated/man/datalad-save.html]
to do a partial commit with an annex file that has gone below the
annex.largefiles threshold. The logic of this workaround was
faulty, leading to files being displayed as typechanged in the index
following the commit.
(#3365 [https://github.com/datalad/datalad/issues/3365])

	The resolve_path() helper confused paths that had a semicolon for SSH
RIs. (#3425 [https://github.com/datalad/datalad/issues/3425])

	The detection of SSH RIs has been improved.
(#3425 [https://github.com/datalad/datalad/issues/3425])

Enhancements and new features

	The internal command runner was too aggressive in its decision to
sleep. (#3322 [https://github.com/datalad/datalad/issues/3322])

	The “INFO” label in log messages now retains the default text color
for the terminal rather than using white, which only worked well for
terminals with dark backgrounds.
(#3334 [https://github.com/datalad/datalad/issues/3334])

	A short flag -R is now available for the --recursion-limit
flag, a flag shared by several subcommands.
(#3340 [https://github.com/datalad/datalad/issues/3340])

	The authentication logic for
create-sibling-github [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create-sibling-github.html]
has been revamped and now supports 2FA.
(#3180 [https://github.com/datalad/datalad/issues/3180])

	New configuration option datalad.ui.progressbar can be used to
configure the default backend for progress reporting (“none”, for
example, results in no progress bars being shown).
(#3396 [https://github.com/datalad/datalad/issues/3396])

	A new progress backend, available by setting datalad.ui.progressbar
to “log”, replaces progress bars with a log message upon completion
of an action.
(#3396 [https://github.com/datalad/datalad/issues/3396])

	DataLad learned to consult the NO_COLOR [https://no-color.org/]
environment variable and the new datalad.ui.color configuration
option when deciding to color output. The default value, “auto”,
retains the current behavior of coloring output if attached to a TTY
(#3407 [https://github.com/datalad/datalad/issues/3407]).

	clean [http://datalad.readthedocs.io/en/latest/generated/man/datalad-clean.html]
now removes annex transfer directories, which is useful for cleaning
up failed downloads.
(#3374 [https://github.com/datalad/datalad/issues/3374])

	clone [http://datalad.readthedocs.io/en/latest/generated/man/datalad-clone.html]
no longer refuses to clone into a local path that looks like a URL,
making its behavior consistent with git clone.
(#3425 [https://github.com/datalad/datalad/issues/3425])

	wtf [http://datalad.readthedocs.io/en/latest/generated/man/datalad-wtf.html]

	Learned to fall back to the dist package if platform.dist,
which has been removed in the yet-to-be-release Python 3.8, does
not exist.
(#3439 [https://github.com/datalad/datalad/issues/3439])

	Gained a --section option for limiting the output to specific
sections and a --decor option, which currently knows how to
format the output as GitHub’s <details> section.
(#3440 [https://github.com/datalad/datalad/issues/3440])

0.11.4 (Mar 18, 2019) – get-ready

Largely a bug fix release with a few enhancements

Important

	0.11.x series will be the last one with support for direct mode of
git-annex [http://git-annex.branchable.com/] which is used on
crippled (no symlinks and no locking) filesystems. v7 repositories
should be used instead.

Fixes

	Extraction of .gz files is broken without p7zip installed. We now
abort with an informative error in this situation.
(#3176 [https://github.com/datalad/datalad/issues/3176])

	Committing failed in some cases because we didn’t ensure that the
path passed to git read-tree --index-output=... resided on the
same filesystem as the repository.
(#3181 [https://github.com/datalad/datalad/issues/3181])

	Some pointless warnings during metadata aggregation have been
eliminated.
(#3186 [https://github.com/datalad/datalad/issues/3186])

	With Python 3 the LORIS token authenticator did not properly decode a
response
(#3205 [https://github.com/datalad/datalad/issues/3205]).

	With Python 3 downloaders unnecessarily decoded the response when
getting the status, leading to an encoding error.
(#3210 [https://github.com/datalad/datalad/issues/3210])

	In some cases, our internal command Runner did not adjust the
environment’s PWD to match the current working directory
specified with the cwd parameter.
(#3215 [https://github.com/datalad/datalad/issues/3215])

	The specification of the pyliblzma dependency was broken.
(#3220 [https://github.com/datalad/datalad/issues/3220])

	search [http://datalad.readthedocs.io/en/latest/generated/man/datalad-search.html]
displayed an uninformative blank log message in some cases.
(#3222 [https://github.com/datalad/datalad/issues/3222])

	The logic for finding the location of the aggregate metadata DB
anchored the search path incorrectly, leading to a spurious warning.
(#3241 [https://github.com/datalad/datalad/issues/3241])

	Some progress bars were still displayed when stdout and stderr were
not attached to a tty.
(#3281 [https://github.com/datalad/datalad/issues/3281])

	Check for stdin/out/err to not be closed before checking for
.isatty.
(#3268 [https://github.com/datalad/datalad/issues/3268])

Enhancements and new features

	Creating a new repository now aborts if any of the files in the
directory are tracked by a repository in a parent directory.
(#3211 [https://github.com/datalad/datalad/issues/3211])

	run [http://datalad.readthedocs.io/en/latest/generated/man/datalad-run.html]
learned to replace the {tmpdir} placeholder in commands with a
temporary directory.
(#3223 [https://github.com/datalad/datalad/issues/3223])

	duecredit [https://github.com/duecredit/duecredit] support has
been added for citing DataLad itself as well as datasets that an
analysis uses.
(#3184 [https://github.com/datalad/datalad/issues/3184])

	The eval_results interface helper unintentionally modified one of
its arguments.
(#3249 [https://github.com/datalad/datalad/issues/3249])

	A few DataLad constants have been added, changed, or renamed
(#3250 [https://github.com/datalad/datalad/issues/3250]):

	HANDLE_META_DIR is now DATALAD_DOTDIR. The old name should
be considered deprecated.

	METADATA_DIR now refers to DATALAD_DOTDIR/metadata rather
than DATALAD_DOTDIR/meta (which is still available as
OLDMETADATA_DIR).

	The new DATASET_METADATA_FILE refers to
METADATA_DIR/dataset.json.

	The new DATASET_CONFIG_FILE refers to
DATALAD_DOTDIR/config.

	METADATA_FILENAME has been renamed to
OLDMETADATA_FILENAME.

0.11.3 (Feb 19, 2019) – read-me-gently

Just a few of important fixes and minor enhancements.

Fixes

	The logic for setting the maximum command line length now works
around Python 3.4 returning an unreasonably high value for
SC_ARG_MAX on Debian systems.
(#3165 [https://github.com/datalad/datalad/issues/3165])

	DataLad commands that are conceptually “read-only”, such as
datalad ls -L, can fail when the caller lacks write permissions
because git-annex tries merging remote git-annex branches to update
information about availability. DataLad now disables
annex.merge-annex-branches in some common “read-only” scenarios
to avoid these failures.
(#3164 [https://github.com/datalad/datalad/issues/3164])

Enhancements and new features

	Accessing an “unbound” dataset method now automatically imports the
necessary module rather than requiring an explicit import from the
Python caller. For example, calling Dataset.add no longer needs
to be preceded by from datalad.distribution.add import Add or an
import of datalad.api.
(#3156 [https://github.com/datalad/datalad/issues/3156])

	Configuring the new variable datalad.ssh.identityfile instructs
DataLad to pass a value to the -i option of ssh.
(#3149 [https://github.com/datalad/datalad/issues/3149])
(#3168 [https://github.com/datalad/datalad/issues/3168])

0.11.2 (Feb 07, 2019) – live-long-and-prosper

A variety of bugfixes and enhancements

Major refactoring and deprecations

	All extracted metadata is now placed under git-annex by default.
Previously files smaller than 20 kb were stored in git.
(#3109 [https://github.com/datalad/datalad/issues/3109])

	The function datalad.cmd.get_runner has been removed.
(#3104 [https://github.com/datalad/datalad/issues/3104])

Fixes

	Improved handling of long commands:

	The code that inspected SC_ARG_MAX didn’t check that the
reported value was a sensible, positive number.
(#3025 [https://github.com/datalad/datalad/issues/3025])

	More commands that invoke git and git-annex with file
arguments learned to split up the command calls when it is likely
that the command would fail due to exceeding the maximum supported
length.
(#3138 [https://github.com/datalad/datalad/issues/3138])

	The setup_yoda_dataset procedure created a malformed
.gitattributes line.
(#3057 [https://github.com/datalad/datalad/issues/3057])

	download-url [https://datalad.readthedocs.io/en/latest/generated/man/datalad-download-url.html]
unnecessarily tried to infer the dataset when --no-save was
given. (#3029 [https://github.com/datalad/datalad/issues/3029])

	rerun [https://datalad.readthedocs.io/en/latest/generated/man/datalad-rerun.html]
aborted too late and with a confusing message when a ref specified
via --onto didn’t exist.
(#3019 [https://github.com/datalad/datalad/issues/3019])

	run [http://datalad.readthedocs.io/en/latest/generated/man/datalad-run.html]:

	run didn’t preserve the current directory prefix (“./”) on
inputs and outputs, which is problematic if the caller relies on
this representation when formatting the command.
(#3037 [https://github.com/datalad/datalad/issues/3037])

	Fixed a number of unicode py2-compatibility issues.
(#3035 [https://github.com/datalad/datalad/issues/3035])
(#3046 [https://github.com/datalad/datalad/issues/3046])

	To proceed with a failed command, the user was confusingly
instructed to use save instead of add even though run
uses add underneath.
(#3080 [https://github.com/datalad/datalad/issues/3080])

	Fixed a case where the helper class for checking external modules
incorrectly reported a module as unknown.
(#3051 [https://github.com/datalad/datalad/issues/3051])

	add-archive-content [https://datalad.readthedocs.io/en/latest/generated/man/datalad-add-archive-content.html]
mishandled the archive path when the leading path contained a
symlink. (#3058 [https://github.com/datalad/datalad/issues/3058])

	Following denied access, the credential code failed to consider a
scenario, leading to a type error rather than an appropriate error
message. (#3091 [https://github.com/datalad/datalad/issues/3091])

	Some tests failed when executed from a git worktree checkout of
the source repository.
(#3129 [https://github.com/datalad/datalad/issues/3129])

	During metadata extraction, batched annex processes weren’t properly
terminated, leading to issues on Windows.
(#3137 [https://github.com/datalad/datalad/issues/3137])

	add [http://datalad.readthedocs.io/en/latest/generated/man/datalad-add.html]
incorrectly handled an “invalid repository” exception when trying to
add a submodule.
(#3141 [https://github.com/datalad/datalad/issues/3141])

	Pass GIT_SSH_VARIANT=ssh to git processes to be able to specify
alternative ports in SSH urls

Enhancements and new features

	search [http://datalad.readthedocs.io/en/latest/generated/man/datalad-search.html]
learned to suggest closely matching keys if there are no hits.
(#3089 [https://github.com/datalad/datalad/issues/3089])

	create-sibling [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create-sibling.html]

	gained a --group option so that the caller can specify the
file system group for the repository.
(#3098 [https://github.com/datalad/datalad/issues/3098])

	now understands SSH URLs that have a port in them (i.e. the
“ssh://[user@]host.xz[:port]/path/to/repo.git/” syntax mentioned
in man git-fetch).
(#3146 [https://github.com/datalad/datalad/issues/3146])

	Interface classes can now override the default renderer for
summarizing results.
(#3061 [https://github.com/datalad/datalad/issues/3061])

	run [http://datalad.readthedocs.io/en/latest/generated/man/datalad-run.html]:

	--input and --output can now be shortened to -i and
-o.
(#3066 [https://github.com/datalad/datalad/issues/3066])

	Placeholders such as “{inputs}” are now expanded in the command
that is shown in the commit message subject.
(#3065 [https://github.com/datalad/datalad/issues/3065])

	interface.run.run_command gained an extra_inputs argument
so that wrappers like
datalad-container [https://github.com/datalad/datalad-container]
can specify additional inputs that aren’t considered when
formatting the command string.
(#3038 [https://github.com/datalad/datalad/issues/3038])

	“–” can now be used to separate options for run and those for
the command in ambiguous cases.
(#3119 [https://github.com/datalad/datalad/issues/3119])

	The utilities create_tree and ok_file_has_content now support
“.gz” files.
(#3049 [https://github.com/datalad/datalad/issues/3049])

	The Singularity container for 0.11.1 now uses
nd_freeze [https://github.com/neurodebian/neurodebian/blob/master/tools/nd_freeze]
to make its builds reproducible.

	A
publications [https://datalad.readthedocs.io/en/latest/publications.html]
page has been added to the documentation.
(#3099 [https://github.com/datalad/datalad/issues/3099])

	GitRepo.set_gitattributes now accepts a mode argument that
controls whether the .gitattributes file is appended to (default) or
overwritten.
(#3115 [https://github.com/datalad/datalad/issues/3115])

	datalad --help now avoids using man so that the list of
subcommands is shown.
(#3124 [https://github.com/datalad/datalad/issues/3124])

0.11.1 (Nov 26, 2018) – v7-better-than-v6

Rushed out bugfix release to stay fully compatible with recent
git-annex [http://git-annex.branchable.com/] which introduced v7 to
replace v6.

Fixes

	install [http://datalad.readthedocs.io/en/latest/generated/man/datalad-install.html]:
be able to install recursively into a dataset
(#2982 [https://github.com/datalad/datalad/issues/2982])

	save [http://datalad.readthedocs.io/en/latest/generated/man/datalad-save.html]:
be able to commit/save changes whenever files potentially could have
swapped their storage between git and annex
(#1651 [https://github.com/datalad/datalad/issues/1651])
(#2752 [https://github.com/datalad/datalad/issues/2752])
(#3009 [https://github.com/datalad/datalad/issues/3009])

	[aggregate-metadata][]:

	dataset’s itself is now not “aggregated” if specific paths are
provided for aggregation
(#3002 [https://github.com/datalad/datalad/issues/3002]). That
resolves the issue of -r invocation aggregating all
subdatasets of the specified dataset as well

	also compare/verify the actual content checksum of aggregated
metadata while considering subdataset metadata for re-aggregation
(#3007 [https://github.com/datalad/datalad/issues/3007])

	annex commands are now chunked assuming 50% “safety margin” on
the maximal command line length. Should resolve crashes while
operating of too many files at ones
(#3001 [https://github.com/datalad/datalad/issues/3001])

	run sidecar config processing
(#2991 [https://github.com/datalad/datalad/issues/2991])

	no double trailing period in docs
(#2984 [https://github.com/datalad/datalad/issues/2984])

	correct identification of the repository with symlinks in the paths
in the tests
(#2972 [https://github.com/datalad/datalad/issues/2972])

	re-evaluation of dataset properties in case of dataset changes
(#2946 [https://github.com/datalad/datalad/issues/2946])

	[text2git][] procedure to use ds.repo.set_gitattributes
(#2974 [https://github.com/datalad/datalad/issues/2974])
(#2954 [https://github.com/datalad/datalad/issues/2954])

	Switch to use plain os.getcwd() if inconsistency with env var
$PWD is detected
(#2914 [https://github.com/datalad/datalad/issues/2914])

	Make sure that credential defined in env var takes precedence
(#2960 [https://github.com/datalad/datalad/issues/2960])
(#2950 [https://github.com/datalad/datalad/issues/2950])

Enhancements and new features

	shub://datalad/datalad:git-annex-dev [https://singularity-hub.org/containers/5663/view]
provides a Debian buster Singularity image with build environment for
git-annex [http://git-annex.branchable.com/].
tools/bisect-git-annex provides a helper for running
git bisect on git-annex using that Singularity container
(#2995 [https://github.com/datalad/datalad/issues/2995])

	Added .zenodo.json for better integration with Zenodo for
citation

	run-procedure [http://datalad.readthedocs.io/en/latest/generated/man/datalad-run-procedure.html]
now provides names and help messages with a custom renderer for
(#2993 [https://github.com/datalad/datalad/issues/2993])

	Documentation: point to
datalad-revolution [http://github.com/datalad/datalad-revolution]
extension (prototype of the greater DataLad future)

	run [http://datalad.readthedocs.io/en/latest/generated/man/datalad-run.html]

	support injecting of a detached command
(#2937 [https://github.com/datalad/datalad/issues/2937])

	annex metadata extractor now extracts annex.key metadata
record. Should allow now to identify uses of specific files etc
(#2952 [https://github.com/datalad/datalad/issues/2952])

	Test that we can install from http://datasets.datalad.org

	Proper rendering of CommandError (e.g. in case of “out of space”
error) (#2958 [https://github.com/datalad/datalad/issues/2958])

0.11.0 (Oct 23, 2018) – Soon-to-be-perfect

git-annex [http://git-annex.branchable.com/] 6.20180913 (or later)
is now required - provides a number of fixes for v6 mode operations etc.

Major refactoring and deprecations

	datalad.consts.LOCAL_CENTRAL_PATH constant was deprecated in
favor of datalad.locations.default-dataset
configuration [http://docs.datalad.org/en/latest/config.html]
variable (#2835 [https://github.com/datalad/datalad/issues/2835])

Minor refactoring

	"notneeded" messages are no longer reported by default results
renderer

	run [http://datalad.readthedocs.io/en/latest/generated/man/datalad-run.html]
no longer shows commit instructions upon command failure when
explicit is true and no outputs are specified
(#2922 [https://github.com/datalad/datalad/issues/2922])

	get_git_dir moved into GitRepo
(#2886 [https://github.com/datalad/datalad/issues/2886])

	_gitpy_custom_call removed from GitRepo
(#2894 [https://github.com/datalad/datalad/issues/2894])

	GitRepo.get_merge_base argument is now called commitishes
instead of treeishes
(#2903 [https://github.com/datalad/datalad/issues/2903])

Fixes

	update [http://datalad.readthedocs.io/en/latest/generated/man/datalad-update.html]
should not leave the dataset in non-clean state
(#2858 [https://github.com/datalad/datalad/issues/2858]) and some
other enhancements
(#2859 [https://github.com/datalad/datalad/issues/2859])

	Fixed chunking of the long command lines to account for decorators
and other arguments
(#2864 [https://github.com/datalad/datalad/issues/2864])

	Progress bar should not crash the process on some missing progress
information
(#2891 [https://github.com/datalad/datalad/issues/2891])

	Default value for jobs set to be "auto" (not None) to
take advantage of possible parallel get if in -g mode
(#2861 [https://github.com/datalad/datalad/issues/2861])

	wtf [http://datalad.readthedocs.io/en/latest/generated/man/datalad-wtf.html]
must not crash if git-annex is not installed etc
(#2865 [https://github.com/datalad/datalad/issues/2865]),
(#2865 [https://github.com/datalad/datalad/issues/2865]),
(#2918 [https://github.com/datalad/datalad/issues/2918]),
(#2917 [https://github.com/datalad/datalad/issues/2917])

	Fixed paths (with spaces etc) handling while reporting annex error
output (#2892 [https://github.com/datalad/datalad/issues/2892]),
(#2893 [https://github.com/datalad/datalad/issues/2893])

	__del__ should not access .repo but ._repo to avoid
attempts for reinstantiation etc
(#2901 [https://github.com/datalad/datalad/issues/2901])

	Fix up submodule .git right in GitRepo.add_submodule to avoid
added submodules being non git-annex friendly
(#2909 [https://github.com/datalad/datalad/issues/2909]),
(#2904 [https://github.com/datalad/datalad/issues/2904])

	run-procedure [http://datalad.readthedocs.io/en/latest/generated/man/datalad-run-procedure.html]
(#2905 [https://github.com/datalad/datalad/issues/2905])

	now will provide dataset into the procedure if called within
dataset

	will not crash if procedure is an executable without .py or
.sh suffixes

	Use centralized .gitattributes handling while setting annex
backend (#2912 [https://github.com/datalad/datalad/issues/2912])

	GlobbedPaths.expand(..., full=True) incorrectly returned relative
paths when called more than once
(#2921 [https://github.com/datalad/datalad/issues/2921])

Enhancements and new features

	Report progress on
clone [http://datalad.readthedocs.io/en/latest/generated/man/datalad-clone.html]
when installing from “smart” git servers
(#2876 [https://github.com/datalad/datalad/issues/2876])

	Stale/unused sth_like_file_has_content was removed
(#2860 [https://github.com/datalad/datalad/issues/2860])

	Enhancements to
search [http://datalad.readthedocs.io/en/latest/generated/man/datalad-search.html]
to operate on “improved” metadata layouts
(#2878 [https://github.com/datalad/datalad/issues/2878])

	Output of git annex init operation is now logged
(#2881 [https://github.com/datalad/datalad/issues/2881])

	New

	GitRepo.cherry_pick
(#2900 [https://github.com/datalad/datalad/issues/2900])

	GitRepo.format_commit
(#2902 [https://github.com/datalad/datalad/issues/2902])

	run-procedure [http://datalad.readthedocs.io/en/latest/generated/man/datalad-run-procedure.html]
(#2905 [https://github.com/datalad/datalad/issues/2905])

	procedures can now recursively be discovered in subdatasets as
well. The uppermost has highest priority

	Procedures in user and system locations now take precedence over
those in datasets.

0.10.3.1 (Sep 13, 2018) – Nothing-is-perfect

Emergency bugfix to address forgotten boost of version in
datalad/version.py.

0.10.3 (Sep 13, 2018) – Almost-perfect

This is largely a bugfix release which addressed many (but not yet all)
issues of working with git-annex direct and version 6 modes, and
operation on Windows in general. Among enhancements you will see the
support of public S3 buckets (even with periods in their names), ability
to configure new providers interactively, and improved egrep search
backend.

Although we do not require with this release, it is recommended to make
sure that you are using a recent git-annex since it also had a
variety of fixes and enhancements in the past months.

Fixes

	Parsing of combined short options has been broken since DataLad
v0.10.0. (#2710 [https://github.com/datalad/datalad/issues/2710])

	The datalad save instructions shown by datalad run for a
command with a non-zero exit were incorrectly formatted.
(#2692 [https://github.com/datalad/datalad/issues/2692])

	Decompression of zip files (e.g., through
datalad add-archive-content) failed on Python 3.
(#2702 [https://github.com/datalad/datalad/issues/2702])

	Windows:

	colored log output was not being processed by colorama.
(#2707 [https://github.com/datalad/datalad/issues/2707])

	more codepaths now try multiple times when removing a file to deal
with latency and locking issues on Windows.
(#2795 [https://github.com/datalad/datalad/issues/2795])

	Internal git fetch calls have been updated to work around a GitPython
BadName issue.
(#2712 [https://github.com/datalad/datalad/issues/2712]),
(#2794 [https://github.com/datalad/datalad/issues/2794])

	The progress bar for annex file transferring was unable to handle an
empty file.
(#2717 [https://github.com/datalad/datalad/issues/2717])

	datalad add-readme halted when no aggregated metadata was found
rather than displaying a warning.
(#2731 [https://github.com/datalad/datalad/issues/2731])

	datalad rerun failed if --onto was specified and the history
contained no run commits.
(#2761 [https://github.com/datalad/datalad/issues/2761])

	Processing of a command’s results failed on a result record with a
missing value (e.g., absent field or subfield in metadata). Now the
missing value is rendered as “N/A”.
(#2725 [https://github.com/datalad/datalad/issues/2725]).

	A couple of documentation links in the “Delineation from related
solutions” were misformatted.
(#2773 [https://github.com/datalad/datalad/issues/2773])

	With the latest git-annex, several known V6 failures are no longer an
issue. (#2777 [https://github.com/datalad/datalad/issues/2777])

	In direct mode, commit changes would often commit annexed content as
regular Git files. A new approach fixes this and resolves a good
number of known failures.
(#2770 [https://github.com/datalad/datalad/issues/2770])

	The reporting of command results failed if the current working
directory was removed (e.g., after an unsuccessful install).
(#2788 [https://github.com/datalad/datalad/issues/2788])

	When installing into an existing empty directory, datalad install
removed the directory after a failed clone.
(#2788 [https://github.com/datalad/datalad/issues/2788])

	datalad run incorrectly handled inputs and outputs for paths with
spaces and other characters that require shell escaping.
(#2798 [https://github.com/datalad/datalad/issues/2798])

	Globbing inputs and outputs for datalad run didn’t work correctly
if a subdataset wasn’t installed.
(#2796 [https://github.com/datalad/datalad/issues/2796])

	Minor (in)compatibility with git 2.19 - (no) trailing period in an
error message now.
(#2815 [https://github.com/datalad/datalad/issues/2815])

Enhancements and new features

	Anonymous access is now supported for S3 and other downloaders.
(#2708 [https://github.com/datalad/datalad/issues/2708])

	A new interface is available to ease setting up new providers.
(#2708 [https://github.com/datalad/datalad/issues/2708])

	Metadata: changes to egrep mode search
(#2735 [https://github.com/datalad/datalad/issues/2735])

	Queries in egrep mode are now case-sensitive when the query
contains any uppercase letters and are case-insensitive otherwise.
The new mode egrepcs can be used to perform a case-sensitive query
with all lower-case letters.

	Search can now be limited to a specific key.

	Multiple queries (list of expressions) are evaluated using AND to
determine whether something is a hit.

	A single multi-field query (e.g., pa*:findme) is a hit, when
any matching field matches the query.

	All matching key/value combinations across all (multi-field)
queries are reported in the query_matched result field.

	egrep mode now shows all hits rather than limiting the results to
the top 20 hits.

	The documentation on how to format commands for datalad run has
been improved.
(#2703 [https://github.com/datalad/datalad/issues/2703])

	The method for determining the current working directory on Windows
has been improved.
(#2707 [https://github.com/datalad/datalad/issues/2707])

	datalad --version now simply shows the version without the
license. (#2733 [https://github.com/datalad/datalad/issues/2733])

	datalad export-archive learned to export under an existing
directory via its --filename option.
(#2723 [https://github.com/datalad/datalad/issues/2723])

	datalad export-to-figshare now generates the zip archive in the
root of the dataset unless --filename is specified.
(#2723 [https://github.com/datalad/datalad/issues/2723])

	After importing datalad.api, help(datalad.api) (or
datalad.api? in IPython) now shows a summary of the available
DataLad commands.
(#2728 [https://github.com/datalad/datalad/issues/2728])

	Support for using datalad from IPython has been improved.
(#2722 [https://github.com/datalad/datalad/issues/2722])

	datalad wtf now returns structured data and reports the version
of each extension.
(#2741 [https://github.com/datalad/datalad/issues/2741])

	The internal handling of gitattributes information has been improved.
A user-visible consequence is that datalad create --force no
longer duplicates existing attributes.
(#2744 [https://github.com/datalad/datalad/issues/2744])

	The “annex” metadata extractor can now be used even when no content
is present.
(#2724 [https://github.com/datalad/datalad/issues/2724])

	The add_url_to_file method (called by commands like
datalad download-url and datalad add-archive-content)
learned how to display a progress bar.
(#2738 [https://github.com/datalad/datalad/issues/2738])

0.10.2 (Jul 09, 2018) – Thesecuriestever

Primarily a bugfix release to accommodate recent git-annex release
forbidding file:// and http://localhost/ URLs which might lead to
revealing private files if annex is publicly shared.

Fixes

	fixed testing to be compatible with recent git-annex (6.20180626)

	download-url [https://datalad.readthedocs.io/en/latest/generated/man/datalad-download-url.html]
will now download to current directory instead of the top of the
dataset

Enhancements and new features

	do not quote ~ in URLs to be consistent with quote implementation in
Python 3.7 which now follows RFC 3986

	run [http://datalad.readthedocs.io/en/latest/generated/man/datalad-run.html]
support for user-configured placeholder values

	documentation on native git-annex metadata support

	handle 401 errors from LORIS tokens

	yoda procedure will instantiate README.md

	--discover option added to
run-procedure [http://datalad.readthedocs.io/en/latest/generated/man/datalad-run-procedure.html]
to list available procedures

0.10.1 (Jun 17, 2018) – OHBM polish

The is a minor bugfix release.

Fixes

	Be able to use backports.lzma as a drop-in replacement for pyliblzma.

	Give help when not specifying a procedure name in run-procedure.

	Abort early when a downloader received no filename.

	Avoid rerun error when trying to unlock non-available files.

0.10.0 (Jun 09, 2018) – The Release

This release is a major leap forward in metadata support.

Major refactoring and deprecations

	Metadata

	Prior metadata provided by datasets under .datalad/meta is no
longer used or supported. Metadata must be reaggregated using 0.10
version

	Metadata extractor types are no longer auto-guessed and must be
explicitly specified in datalad.metadata.nativetype config
(could contain multiple values)

	Metadata aggregation of a dataset hierarchy no longer updates all
datasets in the tree with new metadata. Instead, only the target
dataset is updated. This behavior can be changed via the
–update-mode switch. The new default prevents needless
modification of (3rd-party) subdatasets.

	Neuroimaging metadata support has been moved into a dedicated
extension: https://github.com/datalad/datalad-neuroimaging

	Crawler

	moved into a dedicated extension:
https://github.com/datalad/datalad-crawler

	export_tarball plugin has been generalized to export_archive
and can now also generate ZIP archives.

	By default a dataset X is now only considered to be a super-dataset
of another dataset Y, if Y is also a registered subdataset of X.

Fixes

A number of fixes did not make it into the 0.9.x series:

	Dynamic configuration overrides via the -c option were not in
effect.

	save is now more robust with respect to invocation in
subdirectories of a dataset.

	unlock now reports correct paths when running in a dataset
subdirectory.

	get is more robust to path that contain symbolic links.

	symlinks to subdatasets of a dataset are now correctly treated as a
symlink, and not as a subdataset

	add now correctly saves staged subdataset additions.

	Running datalad save in a dataset no longer adds untracked
content to the dataset. In order to add content a path has to be
given, e.g. datalad save .

	wtf now works reliably with a DataLad that wasn’t installed from
Git (but, e.g., via pip)

	More robust URL handling in simple_with_archives crawler
pipeline.

Enhancements and new features

	Support for DataLad extension that can contribute API components from
3rd-party sources, incl. commands, metadata extractors, and test case
implementations. See
https://github.com/datalad/datalad-extension-template for a demo
extension.

	Metadata (everything has changed!)

	Metadata extraction and aggregation is now supported for datasets
and individual files.

	Metadata query via search can now discover individual files.

	Extracted metadata can now be stored in XZ compressed files, is
optionally annexed (when exceeding a configurable size threshold),
and obtained on demand (new configuration option
datalad.metadata.create-aggregate-annex-limit).

	Status and availability of aggregated metadata can now be reported
via metadata --get-aggregates

	New configuration option datalad.metadata.maxfieldsize to
exclude too large metadata fields from aggregation.

	The type of metadata is no longer guessed during metadata
extraction. A new configuration option
datalad.metadata.nativetype was introduced to enable one or
more particular metadata extractors for a dataset.

	New configuration option
datalad.metadata.store-aggregate-content to enable the storage
of aggregated metadata for dataset content (i.e. file-based
metadata) in contrast to just metadata describing a dataset as a
whole.

	search was completely reimplemented. It offers three different
modes now:

	‘egrep’ (default): expression matching in a plain string version
of metadata

	‘textblob’: search a text version of all metadata using a fully
featured query language (fast indexing, good for keyword search)

	‘autofield’: search an auto-generated index that preserves
individual fields of metadata that can be represented in a tabular
structure (substantial indexing cost, enables the most detailed
queries of all modes)

	New extensions:

	addurls [http://datalad.readthedocs.io/en/latest/generated/man/datalad-addurls.html],
an extension for creating a dataset (and possibly subdatasets)
from a list of URLs.

	export_to_figshare

	extract_metadata

	add_readme makes use of available metadata

	By default the wtf extension now hides sensitive information, which
can be included in the output by passing --senstive=some or
--senstive=all.

	Reduced startup latency by only importing commands necessary for a
particular command line call.

	create [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create.html]:

	-d <parent> --nosave now registers subdatasets, when possible.

	--fake-dates configures dataset to use fake-dates

	run [http://datalad.readthedocs.io/en/latest/generated/man/datalad-run.html]
now provides a way for the caller to save the result when a command
has a non-zero exit status.

	datalad rerun now has a --script option that can be used to
extract previous commands into a file.

	A DataLad Singularity container is now available on Singularity
Hub [https://singularity-hub.org/collections/667].

	More casts have been embedded in the use case section of the
documentation [http://docs.datalad.org/en/docs/usecases/index.html].

	datalad --report-status has a new value ‘all’ that can be used to
temporarily re-enable reporting that was disable by configuration
settings.

0.9.3 (Mar 16, 2018) – pi+0.02 release

Some important bug fixes which should improve usability

Fixes

	datalad-archives special remote now will lock on acquiring or
extracting an archive - this allows for it to be used with -J flag
for parallel operation

	relax introduced in 0.9.2 demand on git being configured for datalad
operation - now we will just issue a warning

	datalad ls should now list “authored date” and work also for
datasets in detached HEAD mode

	datalad save will now save original file as well, if file was
“git mv”ed, so you can now datalad run git mv old new and have
changes recorded

Enhancements and new features

	--jobs argument now could take auto value which would decide
on # of jobs depending on the # of available CPUs. git-annex >
6.20180314 is recommended to avoid regression with -J.

	memoize calls to RI meta-constructor – should speed up operation
a bit

	DATALAD_SEED environment variable could be used to seed Python
RNG and provide reproducible UUIDs etc (useful for testing and demos)

0.9.2 (Mar 04, 2018) – it is (again) better than ever

Largely a bugfix release with a few enhancements.

Fixes

	Execution of external commands (git) should not get stuck when lots
of both stdout and stderr output, and should not loose remaining
output in some cases

	Config overrides provided in the command line (-c) should now be
handled correctly

	Consider more remotes (not just tracking one, which might be none)
while installing subdatasets

	Compatibility with git 2.16 with some changed behaviors/annotations
for submodules

	Fail remove if annex drop failed

	Do not fail operating on files which start with dash (-)

	URL unquote paths within S3, URLs and DataLad RIs (///)

	In non-interactive mode fail if authentication/access fails

	Web UI:

	refactored a little to fix incorrect listing of submodules in
subdirectories

	now auto-focuses on search edit box upon entering the page

	Assure that extracted from tarballs directories have executable bit
set

Enhancements and new features

	A log message and progress bar will now inform if a tarball to be
downloaded while getting specific files (requires git-annex >
6.20180206)

	A dedicated datalad rerun command capable of rerunning entire
sequences of previously run commands. Reproducibility through
VCS. Use ``run`` even if not interested in ``rerun``

	Alert the user if git is not yet configured but git operations
are requested

	Delay collection of previous ssh connections until it is actually
needed. Also do not require ‘:’ while specifying ssh host

	AutomagicIO: Added proxying of isfile, lzma.LZMAFile and io.open

	Testing:

	added DATALAD_DATASETS_TOPURL=http://datasets-tests.datalad.org to
run tests against another website to not obscure access stats

	tests run against temporary HOME to avoid side-effects

	better unit-testing of interactions with special remotes

	CONTRIBUTING.md describes how to setup and use git-hub tool to
“attach” commits to an issue making it into a PR

	DATALAD_USE_DEFAULT_GIT env variable could be used to cause DataLad
to use default (not the one possibly bundled with git-annex) git

	Be more robust while handling not supported requests by annex in
special remotes

	Use of swallow_logs in the code was refactored away – less
mysteries now, just increase logging level

	wtf plugin will report more information about environment,
externals and the system

0.9.1 (Oct 01, 2017) – “DATALAD!”(JBTM)

Minor bugfix release

Fixes

	Should work correctly with subdatasets named as numbers of bool
values (requires also GitPython >= 2.1.6)

	Custom special remotes should work without crashing with git-annex >=
6.20170924

0.9.0 (Sep 19, 2017) – isn’t it a lucky day even though not a Friday?

Major refactoring and deprecations

	the files argument of
save [http://datalad.readthedocs.io/en/latest/generated/man/datalad-save.html]
has been renamed to path to be uniform with any other command

	all major commands now implement more uniform API semantics and
result reporting. Functionality for modification detection of dataset
content has been completely replaced with a more efficient
implementation

	publish [http://datalad.readthedocs.io/en/latest/generated/man/datalad-publish.html]
now features a --transfer-data switch that allows for a
disambiguous specification of whether to publish data – independent
of the selection which datasets to publish (which is done via their
paths). Moreover,
publish [http://datalad.readthedocs.io/en/latest/generated/man/datalad-publish.html]
now transfers data before repository content is pushed.

Fixes

	drop [http://datalad.readthedocs.io/en/latest/generated/man/datalad-drop.html]
no longer errors when some subdatasets are not installed

	install [http://datalad.readthedocs.io/en/latest/generated/man/datalad-install.html]
will no longer report nothing when a Dataset instance was given as a
source argument, but rather perform as expected

	remove [http://datalad.readthedocs.io/en/latest/generated/man/datalad-remove.html]
doesn’t remove when some files of a dataset could not be dropped

	publish [http://datalad.readthedocs.io/en/latest/generated/man/datalad-publish.html]

	no longer hides error during a repository push

	publish behaves “correctly” for --since= in considering only
the differences the last “pushed” state

	data transfer handling while publishing with dependencies, to
github

	improved robustness with broken Git configuration

	search [http://datalad.readthedocs.io/en/latest/generated/man/datalad-search.html]
should search for unicode strings correctly and not crash

	robustify git-annex special remotes protocol handling to allow for
spaces in the last argument

	UI credentials interface should now allow to Ctrl-C the entry

	should not fail while operating on submodules named with numerics
only or by bool (true/false) names

	crawl templates should not now override settings for largefiles
if specified in .gitattributes

Enhancements and new features

	Exciting new feature
run [http://datalad.readthedocs.io/en/latest/generated/man/datalad-run.html]
command to protocol execution of an external command and rerun
computation if desired. See
screencast [http://datalad.org/features.html#reproducible-science]

	save [http://datalad.readthedocs.io/en/latest/generated/man/datalad-save.html]
now uses Git for detecting with sundatasets need to be inspected for
potential changes, instead of performing a complete traversal of a
dataset tree

	add [http://datalad.readthedocs.io/en/latest/generated/man/datalad-add.html]
looks for changes relative to the last committed state of a dataset
to discover files to add more efficiently

	diff [http://datalad.readthedocs.io/en/latest/generated/man/datalad-diff.html]
can now report untracked files in addition to modified files

	[uninstall][] will check itself whether a subdataset is properly
registered in a superdataset, even when no superdataset is given in a
call

	subdatasets [http://datalad.readthedocs.io/en/latest/generated/man/datalad-subdatasets.html]
can now configure subdatasets for exclusion from recursive
installation (datalad-recursiveinstall submodule configuration
property)

	precrafted pipelines of [crawl][] now will not override
annex.largefiles setting if any was set within .gitattribues
(e.g. by datalad create --text-no-annex)

	framework for screencasts: tools/cast* tools and sample cast
scripts under doc/casts which are published at
datalad.org/features.html [http://datalad.org/features.html]

	new project YouTube
channel [https://www.youtube.com/channel/UCB8-Zf7D0DSzAsREoIt0Bvw]

	tests failing in direct and/or v6 modes marked explicitly

0.8.1 (Aug 13, 2017) – the best birthday gift

Bugfixes

Fixes

	Do not attempt to
update [http://datalad.readthedocs.io/en/latest/generated/man/datalad-update.html]
a not installed sub-dataset

	In case of too many files to be specified for
get [http://datalad.readthedocs.io/en/latest/generated/man/datalad-get.html]
or
copy_to [http://docs.datalad.org/en/latest/_modules/datalad/support/annexrepo.html?highlight=%22copy_to%22],
we will make multiple invocations of underlying git-annex command to
not overfill command line

	More robust handling of unicode output in terminals which might not
support it

Enhancements and new features

	Ship a copy of numpy.testing to facilitate [test][] without requiring
numpy as dependency. Also allow to pass to command which test(s) to
run

	In
get [http://datalad.readthedocs.io/en/latest/generated/man/datalad-get.html]
and
copy_to [http://docs.datalad.org/en/latest/_modules/datalad/support/annexrepo.html?highlight=%22copy_to%22]
provide actual original requested paths, not the ones we deduced need
to be transferred, solely for knowing the total

0.8.0 (Jul 31, 2017) – it is better than ever

A variety of fixes and enhancements

Fixes

	publish [http://datalad.readthedocs.io/en/latest/generated/man/datalad-publish.html]
would now push merged git-annex branch even if no other changes
were done

	publish [http://datalad.readthedocs.io/en/latest/generated/man/datalad-publish.html]
should be able to publish using relative path within SSH URI (git
hook would use relative paths)

	publish [http://datalad.readthedocs.io/en/latest/generated/man/datalad-publish.html]
should better tollerate publishing to pure git and git-annex
special remotes

Enhancements and new features

	plugin [http://datalad.readthedocs.io/en/latest/generated/man/datalad-plugin.html]
mechanism came to replace
export [http://datalad.readthedocs.io/en/latest/generated/man/datalad-export.html].
See
export_tarball [http://docs.datalad.org/en/latest/generated/datalad.plugin.export_tarball.html]
for the replacement of
export [http://datalad.readthedocs.io/en/latest/generated/man/datalad-export.html].
Now it should be easy to extend datalad’s interface with custom
functionality to be invoked along with other commands.

	Minimalistic coloring of the results rendering

	publish [http://datalad.readthedocs.io/en/latest/generated/man/datalad-publish.html]/copy_to
got progress bar report now and support of --jobs

	minor fixes and enhancements to crawler (e.g. support of recursive
removes)

0.7.0 (Jun 25, 2017) – when it works - it is quite awesome!

New features, refactorings, and bug fixes.

Major refactoring and deprecations

	add-sibling [http://datalad.readthedocs.io/en/latest/generated/man/datalad-add-sibling.html]
has been fully replaced by the
siblings [http://datalad.readthedocs.io/en/latest/generated/man/datalad-siblings.html]
command

	create-sibling [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create-sibling.html],
and
unlock [http://datalad.readthedocs.io/en/latest/generated/man/datalad-unlock.html]
have been re-written to support the same common API as most other
commands

Enhancements and new features

	siblings [http://datalad.readthedocs.io/en/latest/generated/man/datalad-siblings.html]
can now be used to query and configure a local repository by using
the sibling name here

	siblings [http://datalad.readthedocs.io/en/latest/generated/man/datalad-siblings.html]
can now query and set annex preferred content configuration. This
includes wanted (as previously supported in other commands), and
now also required

	New
metadata [http://datalad.readthedocs.io/en/latest/generated/man/datalad-metadata.html]
command to interface with datasets/files
meta-data [http://docs.datalad.org/en/latest/cmdline.html#meta-data-handling]

	Documentation for all commands is now built in a uniform fashion

	Significant parts of the documentation of been updated

	Instantiate GitPython’s Repo instances lazily

Fixes

	API documentation is now rendered properly as HTML, and is easier to
browse by having more compact pages

	Closed files left open on various occasions (Popen PIPEs, etc)

	Restored basic (consumer mode of operation) compatibility with
Windows OS

0.6.0 (Jun 14, 2017) – German perfectionism

This release includes a huge refactoring to make code base and
functionality more robust and flexible

	outputs from API commands could now be highly customized. See
--output-format, --report-status, --report-type, and
--report-type options for
datalad [http://docs.datalad.org/en/latest/generated/man/datalad.html]
command.

	effort was made to refactor code base so that underlying functions
behave as generators where possible

	input paths/arguments analysis was redone for majority of the
commands to provide unified behavior

Major refactoring and deprecations

	add-sibling and rewrite-urls were refactored in favor of new
siblings [http://datalad.readthedocs.io/en/latest/generated/man/datalad-siblings.html]
command which should be used for siblings manipulations

	‘datalad.api.alwaysrender’ config setting/support is removed in favor
of new outputs processing

Fixes

	Do not flush manually git index in pre-commit to avoid “Death by the
Lock” issue

	Deployed by
publish [http://datalad.readthedocs.io/en/latest/generated/man/datalad-publish.html]
post-update hook script now should be more robust (tolerate
directory names with spaces, etc.)

	A variety of fixes, see list of pull requests and issues
closed [https://github.com/datalad/datalad/milestone/41?closed=1]
for more information

Enhancements and new features

	new
annotate-paths [http://docs.datalad.org/en/latest/generated/man/datalad-annotate-paths.html]
plumbing command to inspect and annotate provided paths. Use
--modified to summarize changes between different points in the
history

	new
clone [http://datalad.readthedocs.io/en/latest/generated/man/datalad-clone.html]
plumbing command to provide a subset (install a single dataset from a
URL) functionality of
install [http://datalad.readthedocs.io/en/latest/generated/man/datalad-install.html]

	new
diff [http://datalad.readthedocs.io/en/latest/generated/man/datalad-diff.html]
plumbing command

	new
siblings [http://datalad.readthedocs.io/en/latest/generated/man/datalad-siblings.html]
command to list or manipulate siblings

	new
subdatasets [http://datalad.readthedocs.io/en/latest/generated/man/datalad-subdatasets.html]
command to list subdatasets and their properties

	drop [http://datalad.readthedocs.io/en/latest/generated/man/datalad-drop.html]
and
remove [http://datalad.readthedocs.io/en/latest/generated/man/datalad-remove.html]
commands were refactored

	benchmarks/ collection of Airspeed
velocity [https://github.com/spacetelescope/asv/] benchmarks
initiated. See reports at http://datalad.github.io/datalad/

	crawler would try to download a new url multiple times increasing
delay between attempts. Helps to resolve problems with extended
crawls of Amazon S3

	CRCNS [http://crcns.org] crawler pipeline now also fetches and
aggregates meta-data for the datasets from datacite

	overall optimisations to benefit from the aforementioned refactoring
and improve user-experience

	a few stub and not (yet) implemented commands (e.g. move) were
removed from the interface

	Web frontend got proper coloring for the breadcrumbs and some
additional caching to speed up interactions. See
http://datasets.datalad.org

	Small improvements to the online documentation. See e.g. summary of
differences between
git/git-annex/datalad [http://docs.datalad.org/en/latest/related.html#git-git-annex-datalad]

0.5.1 (Mar 25, 2017) – cannot stop the progress

A bugfix release

Fixes

	add [http://datalad.readthedocs.io/en/latest/generated/man/datalad-add.html]
was forcing addition of files to annex regardless of settings in
.gitattributes. Now that decision is left to annex by default

	tools/testing/run_doc_examples used to run doc examples as tests,
fixed up to provide status per each example and not fail at once

	doc/examples

	3rdparty_analysis_workflow.sh [http://docs.datalad.org/en/latest/generated/examples/3rdparty_analysis_workflow.html]
was fixed up to reflect changes in the API of 0.5.0.

	progress bars

	should no longer crash datalad and report correct sizes and
speeds

	should provide progress reports while using Python 3.x

Enhancements and new features

	doc/examples

	nipype_workshop_dataset.sh [http://docs.datalad.org/en/latest/generated/examples/nipype_workshop_dataset.html]
new example to demonstrate how new super- and sub- datasets were
established as a part of our datasets collection

0.5.0 (Mar 20, 2017) – it’s huge

This release includes an avalanche of bug fixes, enhancements, and
additions which at large should stay consistent with previous behavior
but provide better functioning. Lots of code was refactored to provide
more consistent code-base, and some API breakage has happened. Further
work is ongoing to standardize output and results reporting
(#1350 [https://github.com/datalad/datalad/issues/1350])

Most notable changes

	requires git-annex [http://git-annex.branchable.com/] >=
6.20161210 (or better even >= 6.20161210 for improved functionality)

	commands should now operate on paths specified (if any), without
causing side-effects on other dirty/staged files

	save [http://datalad.readthedocs.io/en/latest/generated/man/datalad-save.html]

	-a is deprecated in favor of -u or --all-updates so
only changes known components get saved, and no new files
automagically added

	-S does no longer store the originating dataset in its commit
message

	add [http://datalad.readthedocs.io/en/latest/generated/man/datalad-add.html]

	can specify commit/save message with -m

	add-sibling [http://datalad.readthedocs.io/en/latest/generated/man/datalad-add-sibling.html]
and
create-sibling [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create-sibling.html]

	now take the name of the sibling (remote) as a -s (--name)
option, not a positional argument

	--publish-depends to setup publishing data and code to
multiple repositories (e.g. github + webserve) should now be
functional see this
comment [https://github.com/datalad/datalad/issues/335#issuecomment-277240733]

	got --publish-by-default to specify what refs should be
published by default

	got --annex-wanted, --annex-groupwanted and
--annex-group settings which would be used to instruct annex
about preferred content.
publish [http://datalad.readthedocs.io/en/latest/generated/man/datalad-publish.html]
then will publish data using those settings if wanted is set.

	got --inherit option to automagically figure out url/wanted
and other git/annex settings for new remote sub-dataset to be
constructed

	publish [http://datalad.readthedocs.io/en/latest/generated/man/datalad-publish.html]

	got --skip-failing refactored into --missing option which
could use new feature of
create-sibling [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create-sibling.html]
--inherit

Fixes

	More consistent interaction through ssh - all ssh connections go
through
sshrun [http://datalad.readthedocs.io/en/latest/generated/man/datalad-sshrun.html]
shim for a “single point of authentication”, etc.

	More robust
ls [http://datalad.readthedocs.io/en/latest/generated/man/datalad-ls.html]
operation outside of the datasets

	A number of fixes for direct and v6 mode of annex

Enhancements and new features

	New
drop [http://datalad.readthedocs.io/en/latest/generated/man/datalad-drop.html]
and
remove [http://datalad.readthedocs.io/en/latest/generated/man/datalad-remove.html]
commands

	clean [http://datalad.readthedocs.io/en/latest/generated/man/datalad-clean.html]

	got --what to specify explicitly what cleaning steps to
perform and now could be invoked with -r

	datalad and git-annex-remote* scripts now do not use
setuptools entry points mechanism and rely on simple import to
shorten start up time

	Dataset [http://docs.datalad.org/en/latest/generated/datalad.api.Dataset.html]
is also now using Flyweight
pattern [https://en.wikipedia.org/wiki/Flyweight_pattern], so the
same instance is reused for the same dataset

	progressbars should not add more empty lines

Internal refactoring

	Majority of the commands now go through _prep for arguments
validation and pre-processing to avoid recursive invocations

0.4.1 (Nov 10, 2016) – CA release

Requires now GitPython >= 2.1.0

Fixes

	save [http://datalad.readthedocs.io/en/latest/generated/man/datalad-save.html]

	to not save staged files if explicit paths were provided

	improved (but not yet complete) support for direct mode

	update [http://datalad.readthedocs.io/en/latest/generated/man/datalad-update.html]
to not crash if some sub-datasets are not installed

	do not log calls to git config to avoid leakage of possibly
sensitive settings to the logs

Enhancements and new features

	New rfc822-compliant
metadata [http://docs.datalad.org/en/latest/metadata.html#rfc822-compliant-meta-data]
format

	save [http://datalad.readthedocs.io/en/latest/generated/man/datalad-save.html]

	-S to save the change also within all super-datasets

	add [http://datalad.readthedocs.io/en/latest/generated/man/datalad-add.html]
now has progress-bar reporting

	create-sibling-github [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create-sibling-github.html]
to create a :term:sibling of a dataset on github

	OpenfMRI [http://openfmri.org] crawler and datasets were enriched
with URLs to separate files where also available from openfmri s3
bucket (if upgrading your datalad datasets, you might need to run
git annex enableremote datalad to make them available)

	various enhancements to log messages

	web interface

	populates “install” box first thus making UX better over slower
connections

0.4 (Oct 22, 2016) – Paris is waiting

Primarily it is a bugfix release but because of significant refactoring
of the
install [http://datalad.readthedocs.io/en/latest/generated/man/datalad-install.html]
and
get [http://datalad.readthedocs.io/en/latest/generated/man/datalad-get.html]
implementation, it gets a new minor release.

Fixes

	be able to
get [http://datalad.readthedocs.io/en/latest/generated/man/datalad-get.html]
or
install [http://datalad.readthedocs.io/en/latest/generated/man/datalad-install.html]
while providing paths while being outside of a dataset

	remote annex datasets get properly initialized

	robust detection of outdated
git-annex [http://git-annex.branchable.com/]

Enhancements and new features

	interface changes

	get [http://datalad.readthedocs.io/en/latest/generated/man/datalad-get.html]
--recursion-limit=existing to not recurse into not-installed
subdatasets

	get [http://datalad.readthedocs.io/en/latest/generated/man/datalad-get.html]
-n to possibly install sub-datasets without getting any data

	install [http://datalad.readthedocs.io/en/latest/generated/man/datalad-install.html]
--jobs|-J to specify number of parallel jobs for annex
get [http://datalad.readthedocs.io/en/latest/generated/man/datalad-get.html]
call could use (ATM would not work when data comes from archives)

	more (unit-)testing

	documentation: see http://docs.datalad.org/en/latest/basics.html for
basic principles and useful shortcuts in referring to datasets

	various webface improvements: breadcrumb paths, instructions how to
install dataset, show version from the tags, etc.

0.3.1 (Oct 1, 2016) – what a wonderful week

Primarily bugfixes but also a number of enhancements and core
refactorings

Fixes

	do not build manpages and examples during installation to avoid
problems with possibly previously outdated dependencies

	install [http://datalad.readthedocs.io/en/latest/generated/man/datalad-install.html]
can be called on already installed dataset (with -r or -g)

Enhancements and new features

	complete overhaul of datalad configuration settings handling (see
Configuration
documentation [http://docs.datalad.org/config.html]), so majority
of the environment. Now uses git format and stores persistent
configuration settings under .datalad/config and local within
.git/config variables we have used were renamed to match
configuration names

	create-sibling [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create-sibling.html]
does not now by default upload web front-end

	export [http://datalad.readthedocs.io/en/latest/generated/man/datalad-export.html]
command with a plug-in interface and tarball plugin to export
datasets

	in Python, .api functions with rendering of results in command
line got a _-suffixed sibling, which would render results as well in
Python as well (e.g., using search_ instead of search would
also render results, not only output them back as Python objects)

	get [http://datalad.readthedocs.io/en/latest/generated/man/datalad-get.html]

	--jobs option (passed to annex get) for parallel downloads

	total and per-download (with git-annex >= 6.20160923) progress
bars (note that if content is to be obtained from an archive, no
progress will be reported yet)

	install [http://datalad.readthedocs.io/en/latest/generated/man/datalad-install.html]
--reckless mode option

	search [http://datalad.readthedocs.io/en/latest/generated/man/datalad-search.html]

	highlights locations and fieldmaps for better readability

	supports -d^ or -d/// to point to top-most or centrally
installed meta-datasets

	“complete” paths to the datasets are reported now

	-s option to specify which fields (only) to search

	various enhancements and small fixes to
meta-data [http://docs.datalad.org/en/latest/cmdline.html#meta-data-handling]
handling,
ls [http://datalad.readthedocs.io/en/latest/generated/man/datalad-ls.html],
custom remotes, code-base formatting, downloaders, etc

	completely switched to tqdm library (progressbar is no longer
used/supported)

0.3 (Sep 23, 2016) – winter is coming

Lots of everything, including but not limited to

	enhanced index viewer, as the one on http://datasets.datalad.org

	initial new data providers support:
Kaggle [https://www.kaggle.com],
BALSA [http://balsa.wustl.edu],
NDA [http://data-archive.nimh.nih.gov],
NITRC [https://www.nitrc.org]

	initial meta-data support and
management [http://docs.datalad.org/en/latest/cmdline.html#meta-data-handling]

	new and/or improved crawler pipelines for
BALSA [http://balsa.wustl.edu], CRCNS [http://crcns.org],
OpenfMRI [http://openfmri.org]

	refactored
install [http://datalad.readthedocs.io/en/latest/generated/man/datalad-install.html]
command, now with separate
get [http://datalad.readthedocs.io/en/latest/generated/man/datalad-get.html]

	some other commands renaming/refactoring (e.g.,
create-sibling [http://datalad.readthedocs.io/en/latest/generated/man/datalad-create-sibling.html])

	datalad
search [http://datalad.readthedocs.io/en/latest/generated/man/datalad-search.html]
would give you an option to install datalad’s super-dataset under
~/datalad if ran outside of a dataset

0.2.3 (Jun 28, 2016) – busy OHBM

New features and bugfix release

	support of /// urls to point to http://datasets.datalad.org

	variety of fixes and enhancements throughout

0.2.2 (Jun 20, 2016) – OHBM we are coming!

New feature and bugfix release

	greatly improved documentation

	publish command API RFing allows for custom options to annex, and
uses –to REMOTE for consistent with annex invocation

	variety of fixes and enhancements throughout

0.2.1 (Jun 10, 2016)

	variety of fixes and enhancements throughout

0.2 (May 20, 2016)

Major RFing to switch from relying on rdf to git native submodules etc

0.1 (Oct 14, 2015)

Release primarily focusing on interface functionality including initial
publishing

Acknowledgments

DataLad development is being performed as part of a US-German collaboration in
computational neuroscience (CRCNS) project “DataGit: converging catalogues,
warehouses, and deployment logistics into a federated ‘data distribution’”
(Halchenko [http://haxbylab.dartmouth.edu/ppl/yarik.html]/Hanke [http://www.psychoinformatics.de]), co-funded by the US National Science Foundation (NSF
1429999 [http://www.nsf.gov/awardsearch/showAward?AWD_ID=1429999]) and the German Federal Ministry of Education and Research (BMBF
01GQ1411 [http://www.gesundheitsforschung-bmbf.de/de/2550.php]). Additional support is provided by the German federal state of
Saxony-Anhalt and the European Regional Development
Fund (ERDF), Project: Center for Behavioral Brain Sciences [http://cbbs.eu/en/], Imaging Platform

DataLad is built atop the git-annex [http://git-annex.branchable.com] software that is being developed and
maintained by Joey Hess [https://joeyh.name].

Publications

Further conceptual and technical information on DataLad, and applications built on DataLad,
are available from the publications listed below.

	The best of both worlds: Using semantic web with JSON-LD. An example with NIDM Results & DataLad [poster]
	
	Camille Maumet, Satrajit Ghosh, Yaroslav O. Halchenko, Dorota Jarecka, Nolan Nichols, Jean-Baptist POline, Michael Hanke

	One thing to bind them all: A complete raw data structure for auto-generation of BIDS datasets [poster]
	
	Benjamin Poldrack, Kyle Meyer, Yaroslav O. Halchenko, Michael Hanke

	Fantastic containers and how to tame them [poster]
	
	Yaroslav O. Halchenko, Kyle Meyer, Matt Travers, Dorota Jarecka, Satrajit Ghosh, Jakub Kaczmarzyk, Michael Hanke

	YODA: YODA’s Organigram on Data Analysis [poster]
	
	An outline of a simple approach to structuring and conducting data analyses that aims to
tightly connect all their essential ingredients: data, code, and computational environments
in a transparent, modular, accountable, and practical way.

	Michael Hanke, Kyle A. Meyer, Matteo Visconti di Oleggio Castello, Benjamin Poldrack, Yaroslav O. Halchenko

	F1000Research 2018, 7:1965 (https://doi.org/10.7490/f1000research.1116363.1)

	Go FAIR with DataLad [talk]
	
	On DataLad’s capabilities to create and maintain Findable, Accessible, Interoperable, and reusable (FAIR)
resources.

	Michael Hanke, Yaroslav O. Halchenko

	Bernstein Conference 2018 workshop: Practical approaches to research data management and reproducibility
(slides [https://rawgit.com/psychoinformatics-de/talk-datalad-gofair/master/index.html])

	OpenNeuro kick-off meeting, 2018, Stanford (slide sources [https://github.com/datalad/talk-openneuro-2018])

Background and motivation

Vision

Data is at the core of science, and unobstructed access promotes scientific
discovery through collaboration between data producers and consumers. The last
years have seen dramatic improvements in availability of data resources for
collaborative research, and new data providers are becoming available all the
time.

However, despite the increased availability of data, their accessibility is far
from being optimal. Potential consumers of these public datasets have to
manually browse various disconnected warehouses with heterogeneous interfaces.
Once obtained, data is disconnected from its origin and data versioning is
often ad-hoc or completely absent. If data consumers can be reliably informed
about data updates at all, review of changes is difficult, and re-deployment is
tedious and error-prone. This leads to wasteful friction caused by outdated or
faulty data.

The vision for this project is to transform the state of data-sharing and
collaborative work by providing uniform access to available datasets –
independent of hosting solutions or authentication schemes – with reliable
versioning and versatile deployment logistics. This is achieved by means of a
dataset handle, a lightweight representation of a dataset
that is capable of tracking the identity and location of a dataset’s content as
well as carry meta-data. Together with associated software tools, scientists
are able to obtain, use, extend, and share datasets (or parts thereof) in a
way that is traceable back to the original data producer and is therefore
capable of establishing a strong connection between data consumers and the
evolution of a dataset by future extension or error correction.

Moreover, DataLad aims to provide all tools necessary to create and publish
data distributions — an analog to software distributions or app-stores
that provide logistics middleware for software deployment. Scientific
communities can use these tools to gather, curate, and make publicly available
specialized collections of datasets for specific research topics or data
modalities. All of this is possible by leveraging existing data sharing
platforms and institutional resources without the need for funding extra
infrastructure of duplicate storage. Specifically, this project aims to provide
a comprehensive, extensible data distribution for neuroscientific datasets that
is kept up-to-date by an automated service.

Technological foundation: git-annex

The outlined task is not unique to the problem of data-sharing in science.
Logistical challenges such as delivering data, long-term storage and archiving,
identity tracking, and synchronization between multiple sites are rather
common. Consequently, solutions have been developed in other contexts that can
be adapted to benefit scientific data-sharing.

The closest match is the software tool git-annex [http://git-annex.branchable.com]. It combines the features of
the distributed version control system (dVCS) Git [https://git-scm.com] — a technology that has
revolutionized collaborative software development – with versatile data access
and delivery logistics. Git-annex was originally developed to address use cases
such as managing a collection of family pictures at home. With git-annex, any
family member can obtain an individual copy of such a picture library — the
annex. The annex in this example is essentially an image repository
that presents individual pictures to users as files in a single directory
structure, even though the actual image file contents may be distributed across
multiple locations, including a home-server, cloud-storage, or even off-line
media such as external hard-drives.

Git-annex provides functionality to obtain file contents upon request and can
prompt users to make particular storage devices available when needed (e.g. a
backup hard-drive kept in a fire-proof compartment). Git-annex can also remove
files from a local copy of that image repository, for example to free up space
on a laptop, while ensuring a configurable level of data redundancy across all
known storage locations. Lastly, git-annex is able to synchronize the content
of multiple distributed copies of this image repository, for example in order
to incorporate images added with the git-annex on the laptop of another family
member. It is important to note that git-annex is agnostic of the actual file
types and is not limited to images.

We believe that the approach to data logistics taken by git-annex and the
functionality it is currently providing are an ideal middleware for scientific
data-sharing. Its data repository model annex readily provides the
majority of principal features needed for a dataset handle such as history
recording, identity tracking, and item-based resource locators. Consequently,
instead of a from-scratch development, required features, such as dedicated
support for existing data-sharing portals and dataset meta-information, can be
added to a working solution that is already in production for several years.
As a result, DataLad focuses on the expansion of git-annex’s functionality and
the development of tools that build atop Git and git-annex and enable the
creation, management, use, and publication of dataset handles and collections
thereof.

Objective

Building atop git-annex, DataLad aims to provide a single, uniform interface to
access data from various data-sharing initiatives and data providers, and
functionality to create, deliver, update, and share datasets for individuals
and portal maintainers. As a command-line tool, it provides an abstraction
layer for the underlying Git-based middleware implementing the actual data
logistics, and serves as a foundation for other future user front-ends, such
as a web-interface.

Delineation from related solutions

To our knowledge, there is no other effort with a scope as broad as DataLad’s.
DataLad aims to unify access to vast arrays of (scientific) data in a domain and
data modality agnostic fashion with as few and universally available software
dependencies as possible.

The most comparable project regarding the idea of federating access to various
data providers is the iRODS [https://irods.org]-based INCF Dataspace [http://www.incf.org/resources/data-space] project. IRODS is a
powerful, NSF-supported framework, but it requires non-trivial deployment and
management procedures. As a representative of data grid technology, it is
more suitable for an institutional deployment, as data access, authentication,
permission management, and versioning are complex and not-feasible to be
performed directly by researchers. DataLad on the other hand federates
institutionally hosted data, but in addition enables individual researchers and
small labs to contribute datasets to the federation with minimal cost and
without the need for centralized coordination and permission management.

Data catalogs

Existing data-portals, such as DataDryad [http://datadryad.org], or domain-specific ones (e.g. Human
Connectome [http://www.humanconnectomeproject.org], OpenfMRI [http://openfmri.org]), concentrate on collecting, cataloging, and making
data available. They offer an abstraction from local data management
peculiarities (organization, updates, sharing). Ad-hoc collections of pointers
to available data, such as reddit datasets [http://www.reddit.com/r/datasets] and Inside-R datasets [http://www.inside-r.org/howto/finding-data-internet], do not
provide any unified interface to assemble and manage such data. Data portals
can be used as seed information and data providers for DataLad. These portals
could in turn adopt DataLad to expose readily usable data collections via a
federated infrastructure.

Data delivery/management middleware

Even though there are projects to manage data directly with dVCS (e.g. Git),
such as the Rdatasets Git repository [http://github.com/vincentarelbundock/Rdatasets] this approach does not scale, for example
to the amount of data typically observed in a scientific context. DataLad
uses git-annex [http://git-annex.branchable.com] to support managing large amounts of data with Git, while
avoiding the scalability issues of putting data directly into Git repositories.

In scientific software development, frequently using Git for source code
management, many projects are also confronted with the problem of managing
large data arrays needed, for example, for software testing. An exemplar
project is ITK Data [http://www.itk.org/Wiki/ITK/Git/Develop/Data] which is conceptually similar to git-annex: data content
is referenced by unique keys (checksums), which are made redundantly available
through multiple remote key-store farms and can be obtained using specialized
functionality in the CMake software build system. However, the scope of this
project is limited to software QA, and only provides an ad-hoc collection of
guidelines and supporting scripts.

The git-annex website provides a comparison [http://git-annex.branchable.com/not] of Git-annex to other available
distributed data management tools, such as git-media [https://github.com/schacon/git-media], git-fat [https://github.com/jedbrown/git-fat], and others.
None of the alternative frameworks provides all of the features of git-annex,
such as integration with native Git workflows, distributed redundant storage,
and partial checkouts in one project. Additional features of git-annex which
are not necessarily needed by DataLad (git-annex assistant, encryption support,
etc.) make it even more appealing for extended coverage of numerous scenarios.
Moreover, neither of the alternative solutions has already reached a maturity,
availability, and level of adoption that would be comparable to that of
git-annex.

Git/Git-annex/DataLad

Although it is possible, and intended, to use DataLad without ever invoking git
or git-annex commands directly, it is useful to appreciate that DataLad is
build atop of very flexible and powerful tools. Knowing basics of git and
git-annex in addition to DataLad helps to not only make better use of
DataLad but also to enable more advanced and more efficient data management
scenarios. DataLad makes use of lower-level configuration and data structures
as much as possible. Consequently, it is possible to manipulate DataLad
datasets with low-level tools if needed. Moreover, DataLad datasets are
compatible with tools and services designed to work with plain Git repositories,
such as the popular GitHub [https://github.com] service.

To better illustrate the different scopes, the following table provides an
overview of the features that are contributed by each software technology
layer.

	Feature

	Git

	Git-annex

	DataLad

	Version control (text, code)

	✓

	✓can mix

	✓can mix

	Version control (binary data)

	(not advised)

	✓

	✓

	Auto-crawling available resources

	
	✓RSS feeds

	✓flexible

	Unified dataset handling

	
	
	✓

	
	recursive operation on datasets

	
	
	✓

	
	seamless operation across datasets boundaries

	
	
	✓

	
	meta-data support

	
	✓per-file

	✓

	
	meta-data aggregation

	
	
	✓flexible

	Unified authentication interface

	
	
	✓

Basic principles

DataLad is designed to be used both as a command-line tool, and as a Python
module. The sections Command line reference and Python module reference provide
detailed description of the commands and functions of the two interfaces. This
section presents common concepts. Although examples will frequently be
presented using command line interface commands, all functionality with
identically named functions and options are available through Python API as
well.

Datasets

A DataLad dataset is a Git repository that may or may not have a data
annex that is used to manage data referenced in a dataset. In practice,
most DataLad datasets will come with an annex.

Types of IDs used in datasets

Four types of unique identifiers are used by DataLad to enable identification
of different aspects of datasets and their components.

	Dataset ID
	A UUID that identifies a dataset as a whole across its entire history and
flavors. This ID is stored in a dataset’s own configuration file
(<dataset root>/.datalad/config) under the configuration key
datalad.dataset.id.
As this configuration is stored in a file that is part of the Git history of
a dataset, this ID is identical for all “clones” of a dataset and across all
its versions. If the purpose or scope of a dataset changes enough to warrant
a new dataset ID, it can be changed by altering the dataset configuration
setting.

	Annex ID
	A UUID assigned to an annex of each individual clone of a dataset repository.
Git-annex uses this UUID to track file content availability information. The
UUID is available under the configuration key annex.uuid and is stored
in the configuration file of a local clone (<dataset root>/.git/config).
A single dataset instance (i.e. clone) can only have a single annex UUID,
but a dataset with multiple clones will have multiple annex UUIDs.

	Commit ID
	A Git hexsha or tag that identifies a version of a dataset. This ID uniquely
identifies the content and history of a dataset up to its present state. As
the dataset history also includes the dataset ID, a commit ID of a DataLad
dataset is unique to a particular dataset.

	Content ID
	Git-annex key (typically a checksum) assigned to the content of a file in
a dataset’s annex. The checksum reflects the content of a file, not its name.
Hence the content of multiple identical files in a single (or across)
dataset(s) will have the same checksum. Content IDs are managed by Git-annex
in a dedicated annex branch of the dataset’s Git repository.

Dataset nesting

Datasets can contain other datasets (subdatasets), which can in turn
contain subdatasets, and so on. There is no limit to the depth of nesting
datasets. Each dataset in such a hierarchy has its own annex and its own
history. The parent or superdataset only tracks the specific state of a
subdataset, and information on where it can be obtained. This is a powerful yet
lightweight mechanism for combining multiple individual datasets for a specific
purpose, such as the combination of source code repositories with other
resources for a tailored application. In many cases DataLad can work with a
hierarchy of datasets just as if it were a single dataset. Here is a demo:

~ % datalad create demo
[INFO] Creating a new annex repo at /demo/demo
create(ok): /demo/demo (dataset)
~ % cd demo

A DataLad dataset is just a Git repo with some initial configuration

~/demo % git log --oneline
472e34b (HEAD -> master) [DATALAD] new dataset
f968257 [DATALAD] Set default backend for all files to be MD5E

We can generate nested datasets, by telling DataLad to register a
new dataset in a parent dataset

~/demo % datalad create -d . sub1
[INFO] Creating a new annex repo at /demo/demo/sub1
add(ok): sub1 (dataset) [added new subdataset]
add(notneeded): sub1 (dataset) [nothing to add from /demo/demo/sub1]
add(notneeded): .gitmodules (file) [already included in the dataset]
save(ok): /demo/demo (dataset)
create(ok): sub1 (dataset)
action summary:
 add (notneeded: 2, ok: 1)
 create (ok: 1)
 save (ok: 1)

A subdataset is nothing more than regular Git submodule

~/demo % git submodule
 5f0cddf2026e3fb4864139f27e7415fd72c7d4d0 sub1 (heads/master)

Of course subdatasets can be nested

~/demo % datalad create -d . sub1/justadir/sub2
[INFO] Creating a new annex repo at /demo/demo/sub1/justadir/sub2
add(ok): sub1/justadir/sub2 (dataset) [added new subdataset]
add(notneeded): sub1/justadir/sub2 (dataset) [nothing to add from /demo/demo/sub1/justadir/sub2]
add(notneeded): sub1/.gitmodules (file) [already included in the dataset]
add(notneeded): sub1 (dataset) [already known subdataset]
save(ok): /demo/demo/sub1 (dataset)
save(ok): /demo/demo (dataset)
create(ok): sub1/justadir/sub2 (dataset)
action summary:
 add (notneeded: 3, ok: 1)
 create (ok: 1)
 save (ok: 2)

Unlike Git, DataLad automatically takes care of committing all
changes associated with the added subdataset up to the given
parent dataset

~/demo % git status
On branch master
nothing to commit, working tree clean

Let’s create some content in the deepest subdataset

~/demo % mkdir sub1/justadir/sub2/anotherdir
~/demo % touch sub1/justadir/sub2/anotherdir/afile

Git can only tell us that something underneath the top-most
subdataset was modified

~/demo % git status
On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)
 (commit or discard the untracked or modified content in submodules)

 modified: sub1 (untracked content)

no changes added to commit (use "git add" and/or "git commit -a")

DataLad saves us from further investigation

~/demo % datalad diff -r
 modified(dataset): sub1
 modified(dataset): sub1/justadir/sub2
untracked(directory): sub1/justadir/sub2/anotherdir

Like Git, it can report individual untracked files, but also across
repository boundaries

~/demo % datalad diff -r --report-untracked all
 modified(dataset): sub1
 modified(dataset): sub1/justadir/sub2
 untracked(file): sub1/justadir/sub2/anotherdir/afile

Adding this new content with Git or git-annex would be an exercise

~/demo % git add sub1/justadir/sub2/anotherdir/afile
fatal: Pathspec 'sub1/justadir/sub2/anotherdir/afile' is in submodule 'sub1'

DataLad does not require users to determine the correct repository
in the tree

~/demo % datalad add -d . sub1/justadir/sub2/anotherdir/afile
add(ok): sub1/justadir/sub2/anotherdir/afile (file)
save(ok): /demo/demo/sub1/justadir/sub2 (dataset)
save(ok): /demo/demo/sub1 (dataset)
save(ok): /demo/demo (dataset)
action summary:
 add (ok: 1)
 save (ok: 3)

Again, all associated changes in the entire dataset tree, up to
the given parent dataset, were committed

~/demo % git status
On branch master
nothing to commit, working tree clean

DataLad’s ‘diff’ is able to report the changes from these related
commits throughout the repository tree

~/demo % datalad diff --revision @~1 -r
 modified(dataset): sub1
 modified(dataset): sub1/justadir/sub2
 added(file): sub1/justadir/sub2/anotherdir/afile

Dataset collections

A superdataset can also be seen as a curated collection of datasets, for example,
for a certain data modality, a field of science, a certain author, or from
one project (maybe the resource for a movie production). This lightweight
coupling between super and subdatasets enables scenarios where individual datasets
are maintained by a disjoint set of people, and the dataset collection itself can
be curated by a completely independent entity. Any individual dataset can be
part of any number of such collections.

Benefiting from Git’s support for workflows based on decentralized “clones” of
a repository, DataLad’s datasets can be (re-)published to a new location
without losing the connection between the “original” and the new “copy”. This
is extremely useful for collaborative work, but also in more mundane scenarios
such as data backup, or temporary deployment of a dataset on a compute cluster,
or in the cloud. Using git-annex, data can also get synchronized across
different locations of a dataset (siblings in DataLad terminology).
Using metadata tags, it is even possible to configure different levels of
desired data redundancy across the network of dataset, or to prevent
publication of sensitive data to publicly accessible repositories. Individual
datasets in a hierarchy of (sub)datasets need not be stored at the same location.
Continuing with an earlier example, it is possible to post a curated
collection of datasets, as a superdataset, on GitHub, while the actual datasets
live on different servers all around the world.

Basic command line usage

All of DataLad’s functionality is available through a single command:
datalad

Running the datalad command without any arguments, gives a summary
of basic options, and a list of available sub-commands.

~ % datalad
usage: datalad [-h] [-l LEVEL] [-C PATH] [--version]
 [--dbg] [--idbg] [-c KEY=VALUE]
 [-f {default,json,json_pp,tailored,'<template>'}]
 [--report-status {success,failure,ok,notneeded,impossible,error}]
 [--report-type {dataset,file}]
 [--on-failure {ignore,continue,stop}] [--cmd]
 {create,install,get,publish,uninstall,drop,remove,update,create-sibling,create-sibling-github,unlock,save,search,metadata,aggregate-metadata,test,ls,clean,add-archive-content,download-url,run,rerun,addurls,export-archive,extract-metadata,export-to-figshare,no-annex,wtf,add-readme,annotate-paths,clone,create-test-dataset,diff,siblings,sshrun,subdatasets}
 ...
[ERROR] Please specify the command
~ % #

More comprehensive information is available via the –help
long-option (we will truncate the output here)

~ % datalad --help | head -n20
Usage: datalad [global-opts] command [command-opts]

DataLad provides a unified data distribution with the convenience of git-annex
repositories as a backend. DataLad command line tools allow to manipulate
(obtain, create, update, publish, etc.) datasets and their collections.

Commands for dataset operations

 create
 Create a new dataset from scratch
 install
 Install a dataset from a (remote) source
 get
 Get any dataset content (files/directories/subdatasets)
 publish
 Publish a dataset to a known sibling
 uninstall
 Uninstall subdatasets

Getting information on any of the available sub commands works
in the same way – just pass –help AFTER the sub-command (output
again truncated)

~ % datalad create --help | head -n20
Usage: datalad create [-h] [-f] [-D DESCRIPTION] [-d PATH] [--no-annex]
 [--nosave] [--annex-version ANNEX_VERSION]
 [--annex-backend ANNEX_BACKEND]
 [--native-metadata-type LABEL] [--shared-access MODE]
 [--git-opts STRING] [--annex-opts STRING]
 [--annex-init-opts STRING] [--text-no-annex]
 [PATH]

Create a new dataset from scratch.

This command initializes a new dataset at a given location, or the
current directory. The new dataset can optionally be registered in an
existing superdataset (the new dataset's path needs to be located
within the superdataset for that, and the superdataset needs to be given
explicitly). It is recommended to provide a brief description to label
the dataset's nature *and* location, e.g. "Michael's music on black
laptop". This helps humans to identify data locations in distributed
scenarios. By default an identifier comprised of user and machine name,
plus path will be generated.

API principles

You can use DataLad’s install command to download datasets. The command accepts
URLs of different protocols (http, ssh) as an argument. Nevertheless, the easiest way
to obtain a first dataset is downloading the default superdataset from
https://datasets.datalad.org/ using a shortcut.

Downloading DataLad’s default superdataset

https://datasets.datalad.org provides a super-dataset consisting of datasets
from various portals and sites. Many of them were crawled, and periodically
updated, using datalad-crawler [https://github.com/datalad/datalad-crawler]
extension. The argument /// can be used
as a shortcut that points to the superdataset located at https://datasets.datalad.org/.
Here are three common examples in command line notation:

	datalad install ///
	installs this superdataset (metadata without subdatasets) in a
datasets.datalad.org/ subdirectory under the current directory

	datalad install -r ///openfmri
	installs the openfmri superdataset into an openfmri/ subdirectory.
Additionally, the -r flag recursively downloads all metadata of datasets
available from http://openfmri.org as subdatasets into the openfmri/ subdirectory

	datalad install -g -J3 -r ///labs/haxby
	installs the superdataset of datasets released by the lab of Dr. James V. Haxby
and all subdatasets’ metadata. The -g flag indicates getting the actual data, too.
It does so by using 3 parallel download processes (-J3 flag).

Downloading datasets via http

In most places where DataLad accepts URLs as arguments these URLs can be
regular http or https protocol URLs. For example:

datalad install https://github.com/psychoinformatics-de/studyforrest-data-phase2.git

Downloading datasets via ssh

DataLad also supports SSH URLs, such as ssh://me@localhost/path.

datalad install ssh://me@localhost/path

Finally, DataLad supports SSH login style resource identifiers, such as me@localhost:/path.

datalad install me@localhost:/path

Commands install vs get

The install and get commands might seem confusingly similar at first.
Both of them could be used to install any number of subdatasets, and fetch
content of the data files. Differences lie primarily in their default
behaviour and outputs, and thus intended use. Both install and get
take local paths as their arguments, but their default behavior and output
might differ;

	install primarily operates and reports at the level of datasets, and
returns as a result dataset(s)
which either were just installed, or were installed previously already under
specified locations. So result should be the same if the same install
command ran twice on the same datasets. It does not fetch data files by
default

	get primarily operates at the level of paths (datasets, directories, and/or
files). As a result it returns only what was installed (datasets) or fetched
(files). So result of rerunning the same get command should report that
nothing new was installed or fetched. It fetches data files by default.

In how both commands operate on provided paths, it could be said that install
== get -n, and install -g == get. But install also has ability to
install new datasets from remote locations given their URLs (e.g.,
https://datasets.datalad.org/ for our super-dataset) and SSH targets (e.g.,
[login@]host:path) if they are provided as the argument to its call or
explicitly as --source option. If datalad install --source URL
DESTINATION (command line example) is used, then dataset from URL gets
installed under PATH. In case of datalad install URL invocation, PATH is
taken from the last name within URL similar to how git clone does it. If
former specification allows to specify only a single URL and a PATH at a time,
later one can take multiple remote locations from which datasets could be
installed.

So, as a rule of thumb – if you want to install from external URL or fetch a
sub-dataset without downloading data files stored under annex – use install.
In Python API install is also to be used when you want to receive in output the
corresponding Dataset object to operate on, and be able to use it even if you
rerun the script. In all other cases, use get.

Credentials

Integration with Git

Git and DataLad can use each other’s credential system.
Both directions are independent of each other and none is necessarily required.
Either direction can be configured based on URL matching patterns.
In addition, Git can be configured to always query DataLad for credentials without any URL matching.

Let Git query DataLad

In order to allow Git to query credentials from DataLad, Git needs to be configured to use the git credential helper delivered with DataLad (an executable called git-credential-datalad).
That is, a section like this needs to be part of one’s git config file:

[credential "https://*.data.example.com"]
 helper = "datalad"

Note:

	This most likely only makes sense at the user or system level (options –global`|–system` with git config), since cloning of a repository needs the credentials before there is a local repository.

	The name of that section is a URL matching expression - see man gitcredentials.

	The URL matching does NOT include the scheme! Hence, if you need to match http as well as https, you need two such entries.

	Multiple git credential helpers can be configured - Git will ask them one after another until it got a username and a password for the URL in question. For example on macOS, Git comes with a helper to use the system’s keychain and Git is configured system-wide to query git-credential-osxkeychain. This does not conflict with setting up DataLad’s credential helper.

	The example configuration requires git-credential-datalad to be in the path in order for Git to find it. Alternatively, the value of the helper entry needs to be the absolute path of git-credential-datalad.

	In order to make Git always consider DataLad as a credential source, one can simply not specify any URL pattern (so it’s [credential] instead of [credential “SOME-PATTERN”])

Let DataLad query Git

The other way around, DataLad can ask Git for credentials (which it will acquire via other git credential helpers).
To do so, a DataLad provider config needs to be set up:

[provider:data_example_provider]
 url_re = https://.*data\.example\.com
 authentication_type = http_basic_auth
 credential = data_example_cred
[credential:data_example_cred]
 type = git

Note:

	Such a config lives in a dedicated file named after the provider name (e.g. all of the above example would be the content of data_example_provider.cfg, matching [provider:data_example_provider]).

	Valid locations for these files are listed in Credential management.

	In opposition to Git’s approach, url_re is a regular expression that matches the entire URL including the scheme.

	The above is particularly important in case of redirects, as DataLad currently matches the URL it was given instead of the one it ultimately uses the credentials with.

	The name of the credential section must match the credential entry in the provider section (e.g. [credential:data_example_cred] and credential = data_example_cred in the above example).

DataLad will prompt the user to create a provider configuration and respective credentials when it first encounters a URL that requires authentication but no matching credentials are found.
This behavior extends to the credential helper and may therefore be triggered by a git clone if Git is configured to use git-credential-datalad.
However, interactivity of git-credential-datalad can be turned off (see git-credential-datalad -h)

It is possible to end up in a situation where Git would query DataLad and vice versa for the same URL, especially if Git is configured to query DataLad unconditionally.
git-credential-datalad will discover this circular setup and stop it by simply ignoring DataLad’s provider configuration that points back to Git.

Customization and extension of functionality

DataLad provides numerous commands that cover many use cases. However, there
will always be a demand for further customization or extensions of built-in
functionality at a particular site, or for an individual user. DataLad
addresses this need with a mechanism for extending particular DataLad
functionality, such as metadata extractor, or providing entire command suites
for a specialized purpose.

As the name suggests, a DataLad extension package is a proper Python package.
Consequently, there is a significant amount of boilerplate code involved in the
creation of a new DataLad extension. However, this overhead enables a number of
useful features for extension developers:

	extensions can provide any number of additional commands that can be grouped into
labeled command suites, and are automatically exposed via the standard DataLad commandline
and Python API

	extensions can define entry_points for any number of additional metadata extractors
that become automatically available to DataLad

	extensions can define entry_points for their test suites, such that the standard datalad create
command will automatically run these tests in addition to the tests shipped with DataLad core

	extensions can ship additional dataset procedures by installing them into a
directory resources/procedures underneath the extension module directory

Using an extension

A DataLad extension is a standard Python package. Beyond installation of the package there is
no additional setup required.

Writing your own extensions

A good starting point for implementing a new extension is the “helloworld” demo extension
available at https://github.com/datalad/datalad-extension-template. This repository can be cloned
and adjusted to suit one’s needs. It includes:

	a basic Python package setup

	simple demo command implementation

	Travis test setup

A more complex extension setup can be seen in the DataLad Neuroimaging
extension: https://github.com/datalad/datalad-neuroimaging, including additional metadata extractors,
test suite registration, and a sphinx-based documentation setup for a DataLad extension.

As a DataLad extension is a standard Python package, an extension should declare
dependencies on an appropriate DataLad version, and possibly other extensions
via the standard mechanisms.

Design

The chapter described command API principles and the design of particular
subsystems in DataLad.

	Command line interface
	Basic workflow of a command line based command execution

	Command parser construction by Interface inspection

	CLI-based execution of Interface command

	Provenance capture
	The provenance record

	Declaration of inputs and outputs

	Placeholders in commands and IO specifications

	Result records emitted by run

	Implementation details

	Application-type vs. library-type usage
	Library-mode implications

	File URL handling
	Extensible protocol and authentication support

	Indexing and access of archive content

	Result records
	Mandatory fields

	Common optional fields

	Additional fields observed “in the wild”

	dataset argument
	Impact on relative path resolution

	Special values

	Use cases

	Log levels
	Common principles

	Use cases

	Drop dataset components
	Use cases

	Python import statements
	Examples

	Miscellaneous patterns
	Generator methods in Repo classes

	Calls to Git commands

	Command examples

	Exception handling
	Catching exceptions

	Messaging about an exception

	Credential management
	Credentials

	Providers

	Integration with Git

	Authenticators

	URL substitution
	Examples

	Threaded runner
	Threads

	Protocols

	Object and Generator Results

	BatchedCommand and BatchedAnnex
	Batched Command

	BatchedAnnex

	Standard parameters

	Positional vs Keyword parameters
	Motivation

	Interfaces

	Regular functions and methods

	Docstrings
	Formatting overview and guidelines

	Progress reporting
	Design and implementation

	Reporting progress with log_progress()

	Reporting progress with with_(result_)progress()

	Output non-progress information without interfering with progress bars

	GitHub Action
	Example Usage

	Options

	Continuous integration and testing
	Running tests

	Writing tests

	Migrating tests from nose to pytest

	User messaging: result records vs exceptions vs logging
	Motivation

	Specification

	Examples

Command line interface

Specification scope and status

This incomplete specification describes the current implementation.

The command line interface (CLI) implementation is located at datalad.cli.
It provides a console entry point that automatically constructs an
argparse-based command line parser, which is used to make adequately
parameterized calls to the targeted command implementations. It also performs
error handling. The CLI automatically supports all commands, regardless of
whether they are provided by the core package, or by extensions. It only
requires them to be discoverable via the respective extension entry points,
and to implement the standard datalad.interface.base.Interface.

Basic workflow of a command line based command execution

The functionality of the main command line entrypoint described here is
implemented in datalad.cli.main.

	Construct an argparse parser.

	this is happening with inspection of the actual command line arguments
in order to avoid needless processing

	when insufficient arguments or other errors are detected, the CLI will
fail informatively already at this stage

	Detect argument completions events, and utilize the parser in a optimized
fashion for this purpose.

	Determine the to-be-executed command from the given command line arguments.

	Read any configuration overrides from the command line arguments.

	Change the process working directory, if requested.

	Execute the target command in one of two modes:

	With a basic exception handler

	With an exception hook setup that enables dropping into a debugger
for any exception that reaches the command line main() routine.

	Unless a debugger is utilized, five error categories are distinguished
(in the order given below):

	Insufficient arguments (exit code 2)

A command was called with inadequate or incomplete parameters.

	Incomplete results (exit code 1)

While processing an error occurred.

	A specific internal shell command execution failed (exit code relayed
from underlying command)

The error is reported, as if the command would have been executed
directly in the command line. Its output is written to the stdout,
stderr streams, and the exit code of the DataLad process matches
the exit code of the underlying command.

	Keyboard interrupt (exit code 3)

The process was interrupted by the equivalent of a user hitting
Ctrl+C.

	Any other error/exception.

Command parser construction by Interface inspection

The parser setup described here is implemented in datalad.cli.parser.

A dedicated sub-parser for any relevant DataLad command is constructed. For
normal execution use cases, only a single subparser for the target command
will be constructed for speed reasons. However, when the command line help
system is requested (--help) subparsers for all commands (including
extensions) are constructed. This can take a considerable amount of time
that grows with the number of installed extensions.

The information necessary to configure a subparser for a DataLad command is
determined by inspecting the respective
Interface class for that command, and reusing
individual components for the parser. This includes:

	the class docstring

	a _params_ member with a dict of parameter definitions

	a _examples_ member, with a list of example definitions

All docstrings used for the parser setup will be processed by applying a
set of rules to make them more suitable for the command line environment.
This includes the processing of CMD markup macros, and stripping their
PYTHON counter parts. Parameter constraint definition descriptions
are also altered to exclude Python-specific idioms that have no relevance
on the command line (e.g., the specification of None as a default).

CLI-based execution of Interface command

The execution handler described here is implemented in datalad.cli.exec.

Once the main command line entry point determine that a command shall be
executed, it triggers a handler function that was assigned and parameterized
with the underlying command Interface during
parser construction. At the time of execution, this handler is given the result
of argparse-based command line argument parsing (i.e., a Namespace
instance).

From this parser result, the handler constructs positional and keyword
arguments for the respective Interface.__call__() execution. It does
not only process command-specific arguments, but also generic arguments,
such as those for result filtering and rendering, which influence the central
processing of result recorded yielded by a command.

If an underlying command returns a Python generator it is unwound to trigger
the respective underlying processing. The handler performs no error handling.
This is left to the main command line entry point.

Provenance capture

Specification scope and status

This specification describes the current implementation.

The ability to capture process provenance—the information what activity
initiated by which entity yielded which outputs, given a set of parameters, a
computational environment, and potential input data—is a core feature of
DataLad.

Provenance capture is supported for any computational process that can be
expressed as a command line call. The simplest form of provenance tracking can
be implemented by prefixing any such a command line call with datalad run
.... When executed in the content of a dataset (with the current working
directory typically being in the root of a dataset), DataLad will then:

	check the dataset for any unsaved modifications

	execute the given command, when no modifications were found

	save any changes to the dataset that exist after the command has exited without error

The saved changes are annotated with a structured record that, at minimum,
contains the executed command.

This kind of usage is sufficient for building up an annotated history of a
dataset, where all relevant modifications are clearly associated with the
commands that caused them. By providing more, optional, information to the
run command, such as a declaration of inputs and outputs, provenance
records can be further enriched. This enables additional functionality, such as
the automated re-execution of captured processes.

The provenance record

A DataLad provenance record is a key-value mapping comprising the following
main items:

	cmd: executed command, which may contain placeholders

	dsid: DataLad ID of dataset in whose context the command execution took place

	exit: numeric exit code of the command

	inputs: a list of (relative) file paths for all declared inputs

	outputs: a list of (relative) file paths for all declared outputs

	pwd: relative path of the working directory for the command execution

A provenance record is stored in a JSON-serialized form in one of two locations:

	In the body of the commit message created when saving caused the dataset modifications

	In a sidecar file underneath .datalad/runinfo in the root dataset

Sidecar files have a filename (record_id) that is based on checksum of the
provenance record content, and are stored as LZMA-compressed binary files.
When a sidecar file is used, its record_id is added to the commit message,
instead of the complete record.

Declaration of inputs and outputs

While not strictly required, it is possible and recommended to declare all
paths for process inputs and outputs of a command execution via the respective
options of run.

For all declared inputs, run will ensure that their file content is present
locally at the required version before executing the command.

For all declared outputs, run will ensure that the respective locations are
writeable.

It is recommended to declare inputs and outputs both exhaustively and precise,
in order to enable the provenance-based automated re-execution of a command. In
case of a future re-execution the dataset content may have changed
substantially, and a needlessly broad specification of inputs/outputs may lead
to undesirable data transfers.

Placeholders in commands and IO specifications

Both command and input/output specification can employ placeholders that will
be expanded before command execution. Placeholders use the syntax of the Python
format() specification. A number of standard placeholders are supported
(see the run documentation for a complete list):

	{pwd} will be replaced with the full path of the current working directory

	{dspath} will be replaced with the full path of the dataset that run is invoked on

	{inputs} and {outputs} expand a space-separated list of the declared input and output paths

Additionally, custom placeholders can be defined as configuration variables
under the prefix datalad.run.substitutions.. For example, a configuration
setting datalad.run.substitutions.myfile=data.txt will cause the
placeholder {myfile} to expand to data.txt.

Selection of individual items for placeholders that expand to multiple values
is possible via the standard Python format() syntax, for example
{inputs[0]}.

Result records emitted by run

When performing a command execution run will emit results for:

	Input preparation (i.e. downloads)

	Output preparation (i.e. unlocks and removals)

	Command execution

	Dataset modification saving (i.e. additions, deletions, modifications)

By default, run will stop on the first error. This means that, for example,
any failure to download content will prevent command execution. A failing
command will prevent saving a potential dataset modification. This behavior can
be altered using the standard on_failure switch of the run command.

The emitted result for the command execution contains the provenance record
under the run_info key.

Implementation details

Most of the described functionality is implemented by the function
datalad.core.local.run.run_command(). It is interfaced by the run
command, but also rerun, a utility for automated re-execution based on
provenance records, and containers-run (provided by the container
extension package) for command execution in DataLad-tracked containerized
environments. This function has a more complex interface, and supports a wider
range of use cases than described here.

Application-type vs. library-type usage

Specification scope and status

This specification describes the current implementation.

Historically, DataLad was implemented with the assumption of application-type
usage, i.e., a person using DataLad through any of its APIs. Consequently,
(error) messaging was primarily targeting humans, and usage advice focused on
interactive use. With the increasing utilization of DataLad as an
infrastructural component it was necessary to address use cases of library-type
or internal usage more explicitly.

DataLad continues to behave like a stand-alone application by default.

For internal use, Python and command-line APIs provide dedicated mode switches.

Library mode can be enabled by setting the boolean configuration setting
datalad.runtime.librarymode before the start of the DataLad process.
From the command line, this can be done with the option
-c datalad.runtime.librarymode=yes, or any other means for setting
configuration. In an already running Python process, library mode can be
enabled by calling datalad.enable_libarymode(). This should be done
immediately after importing the datalad package for maximum impact.

>>> import datalad
>>> datalad.enable_libarymode()

In a Python session, library mode cannot be enabled reliably by just setting
the configuration flag after the datalad package was already imported.
The enable_librarymode() function must be used.

Moreover, with datalad.in_librarymode() a query utility is provided that
can be used throughout the code base for adjusting behavior according to the
usage scenario.

Switching back and forth between modes during the runtime of a process is not
supported.

A library mode setting is exported into the environment of the Python process.
By default, it will be inherited by all child-processes, such as dataset
procedure executions.

Library-mode implications

	No Python API docs
	Generation of comprehensive doc-strings for all API commands is skipped. This
speeds up import datalad.api by about 30%.

File URL handling

Specification scope and status

This specification describes the current implementation.

DataLad datasets can record URLs for file content access as metadata. This is a
feature provided by git-annex and is available for any annexed file. DataLad
improves upon the git-annex functionality in two ways:

	Support for a variety of (additional) protocols and authentication methods.

	Support for special URLs pointing to individual files located in registered
(annexed) archives, such as tarballs and ZIP files.

These additional features are available to all functionality that is processing
URLs, such as get, addurls, or download-url.

Extensible protocol and authentication support

DataLad ships with a dedicated implementation of an external git-annex special
remote [https://git-annex.branchable.com/special_remotes/] named git-annex-remote-datalad. This is a somewhat atypical special
remote, because it cannot receive files and store them, but only supports
read operations.

Specifically, it uses the CLAIMURL feature of the external special remote
protocol [https://git-annex.branchable.com/design/external_special_remote_protocol] to take over processing of URLs with supported protocols in all
datasets that have this special remote configured and enabled.

This special remote is automatically configured and enabled in DataLad dataset
as a datalad remote, by commands that utilize its features, such as
download-url. Once enabled, DataLad (but also git-annex) is able to act on
additional protocols, such as s3://, and the respective URLs can be given
directly to commands like git annex addurl, or datalad download-url.

Beyond additional protocol support, the datalad special remote also
interfaces with DataLad’s Credential management. It can identify a
particular credential required for a given URL (based on something called a
“provider” configuration), ask for the credential or retrieve it from a
credential store, and supply it to the respective service in an appropriate
form. Importantly, this feature neither requires the necessary credential or
provider configuration to be encoded in a URL (where it would become part of
the git-annex metadata), nor to be committed to a dataset. Hence all
information that may depend on which entity is performing a URL request
and in what environment is completely separated from the location information
on a particular file content. This minimizes the required dataset maintenance
effort (when credentials change), and offers a clean separation of identity
and availability tracking vs. authentication management.

Indexing and access of archive content

Another git-annex special remote [https://git-annex.branchable.com/special_remotes/], named
git-annex-remote-datalad-archives, is used to enable file content retrieval
from annexed archive files, such as tarballs and ZIP files. Its implementation
concept is closely related to the git-annex-remote-datalad, described
above. Its main difference is that it claims responsibility for a particular
type of “URL” (starting with dl+archive:). These URLs encode the identity
of an archive file, in terms of its git-annex key name, and a relative path
inside this archive pointing to a particular file.

Like git-annex-remote-datalad, only read operations are supported. When
a request to a dl+archive: “URL” is made, the special remote identifies
the archive file, if necessary obtains it at the precise version needed, and
extracts the respected file content from the archive at the correct location.

This special remote is automatically configured and enabled as
datalad-archives by the add-archive-content command. This command
indexes annexed archives, extracts, and registers their content to a
dataset. File content availability information is recorded in terms of the
dl+archive: “URLs”, which are put into the git-annex metadata on a file’s
content.

Result records

Specification scope and status

This specification describes the current implementation.

Result records are the standard return value format for all DataLad commands.
Each command invocation yields one or more result records. Result records are
routinely inspected throughout the code base, and are used to inform generic
error handling, as well as particular calling commands on how to proceed with
a specific operation.

The technical implementation of a result record is a Python dictionary. This
dictionary must contain a number of mandatory fields/keys (see below). However,
an arbitrary number of additional fields may be added to a result record.

The get_status_dict() function simplifies the creation of result records.

Note

Developers must compose result records with care! DataLad supports custom
user-provided hook configurations that use result record fields to
decide when to trigger a custom post-result operation. Such custom hooks
rely on a persistent naming and composition of result record fields.
Changes to result records, including field name changes, field value changes,
but also timing/order of record emitting potentially break user set ups!

Mandatory fields

The following keys must be present in any result record. If any of these
keys is missing, DataLad’s behavior is undefined.

action

A string label identifying which type of operation a result is associated with.
Labels must not contain white space. They should be compact, and lower-cases,
and use _ (underscore) to separate words in compound labels.

A result without an action label will not be processed and is discarded.

path

A string with an absolute path describing the local entity a result is
associated with. Paths must be platform-specific (e.g., Windows paths on
Windows, and POSIX paths on other operating systems). When a result is about an
entity that has no meaningful relation to the local file system (e.g., a URL to
be downloaded), to path value should be determined with respect to the
potential impact of the result on any local entity (e.g., a URL downloaded
to a local file path, a local dataset modified based on remote information).

status

This field indicates the nature of a result in terms of four categories, identified
by a string label.

	ok: a standard, to-be-expected result

	notneeded: an operation that was requested, but found to be unnecessary
in order to achieve a desired goal

	impossible: a requested operation cannot be performed, possibly because
its preconditions are not met

	error: an error occurred while performing an operation

Based on the status field, a result is categorized into success (ok,
notneeded) and failure (impossible, error). Depending on the
on_failure parameterization of a command call, any failure-result emitted
by a command can lead to an IncompleteResultsError being raised on command
exit, or a non-zero exit code on the command line. With on_failure='stop',
an operation is halted on the first failure and the command errors out
immediately, with on_failure='continue' an operation will continue despite
intermediate failures and the command only errors out at the very end, with
on_failure='ignore' the command will not error even when failures occurred.
The latter mode can be used in cases where the initial status-characterization
needs to be corrected for the particular context of an operation (e.g., to
relabel expected and recoverable errors).

Common optional fields

The following fields are not required, but can be used to enrich a result
record with additional information that improves its interpretability, or
triggers particular optional functionality in generic result processing.

type

This field indicates the type of entity a result is associated with. This may
or may not be the type of the local entity identified by the path value.
The following values are common, and should be used in matching cases, but
arbitrary other values are supported too:

	dataset: a DataLad dataset

	file: a regular file

	directory: a directory

	symlink: a symbolic link

	key: a git-annex key

	sibling: a Dataset sibling or Git remote

message

A message providing additional human-readable information on the nature or
provenance of a result. Any non-ok results should have a message providing
information on the rational of their status characterization.

A message can be a string or a tuple. In case of a tuple, the second item can
contain values for %-expansion of the message string. Expansion is performed
only immediately prior to actually outputting the message, hence string formatting
runtime costs can be avoided this way, if a message is not actually shown.

logger

If a result record has a message field, then a given Logger instance
(typically from logging.getLogger()) will be used to automatically log
this message. The log channel/level is determined based on
datalad.log.result-level configuration setting. By default, this is
the debug level. When set to match-status the log level is determined
based on the status field of a result record:

	debug for 'ok', and 'notneeded' results

	warning for 'impossible' results

	error for 'error' results

This feature should be used with care. Unconditional logging can lead to
confusing double-reporting when results rendered and also visibly logged.

refds

This field can identify a path (using the same semantics and requirements as
the path field) to a reference dataset that represents the larger context
of an operation. For example, when recursively processing multiple files across
a number of subdatasets, a refds value may point to the common superdataset.
This value may influence, for example, how paths are rendered in user-output.

parentds

This field can identify a path (using the same semantics and requirements as
the path field) to a dataset containing an entity.

state

A string label categorizing the state of an entity. Common values are:

	clean

	untracked

	modified

	deleted

	absent

	present

error_message

An error message that was captured or produced while achieving a result.

An error message can be a string or a tuple. In the case of a tuple, the
second item can contain values for %-expansion of the message string.

exception

An exception that occurred while achieving the reported result.

exception_traceback

A string with a traceback for the exception reported in exception.

Additional fields observed “in the wild”

Given that arbitrary fields are supported in result records, it is impossible
to compose a comprehensive list of field names (keys). However, in order to
counteract needless proliferation, the following list describes fields that
have been observed in implementations. Developers are encouraged to preferably
use compatible names from this list, or extend the list for additional items.

In alphabetical order:

	bytesize
	The size of an entity in bytes (integer).

	gitshasum
	SHA1 of an entity (string)

	prev_gitshasum
	SHA1 of a previous state of an entity (string)

	key
	The git-annex key associated with a type-file entity.

dataset argument

Specification scope and status

This specification describes the current implementation.

All commands which operate on datasets have a dataset argument (-d or
--dataset for the CLI) to identify a single dataset as the
context of an operation.
If --dataset argument is not provided, the context of an operation is command-specific.
For example, clone command will consider the dataset which is being cloned to be the context.
But typically, a dataset which current working directory belongs to is the context of an operation.
In the latter case, if operation (e.g., get) does not find a dataset in current working directory, operation fails with an NoDatasetFound error.

Impact on relative path resolution

With one exception, the nature of a provided dataset argument does not
impact the interpretation of relative paths. Relative paths are always considered
to be relative to the process working directory.

The one exception to this rule is passing a Dataset object instance as
dataset argument value in the Python API. In this, and only this, case, a
relative path is interpreted as relative to the root of the respective dataset.

Special values

There are some pre-defined “shortcut” values for dataset arguments:

	^
	Represents to the topmost superdataset that contains the dataset the current
directory is part of.

	^.
	Represents the root directory of the dataset the current directory is part of.

	///
	Represents the “default” dataset located under $HOME/datalad/.

Use cases

Save modification in superdataset hierarchy

Sometimes it is convenient to work only in the context of a subdataset.
Executing a datalad save <subdataset content> will record changes to the
subdataset, but will leave existing superdatasets dirty, as the subdataset
state change will not be saved there. Using the dataset argument it is
possible to redefine the scope of the save operation. For example:

datalad save -d^ <subdataset content>

will perform the exact same save operation in the subdataset, but additionally
save all subdataset state changes in all superdatasets until the root of a
dataset hierarchy. Except for the specification of the dataset scope there is
no need to adjust path arguments or change the working directory.

Log levels

Specification scope and status

This specification provides a partial overview of the current
implementation.

Log messages are emitted by a wide range of operations within DataLad. They are
categorized into distinct levels. While some levels have self-explanatory
descriptions (e.g. warning, error), others are less specific (e.g.
info, debug).

Common principles

	Parenthical log message use the same level
	When log messages are used to indicate the start and end of an operation,
both start and end message use the same log-level.

Use cases

Command execution

For the WitlessRunner and its protocols the following log levels are used:

	High-level execution -> debug

	Process start/finish -> 8

	Threading and IO -> 5

Drop dataset components

Specification scope and status

This specification is a proposal, subject to review and further discussion.
It is now partially implemented in the drop command.

§1 The drop command is the antagonist of get. Whatever a
drop can do, should be undoable by a subsequent get (given
unchanged remote availability).

§2 Like get, drop primarily operates on a mandatory path
specification (to discover relevant files and sudatasets to operate on).

§3 drop has --what parameter that serves as an extensible
“mode-switch” to cover all relevant scenarios, like ‘drop all file content in
the work-tree’ (e.g. --what files, default, #5858 [https://github.com/datalad/datalad/issues/5858]), ‘drop all keys from any
branch’ (i.e. --what allkeys, #2328 [https://github.com/datalad/datalad/issues/2328]), but also ‘“drop” AKA
uninstall entire subdataset hierarchies’ (e.g. --what all), or drop
preferred content (--what preferred-content, #3122 [https://github.com/datalad/datalad/issues/3122]).

§4 drop prevents data loss by default (#4750 [https://github.com/datalad/datalad/issues/4750]). Like get it
features a --reckless “mode-switch” to disable some or all potentially slow
safety mechanism, i.e. ‘key available in sufficient number of other remotes’,
‘main or all branches pushed to remote(s)’ (#1142 [https://github.com/datalad/datalad/issues/1142]), ‘only check availability
of keys associated with the worktree, but not other branches’. “Reckless
operation” can be automatic, when following a reckless get (#4744 [https://github.com/datalad/datalad/issues/4744]).

§5 drop properly manages annex lifetime information, e.g. by announcing
an annex as dead on removal of a repository (#3887 [https://github.com/datalad/datalad/issues/3887]).

§6 Like get, drop supports parallelization #1953 [https://github.com/datalad/datalad/issues/1953]

§7 datalad drop is not intended to be a comprehensive frontend to git annex
drop (e.g. limited support for e.g. #1482 [https://github.com/datalad/datalad/issues/1482] outside standard use cases
like #2328 [https://github.com/datalad/datalad/issues/2328]).

Note

It is understood that the current uninstall command is largely or
completely made obsolete by this drop concept.

§8 Given the development in #5842 [https://github.com/datalad/datalad/issues/5842] towards the complete
obsolescence of remove it becomes necessary to import one of its proposed
features:

§9 drop should be able to recognize a botched attempt to delete a
dataset with a plain rm -rf, and act on it in a meaningful way, even if it is
just hinting at chmod + rm -rf.

Use cases

The following use cases operate in the dataset hierarchy depicted below:

super
├── dir
│ ├── fileD1
│ └── fileD2
├── fileS1
├── fileS2
├── subA
│ ├── fileA
│ ├── subsubC
│ │ ├── fileC
│ └── subsubD
└── subB
 └── fileB

Unless explicitly stated, all command are assumed to be executed in the root of super.

	U1: datalad drop fileS1

Drops the file content of file1 (as currently done by drop)

	U2: datalad drop dir

Drop all file content in the directory (fileD{1,2}; as currently done by
drop

	U3: datalad drop subB

Drop all file content from the entire subB (fileB)

	U4: datalad drop subB --what all

Same as above (default --what files), because it is not operating in the
context of a superdataset (no automatic upward lookups). Possibly hint at
next usage pattern).

	U5: datalad drop -d . subB --what all

Drop all from the superdataset under this path. I.e. drop all from the
subdataset and drop the subdataset itself (AKA uninstall)

	U6: datalad drop subA --what all

Error: “subA contains subdatasets, forgot –recursive?”

	U7: datalad drop -d . subA -r --what all

Drop all content from the subdataset (fileA) and its subdatasets
(fileC), uninstall the subdataset (subA) and its subdatasets
(subsubC, subsubD)

	U8: datalad drop subA -r --what all

Same as above, but keep subA installed

	U9: datalad drop sub-A -r

Drop all content from the subdataset and its subdatasets (fileA,
fileC)

	U10: datalad drop . -r --what all

Drops all file content and subdatasets, but leaves the superdataset
repository behind

	U11: datalad drop -d . subB

Does nothing and hints at alternative usage, see
https://github.com/datalad/datalad/issues/5832#issuecomment-889656335

	U12: cd .. && datalad drop super/dir

Like get, errors because the execution is not associated with a
dataset. This avoids complexities, when the given path’s point to multiple
(disjoint) datasets. It is understood that it could be done, but it is
intentionally not done. datalad -C super drop dir or datalad drop -d super
super/dir would work.

Python import statements

Specification scope and status

This specification describes the current (albeit incomplete) implementation.

The following rules apply to any import statement in the code base:

	All imports must be absolute, unless they import individual pieces of an integrated code component that is only split across several source code files for technical or organizational reasons.

	Imports must be placed at the top of a source file, unless there is a
specific reason not to do so (e.g., delayed import due to performance
concerns, circular dependencies). If such a reason exists, it must
be documented by a comment at the import statement.

	There must be no more than one import per line.

	Multiple individual imports from a single module must follow the pattern:

from <module> import (
 symbol1,
 symbol2,
)

Individual imported symbols should be sorted alphabetically. The last symbol
line should end with a comma.

	Imports from packages and modules should be grouped in categories like

	Standard library packages

	3rd-party packages

	DataLad core (absolute imports)

	DataLad extensions

	DataLad core (“local” relative imports)

Sorting imports can be aided by https://github.com/PyCQA/isort (e.g. python -m isort -m3 --fgw 2 --tc <filename>).

Examples

 from collections import OrderedDict
 import logging
 import os

 from datalad.utils import (
 bytes2human,
 ensure_list,
 ensure_unicode,
 get_dataset_root as gdr,
)

In the `datalad/submodule/tests/test_mod.py` test file demonstrating an "exception" to absolute imports
rule where test files are accompanying corresponding files of the underlying module::

 import os

 from datalad.utils import ensure_list

 from ..mod import func1

 from datalad.tests.utils_pytest import assert_true

Miscellaneous patterns

DataLad is the result of a distributed and collaborative development effort
over many years. During this time the scope of the project has changed
multiple times. As a consequence, the API and employed technologies have been
adjusted repeatedly. Depending on the age of a piece of code, a clear software
design is not always immediately visible. This section documents a few design
patterns that the project strives to adopt at present. Changes to existing code
and new contributions should follow these guidelines.

Generator methods in Repo classes

Substantial parts of DataLad are implemented to behave like Python generators
in order to be maximally responsive when processing long-running tasks. This
included methods of the core API classes
GitRepo and
AnnexRepo. By convention, such methods
carry a trailing _ in their name. In some cases, sibling methods with the
same name, but without the trailing underscore are provided. These behave like
their generator-equivalent, but eventually return an iterable once processing
is fully completed.

Calls to Git commands

DataLad is built on Git, so calls to Git commands are a key element of the code
base. All such calls should be made through methods of the
GitRepo class. This is necessary, as only
there it is made sure that Git operates under the desired conditions
(environment configuration, etc.).

For some functionality, for example querying and manipulating gitattributes,
dedicated methods are provided. However, in many cases simple one-off calls to
get specific information from Git, or trigger certain operations are needed.
For these purposes the GitRepo class provides
a set of convenience methods aiming to cover use cases requiring particular
return values:

	test success of a command:
call_git_success()

	obtain stdout of a command:
call_git()

	obtain a single output line:
call_git_oneline()

	obtain items from output split by a separator:
call_git_items_()

All these methods take care of raising appropriate exceptions when expected
conditions are not met. Whenever desired functionality can be achieved
using simple custom calls to Git via these methods, their use is preferred
over the implementation of additional, dedicated wrapper methods.

Command examples

Examples of Python and commandline invocations of DataLad’s user-oriented
commands are defined in the class of the respective command as dictionaries
within _examples_:

examples = [
 dict(text="""Create a dataset 'mydataset' in the current directory""",
 code_py="create(path='mydataset')",
 code_cmd="datalad create mydataset",
 dict(text="""Apply the text2git procedure upon creation of a dataset""",
 code_py="create(path='mydataset', cfg_proc='text2git')",
 code_cmd="datalad create -c text2git mydataset")
]

The formatting of code lines is preserved. Changes to existing examples and
new contributions should provide examples for Python and commandline API, as
well as a concise description.

Exception handling

Specification scope and status

This specification describes the current implementation target.

Catching exceptions

Whenever we catch an exception in an except clause, the following rules
apply:

	unless we (re-)raise, the first line instantiates a
CapturedException:

except Exception as e:
 ce = CapturedException(e)

First, this ensures a low-level (8) log entry including the traceback of that
exception. The depth of the included traceback can be limited by setting the
datalad.exc.str.tb_limit config accordingly.

Second, it deletes the frame stack references of the exception and keeps
textual information only, in order to avoid circular references, where an
object (whose method raised the exception) isn’t going to be picked by the
garbage collection. This can be particularly troublesome if that object holds
a reference to a subprocess for example. However, it’s not easy to see in what
situation this would really be needed and we never need anything other than
the textual information about what happened. Making the reference cleaning a
general rule is easiest to write, maintain and review.

	if we raise, neither a log entry nor such a
CapturedException instance is to be
created.
Eventually, there will be a spot where that (re-)raised exception is caught.
This then is the right place to log it. That log entry will have the
traceback, there’s no need to leave a trace by means of log messages!

	if we raise, but do not simply reraise that exact same exception, in order to
change the exception class and/or its message, raise from must be used!:

except SomeError as e:
 raise NewError("new message") from e

This ensures that the original exception is properly registered as the cause
for the exception via its __cause__ attribute. Hence, the original
exception’s traceback will be part of the later on logged traceback of the new
exception.

Messaging about an exception

In addition to the auto-generated low-level log entry there might be a need to
create a higher-level log, a user message or a (result) dictionary that includes
information from that exception. While such messaging may use anything the
(captured) exception provides, please consider that “technical” details about an
exception are already auto-logged and generally not incredibly meaningful for
users.

For message creation CapturedException
comes with a couple of format_* helper methods, its __str__ provides a
short representation of the form ExceptionClass(message) and its
__repr__ the log form with a traceback that is used for the auto-generated
log.

For result dictionaries CapturedException
can be assigned to the field exception. Currently, get_status_dict will
consider this field and create an additional field with a traceback string.
Hence, whether putting a captured exception into that field actually has an
effect depends on whether get_status_dict is subsequently used with that
dictionary. In the future such functionality may move into result renderers
instead, leaving the decision of what to do with the passed
CapturedException to them. Therefore, even
if of no immediate effect, enhancing the result dicts accordingly makes sense
already, since it may be useful when using datalad via its python interface
already and provide instant benefits whenever the result rendering gets such an
upgrade.

Credential management

Specification scope and status

This specification describes the current implementation.

Various components of DataLad need to be passed credentials to interact with services that require authentication.
This includes downloading files, but also things like REST API usage or authenticated cloning.
Key components of DataLad’s credential management are credentials types, providers, authenticators and downloaders.

Credentials

Supported credential types include basic user/password combinations, access tokens, and a range of tailored solutions for particular services.
All credential type implementations are derived from a common Credential base class.
A mapping from string labels to credential classes is defined in datalad.downloaders.CREDENTIAL_TYPES.

Importantly, credentials must be identified by a name.
This name is a label that is often hard-coded in the program code of DataLad, any of its extensions, or specified in a dataset or in provider configurations (see below).

Given a credential name, one or more credential component(s) (e.g., token, username, or password) can be looked up by DataLad in at least two different locations.
These locations are tried in the following order, and the first successful lookup yields the final value.

	A configuration item datalad.credential.<name>.<component>.
Such configuration items can be defined in any location supported by DataLad’s configuration system.
As with any other specification of configuration items, environment variables can be used to set or override credentials.
Variable names take the form of DATALAD_CREDENTIAL_<NAME>_<COMPONENT>, and standard replacement rules into configuration variable names apply.

	DataLad uses the keyring package https://pypi.org/project/keyring to connect to any of its supported back-ends for setting or getting credentials,
via a wrapper in keyring_.
This provides support for credential storage on all major platforms, but also extensibility, providing 3rd-parties to implement and use specialized solutions.

When a credential is required for operation, but could not be obtained via any of the above approaches, DataLad can prompt for credentials in interactive terminal sessions.
Interactively entered credentials will be stored in the active credential store available via the keyring package.
Note, however, that the keyring approach is somewhat abused by datalad.
The wrapper only uses get_/set_password of keyring with the credential’s FIELDS as the name to query (essentially turning the keyring into a plain key-value store) and “datalad-<CREDENTIAL-LABEL>” as the “service name”.
With this approach it’s not possible to use credentials in a system’s keyring that were defined by other, datalad unaware software (or users).

When a credential value is known but invalid, the invalid value must be removed or replaced in the active credential store.
By setting the configuration flag datalad.credentials.force-ask, DataLad can be instructed to force interactive credential re-entry to effectively override any store credential with a new value.

Providers

Providers are associating credentials with a context for using them and are defined by configuration files.
A single provider is represented by Provider object and the list of available providers is represented by the Providers class.
A provider is identified by a label and stored in a dedicated config file per provider named LABEL.cfg.
Such a file can reside in a dataset (under .datalad/providers/), at the user level (under {user_config_dir}/providers), at the system level (under {site_config_dir}/providers) or come packaged with the datalad distribution (in directory configs next to providers.py).
Such a provider specifies a regular expression to match URLs against and assigns authenticator abd credentials to be used for a match.
Credentials are referenced by their label, which in turn is the name of another section in such a file specifying the type of the credential.
References to credential and authenticator types are strings that are mapped to classes by the following dict definitions:

	datalad.downloaders.AUTHENTICATION_TYPES

	datalad.downloaders.CREDENTIAL_TYPES

Available providers can be loaded by Providers.from_config_files and Providers.get_provider(url) will match a given URL against them and return the appropriate Provider instance.
A Provider object will determine a downloader to use (derived from BaseDownloader), based on the URL’s protocol.

Note, that the provider config files are not currently following datalad’s general config approach.
Instead they are special config files, read by configparser.ConfigParser that are not compatible with git-config and hence the ConfigManager.

There are currently two ways of storing a provider and thus creating its config file: Providers.enter_new and Providers._store_new.
The former will only work interactively and provide the user with options to choose from, while the latter is non-interactive and can therefore only be used, when all properties of the provider config are known and passed to it.
There’s no way at the moment to store an existing Provider object directly.

Integration with Git

In addition, there’s a special case for interfacing git-credential: A dedicated GitCredential class is used to talk to Git’s git-credential command instead of the keyring wrapper.
This class has identical fields to the UserPassword class and thus can be used by the same authenticators.
Since Git’s way to deal with credentials doesn’t involve labels but only matching URLs, it is - in some sense - the equivalent of datalad’s provider layer.
However, providers don’t talk to a backend, credentials do.
Hence, a more seamless integration requires some changes in the design of datalad’s credential system as a whole.

In the opposite direction - making Git aware of datalad’s credentials, there’s no special casing, though.
DataLad comes with a git-credential-datalad executable.
Whenever Git is configured to use it by setting credential.helper=datalad, it will be able to query datalad’s credential system for a provider matching the URL in question and retrieve the referenced by this provider credentials.
This helper can also store a new provider+credentials when asked to do so by Git.
It can do this interactively, asking a user to confirm/change that config or - if credential.helper=’datalad –non-interactive’ - try to non-interactively store with its defaults.

Authenticators

Authenticators are used by downloaders to issue authenticated requests.
They are not easily available to directly be applied to requests being made outside of the downloaders.

URL substitution

Specification scope and status

This specification describes the current implementation. This implementation
is covering URL substitution in clone only. A further extension to
URL processing elsewhere is possible.

URL substitution is a transformation of a given URL using a set of
specifications. Such specification can be provided as configuration settings
(via all supported configuration sources). These configuration items must
follow the naming scheme datalad.clone.url-substitute.<label>, where
<label> is an arbitrary identifier.

A substitution specification is a string with a match and substitution
expression, each following Python’s regular expression syntax. Both
expressions are concatenated into a single string with an arbitrary delimiter
character. The delimiter is defined by prefixing the string with the delimiter.
Prefix and delimiter are stripped from the expressions before processing.
Example:

,^http://(.*)$,https://\\1

A particular configuration item can be defined multiple times (see examples
below) to form a substitution series. Substitutions in the same series will be
applied incrementally, in order of their definition. If the first substitution
expression does not match, the entire series will be ignored. However,
following a first positive match all further substitutions in a series are
processed, regardless whether intermediate expressions match or not.

Any number of substitution series can be configured. They will be considered in
no particular order. Consequently, it advisable to implement the first match
specification of any series as specific as possible, in order to prevent
undesired transformations.

Examples

Change the protocol component of a given URL in order to hand over further
processing to a dedicated Git remote helper. Specifically, the following
example converts Open Science Framework project URLs like
https://osf.io/f5j3e/ into osf://f5j3e, a URL that can be handle by
git-remote-osf, the Git remote helper provided by the datalad-osf
extension package [https://github.com/datalad/datalad-osf]:

datalad.clone.url-substitute.osf = ,^https://osf.io/([^/]+)[/]*$,osf://\1

Here is a more complex examples with a series of substitutions. The first
expression ensures that only GitHub URLs are being processed. The associated
substitution disassembles the URL into its two only relevant components,
the organisation/user name, and the project name:

datalad.clone.url-substitute.github = ,https?://github.com/([^/]+)/(.*)$,\1###\2

All other expressions in this series that are described below will only be considered
if the above expression matched.

The next two expressions in the series normalize URL components that maybe be
auto-generated by some DataLad functionality, e.g. subdataset location
candidate generation from directory names:

replace (back)slashes with a single dash
datalad.clone.url-substitute.github = ,[/\\]+,-

replace with whitespace (URL-quoted or not) with a single underscore
datalad.clone.url-substitute.github = ,\s+|(%2520)+|(%20)+,_

The final expression in the series is recombining the organization/user name
and project name components back into a complete URL:

datalad.clone.url-substitute.github = ,([^#]+)###(.*),https://github.com/\1/\2

Threaded runner

Specification scope and status

This specification provides an overview over the current implementation of the subprocess runner that is used throughout datalad.

Threads

DataLad often requires the execution of subprocesses. While subprocesses are executed, datalad, i.e. its main thread, should be able to read data from stdout and stderr of the subprocess as well as write data to stdin of the subprocess. This requires a way to efficiently multiplex reading from stdout and stderr of the subprocess as well as writing to stdin of the subprocess.

Since non-blocking IO and waiting on multiple sources (poll or select) differs vastly in terms of capabilities and API on different OSs, we decided to use blocking IO and threads to multiplex reading from different sources.

Generally we have a number of threads that might be created and executed, depending on the need for writing to stdin or reading from stdout or stderr. Each thread can read from either a single queue or a file descriptor. Reading is done blocking. Each thread can put data into multiple queues. This is used to transport data that was read as well as for signaling conditions like closed file descriptors.

Conceptually, there are the main thread and two different types of threads:

	type 1: transport threads (1 thread per process I/O descriptor)

	type 2: process waiting thread (1 thread)

Transport Threads

Besides the main thread, there might be up to three additional threads to handle data transfer to stdin, and from stdout and stderr. Each of those threads copies data between queues and file descriptors in a tight loop. The stdin-thread reads from an input-queue, the stdout- and stderr-threads write to an output queue. Each thread signals its exit to a set of signal queues, which might be identical to the output queues.

The stdin-thread reads data from a queue and writes it to the stdin-file descriptor of the sub-process. If it reads None from the queue, it will exit. The thread will also exit, if an exit is requested by calling thread.request_exit(), or if an error occurs during writing. In all cases it will enqueue a None to all its signal-queues.

The stdout- and stderr-threads read from the respective file descriptor and enqueue data into their output queue, unless the data has zero length (which indicates a closed descriptor). On a zero-length read they exit and enqueue None into their signal queues.

All queues are infinite. Nevertheless signaling is performed with a timeout of one 100 milliseconds in order to ensure that threads can exit.

Process Waiting Thread

The process waiting thread waits for a given process to exit and enqueues an exit notification into it signal queues.

Main Thread

There is a single queue, the output_queue, on which the main thread waits, after all transport threads, and the process waiting thread are started. The output_queue is the signaling queue and the output queue of the stderr-thread and the stdout-thread. It is also the signaling queue of the stdin-thread, and it is the signaling queue for the process waiting threads.

The main thread waits on the output_queue for data or signals and handles them accordingly, i.e. calls data callbacks of the protocol if data arrives, and calls connection-related callbacks of the protocol if other signals arrive. If no messages arrive on the output_queue, the main thread blocks for 100ms. If it is unblocked, either by getting a message or due to elapsing of the 100ms, it will process timeouts. If the timeout-parameter to the constructor was not None, it will check the last time any of the monitored files (stdout and/or stderr) yielded data. If the time is larger than the specified timeout, it will call the timeout method of the protocol instance. Due to this implementation, the resolution for timeouts is 100ms. The main thread handles the closing of stdin-, stdout-, and stderr-file descriptors if all other threads have terminated and if output_queue is empty. These tasks are either performed in the method ThreadedRunner.run() or in a result generator that is returned by ThreadedRunner.run() whenever send() is called on it.

Protocols

Due to its history datalad uses the protocol defined in asyncio.protocols.SubprocessProtocol and in asyncio.protocols.BaseProtocol. To keep compatibility with the code base, the threaded-runner implementation uses the same interface. Please note, although we use the same interface and although the interface is defined in the asyncio libraries, the threaded-runner implementation does not make any use of asyncio. The description of the interface nevertheless applies in the context of the threaded-runner. The following methods of the SubprocessProtocol are supported.

	SubprocessProtocol.pipe_data_received(fd, data)

	SubprocessProtocol.pipe_connection_lost(fd, exc)

	SubprocessProtocol.process_exited()

In addition the following methods of BaseProtocol are supported:

	BaseProtocol.connection_made(transport)

	BaseProtocol.connection_lost(exc)

The datalad-provided protocol datalad.runners.protocol.WitlessProtocol provides an additional callback:

	WitlessProtocol.timeout(fd)

The method timeout() will be called when the parameter timeout in WitlessRunner.run, ThreadedRunner.run, or run_command is set to a number specifying the desired timeout in seconds. If no data is received from stdin, or stderr (if those are supposed to be captured), the method WitlessProtocol.timeout(fd) is called with fd set to the respective file number, e.g. 1, or 2. If WitlessProtocol.timeout(fd) returns True, only the corresponding file descriptor will be closed and the associated threads will exit.

The method WitlessProtocol.timeout(fd) is also called if stdout, stderr and stdin are closed and the process does not exit within the given interval. In this case fd is set to None. If WitlessProtocol.timeout(fd) returns True the process is terminated.

Object and Generator Results

If the protocol that is provided to run() does not inherit datalad.runner.protocol.GeneratorMixIn, the final result that will be returned to the caller is determined by calling WitlessProtocol._prepare_result(). Whatever object this method returns will be returned to the caller.

If the protocol that is provided to run() does inherit datalad.runner.protocol.GeneratorMixIn, run() will return a Generator. This generator will yield the elements that were sent to it in the protocol-implementation by calling GeneratorMixIn.send_result() in the order in which the method GeneratorMixIn.send_result() is called. For example, if GeneratorMixIn.send_result(43) is called, the generator will yield 43, and if GeneratorMixIn.send_result({"a": 123, "b": "some data"}) is called, the generator will yield {"a": 123, "b": "some data"}.

Internally the generator is implemented by keeping track of the process state and waiting in the output_queue once, when send (or __next__) is called on it.

BatchedCommand and BatchedAnnex

Specification scope and status

This specification describes the new implementation of BatchedCommand and
BatchedAnnex in datalad.

Batched Command

The class BatchedCommand (in datalad.cmd), holds an instance of a running subprocess, allows to send requests to the subprocess over its stdin, and to receive responses from the subprocess over its stdout.

Requests can be provided to an instance of BatchedCommand by passing a single request or a list of requests to BatchCommand.__call__(), i.e. by applying the function call-operator to an instance of BatchedCommand. A request is either a string or a tuple of strings. In the latter case, the elements of the tuple will be joined by " ". More than one request can be given by providing a list of requests, i.e. a list of strings or tuples. In this case, the return value will be a list with one response for every request.

BatchedCommand will send each request that is sent to the subprocess as a single line, after terminating the line by "\n". After the request is sent, BatchedCommand calls an output-handler with stdout-ish (an object that provides a readline()-function which operates on the stdout of the subprocess) of the subprocess as argument. The output-handler can be provided to the constructor. If no output-handler is provided, a default output-handler is used. The default output-handler reads a single output line on stdout, using io.IOBase.readline(), and returns the rstrip()-ed line.

The subprocess must at least emit one line of output per line of input in order to prevent the calling thread from blocking. In addition, the size of the output, i.e. the number of lines that the result consists of, must be discernible by the output-handler. That means, the subprocess must either return a fixed number of lines per input line, or it must indicate the end of a result in some other way, e.g. with an empty line.

Remark: In principle any output processing could be performed. But, if the output-handler blocks on stdout, the calling thread will be blocked. Due to the limited capabilities of the stdout-ish that is passed to the output-handler, the output-handler must rely on readline() to process the output of the subprocess. Together with the line-based request sending, BatchedCommand is geared towards supporting the batch processing modes of git and git-annex. This has to be taken into account when providing a custom output handler.

When BatchedCommand.close() is called, stdin, stdout, and stderr of the subprocess are closed. This indicates the end of processing to the subprocess. Generally the subprocess is expected to exit shortly after that. BatchedCommand.close() will wait for the subprocess to end, if the configuration datalad.runtime.stalled-external is set to "wait". If the configuration datalad.runtime.stalled-external is set to "abandon", BatchedCommand.close() will return after “timeout” seconds if timeout was provided to BatchedCommand.__init__(), otherwise it will return after 11 seconds. If a timeout occurred, the attribute wait_timed_out of the BatchedCommand instance will be set to True. If exception_on_timeout=True is provided to BatchedCommand.__init__(), a subprocess.TimeoutExpired exception will be raised on a timeout while waiting for the process. It is not safe to reused a BatchedCommand instance after such an exception was risen.

Stderr of the subprocess is gathered in a byte-string. Its content will be returned by BatchCommand.close() if the parameter return_stderr is True.

Implementation details

BatchedCommand uses WitlessRunner with a protocol that has datalad.runner.protocol.GeneratorMixIn as a super-class. The protocol uses an output-handler to process data, if an output-handler was specified during construction of BatchedCommand.

BatchedCommand.close() queries the configuration key datalad.runtime.stalled-external to determine how to handle non-exiting processes (there is no killing, processes or process zombies might just linger around until the next reboot).

The current implementation of BatchedCommand can process a list of multiple requests at once, but it will collect all answers before returning a result. That means, if you send 1000 requests, BatchedCommand will return after having received 1000 responses.

BatchedAnnex

BatchedAnnex is a subclass of BatchedCommand (which it actually doesn’t have to be, it just adds git-annex specific parameters to the command and sets a specific output handler).

BatchedAnnex provides a new output-handler if the constructor-argument json is True. In this case, an output handler is used that reads a single line from stdout, strips the line and converts it into a json object, which is returned. If the stripped line is empty, an empty dictionary is returned.

Standard parameters

Specification scope and status

This specification partially describes the current implementation, and partially is a proposal, subject to review and further discussion.

Several “standard parameters” are used in various DataLad commands.
Those standard parameters have an identical meaning across the commands they are used in.
Commands should ensure that they use those “standard parameters” where applicable and do not deviate from the common names nor the common meaning.

Currently used standard parameters are listed below, as well as suggestions on how to harmonize currently deviating standard parameters.
Deviations from the agreed upon list should be harmonized.
The parameters are listed in their command-line form, but similar names and descriptions apply to their Python form.

	-d/--dataset
	A pointer to the dataset that a given command should operate on

	--dry-run
	Display details about the command execution without actually running the command.

	-f/--force
	Enforce the execution of a command, even when certain security checks would normally prevent this

	-J/--jobs
	Number of parallel jobs to use.

	-m/--message
	A commit message to attach to the saved change of a command execution.

	-r/--recursive
	Perform an operation recursively across subdatasets

	-R/--recursion-limit
	Limit recursion to a given amount of subdataset levels

	-s/--sibling-name [SUGGESTION]
	The identifier for a dataset sibling (remote)

Certain standard parameters will have their own design document.
Please refer to those documents for more in-depth information.

Positional vs Keyword parameters

Specification scope and status

This specification is a proposal, subject to review and further discussion.
Technical preview was implemented in the PR #6176 [https://github.com/datalad/datalad/pull/6176].

Motivation

Python allows for keyword arguments (arguments with default values) to be specified positionally.
That complicates addition or removal of new keyword arguments since such changes must account for their possible
positional use.
Moreover, in case of our Interface’s, it contributes to inhomogeneity since when used in CLI, all keyword
arguments
must be specified via non-positional --<option>’s, whenever Python interface allows for them to be used
positionally.

Python 3 added possibility to use a * separator in the function definition to mandate that all keyword arguments
after it must be be used only via keyword (<option>=<value>) specification.
It is encouraged to use * to explicitly separate out positional from keyword arguments in majority of the cases,
and below we outline two major types of constructs.

Interfaces

Subclasses of the Interface provide specification and implementation for both
CLI and Python API interfaces.
All new interfaces must separate all CLI --options from positional arguments using * in their __call__
signature.

Note: that some positional arguments could still be optional (e.g., destination path for clone),
and thus should be listed before *, despite been defined as a keyword argument in the __call__ signature.

A unit-test will be provided to guarantee such consistency between CLI and Python interfaces.
Overall, exceptions to this rule could be only some old(er) interfaces.

Regular functions and methods

Use of * is encouraged for any function (or method) with keyword arguments.
Generally, * should come before the first keyword argument, but similarly to the Interfaces above, it is left to
the discretion of the developer to possibly allocate some (just few) arguments which could be used positionally if
specified.

Docstrings

Specification scope and status

This specification provides a partial overview of the current
implementation.

Docstrings in DataLad source code are used and consumed in many ways. Besides
serving as documentation directly in the sources, they are also transformed
and rendered in various ways.

	Command line --help output

	Python’s help() or IPython’s ?

	Manpages

	Sphinx-rendered documentation for the Python API and the command line API

A common source docstring is transformed, amended and tuned specifically for
each consumption scenario.

Formatting overview and guidelines

In general, the docstring format follows the NumPy standard [https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard].
In addition, we follow the guidelines of Restructured Text [https://docutils.sourceforge.io/docs/user/rst/quickstart.html] with the additional features and treatments provided by Sphinx [https://www.sphinx-doc.org/en/master], and some custom formatting outlined below.

Version information

Additions, changes, or deprecation should be recorded in a docstring using the
standard Sphinx directives versionadded, versionchanged,
deprecated:

.. deprecated:: 0.16
 The ``dryrun||--dryrun`` option will be removed in a future release, use
 the renamed ``dry_run||--dry-run`` option instead.

API-conditional docs

The CMD and PY macros can be used to selectively include documentation
for specific APIs only:

options to pass to :command:`git init`. [PY: Options can be given as a list
of command line arguments or as a GitPython-style option dictionary PY][CMD:
Any argument specified after the destination path of the repository will be
passed to git-init as-is CMD].

For API-alternative command and argument specifications the following format
can be used:

``<python-api>||<cmdline-api``

where the double backticks are mandatory and <python-part> and
<cmdline-part> represent the respective argument specification for each
API. In these specifications only valid argument/command names are allowed,
plus a comma character to list multiples, and the dot character to include an
ellipsis:

``github_organization||-g,--github-organization``

``create_sibling_...||create-sibling-...``

Reflow text

When automatic transformations negatively affect the presentation of a
docstring due to excessive removal of content, leaving “holes”, the REFLOW
macro can be used to enclose such segments, in order to reformat them
as the final processing step. Example:

|| REFLOW >>
The API has been aligned with the some
``create_sibling_...||create-sibling-...`` commands of other GitHub-like
services, such as GOGS, GIN, GitTea.<< REFLOW ||

The start macro must appear on a dedicated line.

Progress reporting

Specification scope and status

This specification describes the current implementation.

Progress reporting is implemented via the logging system. A dedicated function
datalad.log.log_progress() represents the main API for progress
reporting. For some standard use cases, the utilities
datalad.log.with_progress() and
datalad.log.with_result_progress() can simplify result reporting
further.

Design and implementation

This basic idea is to use an instance of datalad’s loggers to emit log messages
with particular attributes that are picked up by
datalad.log.ProgressHandler (derived from
logging.Handler), and are acted on differently, depending on
configuration and conditions of a session (e.g., interactive terminal sessions
vs. non-interactive usage in scripts). This variable behavior is implemented
via the use of logging standard library log filters and handlers.
Roughly speaking, datalad.log.ProgressHandler will only be used for
interactive sessions. In non-interactive cases, progress log messages are
inspected by datalad.log.filter_noninteractive_progress(), and are
either discarded or treated like any other log message (see
datalad.log.LoggerHelper.get_initialized_logger() for details on the
handler and filter setup).

datalad.log.ProgressHandler inspects incoming log records for
attributes with names starting with dlm_progress. It will only process such
records and pass others on to the underlying original log handler otherwise.

datalad.log.ProgressHandler takes care of creating, updating and
destroying any number of simultaneously running progress bars. Progress reports
must identify the respective process via an arbitrary string ID. It is the
caller’s responsibility to ensure that this ID is unique to the target
process/activity.

Reporting progress with log_progress()

Typical progress reporting via datalad.log.log_progress() involves
three types of calls.

1. Start reporting progress about a process

A typical call to start of progress reporting looks like this

log_progress(
 # the callable used to emit log messages
 lgr.info,
 # a unique identifiers of the activity progress is reported for
 identifier,
 # main message
 'Unlocking files',
 # optional unit string for a progress bar
 unit=' Files',
 # optional label to be displayed in a progress bar
 label='Unlocking',
 # maximum value for a progress bar
 total=nfiles,
)

A new progress bar will be created automatically for any report with a previously
unseen activity identifier. It can be configured via the specification of
a number of arguments, most notably a target total for the progress bar.
See datalad.log.log_progress() for a complete overview.

Starting a progress report must be done with a dedicated call. It cannot be combined
with a progress update.

2. Update progress information about a process

Any subsequent call to datalad.log.log_progress() with an activity
identifier that has already been seen either updates, or finishes the progress
reporting for an activity. Updates must contain an update key which either
specifies a new value (if increment=False, the default) or an increment to
previously known value (if increment=True):

log_progress(
 lgr.info,
 # must match the identifier used to start the progress reporting
 identifier,
 # arbitrary message content, string expansion supported just like
 # regular log messages
 "Files to unlock %i", nfiles,
 # critical key for report updates
 update=1,
 # ``update`` could be an absolute value or an increment
 increment=True
)

Updating a progress report can only be done after a progress reporting was
initialized (see above).

3. Report completion of a process

A progress bar will remain active until it is explicitly taken down, even if an
initially declared total value may have been reached. Finishing a progress
report requires a final log message with the corresponding identifiers which,
like the first initializing message, does NOT contain an update key.

log_progress(
 lgr.info,
 identifier,
 # closing log message
 "Completed unlocking files",
)

Progress reporting in non-interactive sessions

datalad.log.log_progress() takes a noninteractive_level argument
that can be used to specify a log level at which progress is logged when no
progress bars can be used, but actual log messages are produced.

import logging

log_progress(
 lgr.info,
 identifier,
 "Completed unlocking files",
 noninteractive_level=logging.INFO
)

Each call to log_progress() can be given a different
log level, in order to control the verbosity of the reporting in such a scenario.
For example, it is possible to log the start or end of an activity at a higher
level than intermediate updates. It is also possible to single out particular
intermediate events, and report them at a higher level.

If no noninteractive_level is specified, the progress update is unconditionally
logged at the level implied by the given logger callable.

Reporting progress with with_(result_)progress()

For cases were a list of items needs to be processes sequentially, and progress
shall be communicated, two additional helpers could be used: the decorators
datalad.log.with_progress() and
datalad.log.with_result_progress(). They require a callable that takes
a list (or more generally a sequence) of items to be processed as the first
positional argument. They both set up and perform all necessary calls to
log_progress().

The difference between these helpers is that
datalad.log.with_result_progress() expects a callable to produce
DataLad result records, and supports customs filters to decide which particular
result records to consider for progress reporting (e.g., only records for a
particular action and type).

Output non-progress information without interfering with progress bars

log_progress() can also be useful when not reporting
progress, but ensuring that no other output is interfering with progress bars,
and vice versa. The argument maint can be used in this case, with no
particular activity identifier (it always impacts all active progress bars):

log_progress(
 lgr.info,
 None,
 'Clear progress bars',
 maint='clear',
)

This call will trigger a temporary discontinuation of any progress bar display.
Progress bars can either be re-enabled all at once, by an analog message with
maint='refresh', or will re-show themselves automatically when the next
update is received. A no_progress() context manager helper
can be used to surround your context with those two calls to prevent progress
bars from interfering.

GitHub Action

Specification scope and status

This specification describes a proposed interface to a DataLad GitHub Action.
https://github.com/datalad/datalad-action provides an implementation which loosely
followed this specification.

The purpose of the DataLad GitHub Action is to support CI testing with DataLad datasets
by making it easy to install datalad and get data from the datasets.

Example Usage

Dataset installed at ${GITHUB_WORKSPACE}/studyforrest-data-phase2,
get’s all the data:

- uses: datalad/datalad-action@master
 with:
 datasets:
 - source: https://github.com/psychoinformatics-de/studyforrest-data-phase2
 - install_get_data: true

Specify advanced options:

- name: Download testing data
 uses: datalad/datalad-action@master
 with:
 datalad_version: ^0.15.5
 add_datalad_to_path: false
 datasets:
 - source: https://github.com/psychoinformatics-de/studyforrest-data-phase2
 - branch: develop
 - install_path: test_data
 - install_jobs: 2
 - install_get_data: false
 - recursive: true
 - recursion_limit: 2
 - get_jobs: 2
 - get_paths:
 - sub-01
 - sub-02
 - stimuli

Options

datalad_version

datalad version to install. Defaults to the latest release.

add_datalad_to_path

Add datalad to the PATH for manual invocation in subsequent steps.

Defaults to true.

source

URL for the dataset (mandatory).

branch

Git branch to install (optional).

install_path

Path to install the dataset relative to GITHUB_WORKSPACE.

Defaults to the repository name.

install_jobs

Jobs to use for datalad install.

Defaults to auto.

install_get_data

Get all the data in the dataset by passing --get-data to datalad install.

Defaults to false.

recursive

Boolean defining whether to clone subdatasets.

Defaults to true.

recursion_limit

Integer defining limits to recursion.

If not defined, there is no limit.

get_jobs

Jobs to use for datalad get.

Defaults to auto.

get_paths

A list of paths in the dataset to download with datalad get.

Defaults to everything.

Continuous integration and testing

Specification scope and status

This specification describes the current implementation.

DataLad is tested using a pytest-based testsuite that is run locally and via continuous integrations setups.
Code development should ensure that old and new functionality is appropriately tested.
The project aims for good unittest coverage (at least 80%).

Running tests

Starting at the top level with datalad/tests, every module in the package comes with a subdirectory tests/, containing the tests for that portion of the codebase. This structure is meant to simplify (re-)running the tests for a particular module.
The test suite is run using

pip install -e .[tests]
python -m pytest -c tox.ini datalad
or, with coverage reports
python -m pytest -c tox.ini --cov=datalad datalad

Individual tests can be run using a path to the test file, followed by two colons and the test name:

python -m pytest datalad/core/local/tests/test_save.py::test_save_message_file

The set of to-be-run tests can be further sub-selected with environment variable based configurations that enable tests based on their Test annotations, or pytest-specific parameters.
Invoking a test run using DATALAD_TESTS_KNOWNFAILURES_PROBE=True pytest datalad, for example, will run tests marked as known failures whether or not they still fail.
See section Configuration for all available configurations.
Invoking a test run using DATALAD_TESTS_SSH=1 pytest -m xfail -c tox.ini datalad will run only those tests marked as xfail [https://docs.pytest.org/en/latest/how-to/skipping.html].

Local setup

Local test execution usually requires a local installation with all development requirements. It is recommended to either use a virtualenv [https://virtualenv.pypa.io/en/latest/], or tox [https://tox.wiki/en/latest/] via a tox.ini file in the code base.

CI setup

At the moment, Travis-CI, Appveyor, and GitHub Workflows exercise the tests battery for every PR and on the default branch, covering different operating systems, Python versions, and file systems.
Tests should be ran on the oldest, latest, and current stable Python release.
The projects uses https://codecov.io for an overview of code coverage.

Writing tests

Additional functionality is tested by extending existing similar tests with new test cases, or adding new tests to the respective test script of the module. Generally, every file example.py `with datalad code comes with a corresponding `tests/test_example.py.
Test helper functions assisting various general and DataLad specific assertions as well the construction of test directories and files can be found in datalad/tests/utils_pytest.py.

Test annotations

datalad/tests/utils_pytest.py also defines test decorators.
Some of those are used to annotate tests for various aspects to allow for easy sub-selection via environment variables.

Speed: Please annotate tests that take a while to complete with following decorators

	@slow if test runs over 10 seconds

	@turtle if test runs over 120 seconds (those would not typically be ran on CIs)

Purpose: Please further annotate tests with a special purpose specifically. As those tests also usually tend to be slower, use in conjunction with @slow or @turtle when slow.

	@integration - tests verifying correct operation with external tools/services beyond git/git-annex

	@usecase - represents some (user) use-case, and not necessarily a “unit-test” of functionality

Dysfunction: If tests are not meant to be run on certain platforms or under certain conditions, @known_failure or @skip annotations can be used. Examples include:

	@skip, @skip_if_on_windows, @skip_ssh, @skip_wo_symlink_capability, @skip_if_adjusted_branch, @skip_if_no_network, @skip_if_root

	@knownfailure, @known_failure_windows, known_failure_githubci_win or known_failure_githubci_osx

Migrating tests from nose to pytest

DataLad’s test suite has been migrated from nose [https://nose.readthedocs.io/en/latest/] to pytest [https://docs.pytest.org/en/latest/contents.html] in the 0.17.0 release [https://github.com/datalad/datalad/releases/tag/0.17.0].
This might be relevant for DataLad extensions that still use nose.

For the time being, datalad.tests.utils keeps providing nose-based utils, and datalad.__init__ keeps providing nose-based fixtures to not break extensions that still use nose for testing.
A migration to pytest is recommended, though.
To perform a typical migration of a DataLad extension to use pytest instead of nose, go through the following list:

	keep all the assert_* and ok_ helpers, but import them from datalad.tests.utils_pytest instead

	for @with_* and other decorators populating positional arguments, convert corresponding posarg to kwarg by adding =None

	convert all generator-based parametric tests into direct invocations or, preferably, @pytest.mark.parametrized tests

	address DeprecationWarnings in the code. Only where desired to test deprecation, add @pytest.mark.filterwarnings("ignore: BEGINNING OF WARNING") decorator to the test.

For an example, see a “migrate to pytest” PR against datalad-deprecated: datalad/datalad-deprecated#51 [https://github.com/datalad/datalad-deprecated/pull/51] .

User messaging: result records vs exceptions vs logging

Specification scope and status

This specification provides a partial overview of the implementation goal.

Motivation

This specification delineates the applicable contexts for using
result records, exceptions,
progress reporting, specific log levels,
or other types of user messaging processes.

Specification

Result records

Result records are the only return value format for all DataLad interfaces.

Contrasting with classic Python interfaces that return specific non-annotated values,
DataLad interfaces (i.e. subclasses of datalad.interface.base.Interface)
implement message passing by yielding result records
that are associated with individual operations. Result records are routinely inspected throughout
the code base and their annotations are used to inform general program flow and error handling.

DataLad interface calls can include an on_failure parameterization to specify how to
proceed with a particular operation if a returned result record is
classified as a failure result. DataLad interface calls can
also include a result_renderer parameterization to explicitly enable or
disable the rendering of result records.

Developers should be aware that external callers will use DataLad interface call parameterizations
that can selectively ignore or act on result records, and that the process should therefore
yield meaningful result records. If, in turn, the process itself receives a set of result
records from a sub-process, these should be inspected individually in order to identify result
values that could require re-annotation or status re-classification.

For user messaging purposes, result records can also be enriched with additional human-readable
information on the nature of the result, via the message key, and human-readable hints to
the user, via the hints key. Both of these are rendered via the UI Module.

Exception handling

In general, exceptions should be raised when there is no way to ignore or recover from
the offending action.

More specifically, raise an exception when:

	A DataLad interface’s parameter specifications are violated

	An additional requirement (beyond parameters) for the meaningful continuation of a
DataLad interface, function, or process is not met

It must be made clear to the user/caller what the exact cause of the exception
is, given the context within which the user/caller triggered the action.
This is achieved directly via a (re)raised exception, as opposed to logging messages or
results records which could be ignored or unseen by the user.

Note

In the case of a complex set of dependent actions it could be expensive to
confirm parameter violations. In such cases, initial sub-routines might already generate
result records that have to be inspected by the caller, and it could be practically better
to yield a result record (with status=[error|impossible]) to communicate the failure.
It would then be up to the upstream caller to decide whether to specify
on_failure='ignore' or whether to inspect individual result records and turn them
into exceptions or not.

Logging

Logging provides developers with additional means to describe steps in a process,
so as to allow insight into the program flow during debugging or analysis of e.g.
usage patterns. Logging can be turned off externally, filtered, and redirected. Apart from
the log-level and message, it is not inspectable and
cannot be used to control the logic or flow of a program.

Importantly, logging should not be the primary user messaging method for command outcomes,
Therefore:

	No interface should rely solely on logging for user communication

	Use logging for in-progress user communication via the mechanism for progress reporting

	Use logging to inform debugging processes

UI Module

The ui module provides the means to communicate information
to the user in a user-interface-specific manner, e.g. via a console, dialog, or an iPython interface.
Internally, all DataLad results processed by the result renderer are passed through the UI module.

Therefore: unless the criteria for logging apply, and unless the message to be delivered to the user
is specified via the message key of a result record, developers should let explicit user communication
happen through the UI module as it provides the flexibility to adjust to the present UI.
Specifically, datalad.ui.message() allows passing a simple message via the UI module.

Examples

The following links point to actual code implementations of the respective user
messaging methods:

	Result yielding [https://github.com/datalad/datalad/blob/a8d7c63b763aacfbca15925bb1562a62b4448ea6/datalad/core/local/status.py#L402-L426]

	Exception handling [https://github.com/datalad/datalad/blob/a8d7c63b763aacfbca15925bb1562a62b4448ea6/datalad/core/local/status.py#L149-L150]

	Logging [https://github.com/datalad/datalad/blob/a8d7c63b763aacfbca15925bb1562a62b4448ea6/datalad/core/local/status.py#L158]

	UI messaging [https://github.com/datalad/datalad/blob/a8d7c63b763aacfbca15925bb1562a62b4448ea6/datalad/core/local/status.py#L438-L457]

Glossary

DataLad purposefully uses a terminology that is different from the one used by
its technological foundations Git [https://git-scm.com] and git-annex [http://git-annex.branchable.com]. This glossary provides
definitions for terms used in the datalad documentation and API, and relates
them to the corresponding Git [https://git-scm.com]/git-annex [http://git-annex.branchable.com] concepts.

	annex
	Extension to a Git [https://git-scm.com] repository, provided and managed by git-annex [http://git-annex.branchable.com] as
means to track and distribute large (and small) files without having to
inject them directly into a Git [https://git-scm.com] repository (which would slow Git
operations significantly and impair handling of such repositories in
general).

	CLI
	A Command Line Interface [https://en.wikipedia.org/wiki/Command-line_interface]. Could be used interactively by executing
commands in a shell [https://en.wikipedia.org/wiki/Shell_(computing)], or as a programmable API for shell scripts.

	DataLad extension
	A Python package, developed outside of the core DataLad codebase, which
(when installed) typically either provides additional top level datalad
commands and/or additional metadata extractors. Visit
Handbook, Ch.2. DataLad’s extensions [http://handbook.datalad.org/en/latest/basics/101-144-intro_extensions.html]
for a representative list of extensions and instructions on how to install
them.

	dataset
	A regular Git [https://git-scm.com] repository with an (optional) annex.

	sibling
	A dataset (location) that is related to a particular dataset,
by sharing content and history. In Git [https://git-scm.com] terminology, this is a clone
of a dataset that is configured as a remote.

	subdataset
	A dataset that is part of another dataset, by means of being
tracked as a Git [https://git-scm.com] submodule. As such, a subdataset is also a complete
dataset and not different from a standalone dataset.

	superdataset
	A dataset that contains at least one subdataset.

Command line reference

Main command

	datalad: Main command entrypoint

Core commands

A minimal set of commands that cover essential functionality. Core commands
receive special scrutiny with regard API composition and (breaking) changes.

Local operation

	datalad create: Create a new dataset

	datalad save: Save the state of a dataset

	datalad run: Run a shell command and record its impact on a dataset

	datalad status: Report on the state of dataset content

	datalad diff: Report differences between two states of a dataset

Distributed operation

	datalad clone: Obtain a dataset (sibling) from another location

	datalad push: Push updates/data to a dataset sibling

Extended set of functionality

Dataset operations

	datalad add-readme: Add information on DataLad dataset to a README

	datalad addurls: Update dataset content from a list of URLs

	datalad copy-file: Copy file identity and availability from one dataset to another

	datalad drop: Drop datasets or dataset components

	datalad get: Obtain any dataset content

	datalad install: Install a dataset from a (remote) source

	datalad no-annex: Configure a dataset to never put file content into an annex

	datalad remove: Unlink components from a dataset

	datalad subdatasets: Query and manipulate subdataset records of a dataset

	datalad unlock: Make dataset file content editable

Dataset siblings and 3rd-party platform support

	datalad siblings: Query and manipulate sibling configuration of a dataset

	datalad create-sibling: Create a sibling on an SSH-accessible machine

	datalad create-sibling-github: Create a sibling on GitHub

	datalad create-sibling-gitlab: Create a sibling on GitLab

	datalad create-sibling-gogs: Create a sibling on GOGS

	datalad create-sibling-gitea: Create a sibling on Gitea

	datalad create-sibling-gin: Create a sibling on GIN (with content hosting)

	datalad create-sibling-ria: Create a sibling in a RIA store

	datalad export-archive: Export dataset content as a TAR/ZIP archive

	datalad export-archive-ora: Export a local dataset annex for the ORA remote

	datalad export-to-figshare: Export dataset content as a ZIP archive to figshare

	datalad update: Obtain and incorporate updates from dataset siblings

Reproducible execution

Extending the functionality of the core run command.

	datalad rerun: Re-execute previous datalad-run commands

	datalad run-procedure: Run prepared procedures (DataLad scripts) on a dataset

Helpers and support utilities

	datalad add-archive-content: Extract and add the content of an archive to a dataset

	datalad clean: Remove temporary left-overs of DataLad operations

	datalad check-dates: Scan a dataset for dates and timestamps

	datalad configuration: Get and set configuration

	datalad create-test-dataset: Test helper

	datalad download-url: Download helper with support for DataLad's credential system

	datalad foreach-dataset: Run a command or Python code on the dataset and/or each of its sub-datasets

	datalad sshrun: Remote command execution using DataLad's connection management

	datalad shell-completion: Helper to support command completion

	datalad wtf: Report on a DataLad installation and its configuration

Deprecated commands

	datalad uninstall: Drop subdatasets

datalad

Synopsis

datalad [-c (:name|name=value)] [-C PATH] [--cmd] [-l LEVEL] [--on-failure
 {ignore,continue,stop}] [--report-status
 {success,failure,ok,notneeded,impossible,error}] [--report-type
 {dataset,file}] [-f
 {generic,json,json_pp,tailored,disabled,'<template>'}] [--dbg]
 [--idbg] [--version] {create-sibling-github,create-sibling-gitla
 b,create-sibling-gogs,create-sibling-gin,create-sibling-gitea,cr
 eate-sibling-ria,create-sibling,siblings,update,subdatasets,drop
 ,remove,addurls,copy-file,download-url,foreach-dataset,install,r
 erun,run-procedure,create,save,status,clone,get,push,run,diff,co
 nfiguration,wtf,clean,add-archive-content,add-readme,export-arch
 ive,export-archive-ora,export-to-figshare,no-annex,check-dates,u
 nlock,uninstall,create-test-dataset,sshrun,shell-completion} ...

Description

Comprehensive data management solution

DataLad provides a unified data distribution system built on the Git
and Git-annex. DataLad command line tools allow to manipulate (obtain,
create, update, publish, etc.) datasets and provide a comprehensive
toolbox for joint management of data and code. Compared to Git/annex
it primarily extends their functionality to transparently and
simultaneously work with multiple inter-related repositories.

Options

{create-sibling-github,create-sibling-gitlab,create-sibling-gogs,create-sibling-gin,create-sibling-gitea,create-sibling-ria,create-sibling,siblings,update,subdatasets,drop,remove,addurls,copy-file,download-url,foreach-dataset,install,rerun,run-procedure,create,save,status,clone,get,push,run,diff,configuration,wtf,clean,add-archive-content,add-readme,export-archive,export-archive-ora,export-to-figshare,no-annex,check-dates,unlock,uninstall,create-test-dataset,sshrun,shell-completion}

-c (:name|name=value)

specify configuration setting overrides. They override any configuration read from a file. A configuration can also be unset temporarily by prefixing its name with a colon (‘:’), e.g. ‘:user.name’. Overrides specified here may be overridden themselves by configuration settings declared as environment variables.

-C PATH

run as if datalad was started in <path> instead of the current working directory. When multiple -C options are given, each subsequent non-absolute -C <path> is interpreted relative to the preceding -C <path>. This option affects the interpretations of the path names in that they are made relative to the working directory caused by the -C option

--cmd

syntactical helper that can be used to end the list of global command line options before the subcommand label. Options taking an arbitrary number of arguments may require to be followed by a single –cmd in order to enable identification of the subcommand.

-l LEVEL, --log-level LEVEL

set logging verbosity level. Choose among critical, error, warning, info, debug. Also you can specify an integer <10 to provide even more debugging information

--on-failure {ignore,continue,stop}

when an operation fails: ‘ignore’ and continue with remaining operations, the error is logged but does not lead to a non-zero exit code of the command; ‘continue’ works like ‘ignore’, but an error causes a non-zero exit code; ‘stop’ halts on first failure and yields non-zero exit code. A failure is any result with status ‘impossible’ or ‘error’. [Default: ‘continue’, but individual commands may define an alternative default]

--report-status {success,failure,ok,notneeded,impossible,error}

constrain command result report to records matching the given status. ‘success’ is a synonym for ‘ok’ OR ‘notneeded’, ‘failure’ stands for ‘impossible’ OR ‘error’.

--report-type {dataset,file}

constrain command result report to records matching the given type. Can be given more than once to match multiple types.

-f {generic,json,json_pp,tailored,disabled,’<template>’}, --output-format {generic,json,json_pp,tailored,disabled,’<template>’}

select rendering mode command results. ‘tailored’ enables a command-specific rendering style that is typically tailored to human consumption, if there is one for a specific command, or otherwise falls back on the the ‘generic’ result renderer; ‘generic’ renders each result in one line with key info like action, status, path, and an optional message); ‘json’ a complete JSON line serialization of the full result record; ‘json_pp’ like ‘json’, but pretty- printed spanning multiple lines; ‘disabled’ turns off result rendering entirely; ‘<template>’ reports any value(s) of any result properties in any format indicated by the template (e.g. ‘{path}’, compare with JSON output for all key- value choices). The template syntax follows the Python “format() language”. It is possible to report individual dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’ in the template, like so: ‘{metadata[music#Genre]}’. [Default: ‘tailored’]

--dbg

enter Python debugger for an uncaught exception

--idbg

enter IPython debugger for an uncaught exception

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad create

Synopsis

datalad create [-h] [-f] [-D DESCRIPTION] [-d DATASET] [--no-annex] [--fake-dates]
 [-c PROC] [--version] [PATH] ...

Description

Create a new dataset from scratch.

This command initializes a new dataset at a given location, or the
current directory. The new dataset can optionally be registered in an
existing superdataset (the new dataset’s path needs to be located
within the superdataset for that, and the superdataset needs to be given
explicitly via –dataset). It is recommended
to provide a brief description to label the dataset’s nature and
location, e.g. “Michael’s music on black laptop”. This helps humans to
identify data locations in distributed scenarios. By default an identifier
comprised of user and machine name, plus path will be generated.

This command only creates a new dataset, it does not add existing content
to it, even if the target directory already contains additional files or
directories.

Plain Git repositories can be created via –no-annex.
However, the result will not be a full dataset, and, consequently,
not all features are supported (e.g. a description).

To create a local version of a remote dataset use the install
command instead.

	NOTE
	Power-user info: This command uses git init and
git annex init to prepare the new dataset. Registering to a
superdataset is performed via a git submodule add operation
in the discovered superdataset.

Examples

Create a dataset ‘mydataset’ in the current directory:

% datalad create mydataset

Apply the text2git procedure upon creation of a dataset:

% datalad create -c text2git mydataset

Create a subdataset in the root of an existing dataset:

% datalad create -d . mysubdataset

Create a dataset in an existing, non-empty directory:

% datalad create --force

Create a plain Git repository:

% datalad create --no-annex mydataset

Options

PATH

path where the dataset shall be created, directories will be created as necessary. If no location is provided, a dataset will be created in the location specified by –dataset (if given) or the current working directory. Either way the command will error if the target directory is not empty. Use –force to create a dataset in a non-empty directory. Constraints: value must be a string or Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

INIT OPTIONS

options to pass to git init. Any argument specified after the destination path of the repository will be passed to git-init as-is. Note that not all options will lead to viable results. For example ‘–bare’ will not yield a repository where DataLad can adjust files in its working tree.

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-f, --force

enforce creation of a dataset in a non-empty directory.

-D DESCRIPTION, --description DESCRIPTION

short description to use for a dataset location. Its primary purpose is to help humans to identify a dataset copy (e.g., “mike’s dataset on lab server”). Note that when a dataset is published, this information becomes available on the remote side. Constraints: value must be a string or value must be NONE

-d DATASET, --dataset DATASET

specify the dataset to perform the create operation on. If a dataset is given along with PATH, a new subdataset will be created in it at the path provided to the create command. If a dataset is given but PATH is unspecified, a new dataset will be created at the location specified by this option. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

--no-annex

if set, a plain Git repository will be created without any annex.

--fake-dates

Configure the repository to use fake dates. The date for a new commit will be set to one second later than the latest commit in the repository. This can be used to anonymize dates.

-c PROC, --cfg-proc PROC

Run cfg_PROC procedure(s) (can be specified multiple times) on the created dataset. Use run-procedure –discover to get a list of available procedures, such as cfg_text2git.

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad save

Synopsis

datalad save [-h] [-m MESSAGE] [-d DATASET] [-t ID] [-r] [-R LEVELS] [-u] [-F
 MESSAGE_FILE] [--to-git] [-J NJOBS] [--amend] [--version] [PATH
 ...]

Description

Save the current state of a dataset

Saving the state of a dataset records changes that have been made to it.
This change record is annotated with a user-provided description.
Optionally, an additional tag, such as a version, can be assigned to the
saved state. Such tag enables straightforward retrieval of past versions at
a later point in time.

	NOTE
	Before Git v2.22, any Git repository without an initial commit located
inside a Dataset is ignored, and content underneath it will be saved to
the respective superdataset. DataLad datasets always have an initial
commit, hence are not affected by this behavior.

Examples

Save any content underneath the current directory, without
altering any potential subdataset:

% datalad save .

Save specific content in the dataset:

% datalad save myfile.txt

Attach a commit message to save:

% datalad save -m 'add file' myfile.txt

Save any content underneath the current directory, and
recurse into any potential subdatasets:

% datalad save . -r

Save any modification of known dataset content in the current
directory, but leave untracked files (e.g. temporary files) untouched:

% datalad save -u .

Tag the most recent saved state of a dataset:

% datalad save --version-tag 'bestyet'

Save a specific change but integrate into last commit keeping the
already recorded commit message:

% datalad save myfile.txt --amend

Options

PATH

path/name of the dataset component to save. If given, only changes made to those components are recorded in the new state. Constraints: value must be a string or value must be NONE

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-m MESSAGE, --message MESSAGE

a description of the state or the changes made to a dataset. Constraints: value must be a string or value must be NONE

-d DATASET, --dataset DATASET

“specify the dataset to save. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

-t ID, --version-tag ID

an additional marker for that state. Every dataset that is touched will receive the tag. Constraints: value must be a string or value must be NONE

-r, --recursive

if set, recurse into potential subdatasets.

-R LEVELS, --recursion-limit LEVELS

limit recursion into subdatasets to the given number of levels. Constraints: value must be convertible to type ‘int’ or value must be NONE

-u, --updated

if given, only saves previously tracked paths.

-F MESSAGE_FILE, --message-file MESSAGE_FILE

take the commit message from this file. This flag is mutually exclusive with -m. Constraints: value must be a string or value must be NONE

--to-git

flag whether to add data directly to Git, instead of tracking data identity only. Use with caution, there is no guarantee that a file put directly into Git like this will not be annexed in a subsequent save operation. If not specified, it will be up to git-annex to decide how a file is tracked, based on a dataset’s configuration to track particular paths, file types, or file sizes with either Git or git-annex. (see https://git-annex.branchable.com/tips/largefiles).

-J NJOBS, --jobs NJOBS

how many parallel jobs (where possible) to use. “auto” corresponds to the number defined by ‘datalad.runtime.max-annex-jobs’ configuration item NOTE: This option can only parallelize input retrieval (get) and output recording (save). DataLad does NOT parallelize your scripts for you. Constraints: value must be convertible to type ‘int’ or value must be NONE or value must be one of (‘auto’,)

--amend

if set, changes are not recorded in a new, separate commit, but are integrated with the changeset of the previous commit, and both together are recorded by replacing that previous commit. This is mutually exclusive with recursive operation.

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad run

Synopsis

datalad run [-h] [-d DATASET] [-i PATH] [-o PATH] [--expand {inputs|outputs|both}]
 [--assume-ready {inputs|outputs|both}] [--explicit] [-m MESSAGE]
 [--sidecar {yes|no}] [--dry-run {basic|command}] [-J NJOBS]
 [--version] ...

Description

Run an arbitrary shell command and record its impact on a dataset.

It is recommended to craft the command such that it can run in the root
directory of the dataset that the command will be recorded in. However,
as long as the command is executed somewhere underneath the dataset root,
the exact location will be recorded relative to the dataset root.

If the executed command did not alter the dataset in any way, no record of
the command execution is made.

If the given command errors, a COMMANDERROR exception with the same exit
code will be raised, and no modifications will be saved. A command
execution will not be attempted, by default, when an error occurred during
input or output preparation. This default stop behavior can be
overridden via –on-failure ….

In the presence of subdatasets, the full dataset hierarchy will be checked
for unsaved changes prior command execution, and changes in any dataset
will be saved after execution. Any modification of subdatasets is also
saved in their respective superdatasets to capture a comprehensive record
of the entire dataset hierarchy state. The associated provenance record is
duplicated in each modified (sub)dataset, although only being fully
interpretable and re-executable in the actual top-level superdataset. For
this reason the provenance record contains the dataset ID of that
superdataset.

Command format

A few placeholders are supported in the command via Python format
specification. “{pwd}” will be replaced with the full path of the
current working directory. “{dspath}” will be replaced with the full
path of the dataset that run is invoked on. “{tmpdir}” will be
replaced with the full path of a temporary directory. “{inputs}” and
“{outputs}” represent the values specified by –input and –output. If
multiple values are specified, the values will be joined by a space.
The order of the values will match that order from the command line,
with any globs expanded in alphabetical order (like bash). Individual
values can be accessed with an integer index (e.g., “{inputs[0]}”).

Note that the representation of the inputs or outputs in the formatted
command string depends on whether the command is given as a list of
arguments or as a string (quotes surrounding the command). The
concatenated list of inputs or outputs will be surrounded by quotes
when the command is given as a list but not when it is given as a
string. This means that the string form is required if you need to
pass each input as a separate argument to a preceding script (i.e.,
write the command as “./script {inputs}”, quotes included). The string
form should also be used if the input or output paths contain spaces
or other characters that need to be escaped.

To escape a brace character, double it (i.e., “{{” or “}}”).

Custom placeholders can be added as configuration variables under
“datalad.run.substitutions”. As an example:

Add a placeholder “name” with the value “joe”:

% datalad configuration --scope branch set datalad.run.substitutions.name=joe
% datalad save -m "Configure name placeholder" .datalad/config

Access the new placeholder in a command:

% datalad run "echo my name is {name} >me"

Examples

Run an executable script and record the impact on a dataset:

% datalad run -m 'run my script' 'code/script.sh'

Run a command and specify a directory as a dependency for the run. The
contents of the dependency will be retrieved prior to running the
script:

% datalad run -m 'run my script' -i 'data/*' 'code/script.sh'

Run an executable script and specify output files of the script to be
unlocked prior to running the script:

% datalad run -m 'run my script' -i 'data/*' \
 -o 'output_dir/*' 'code/script.sh'

Specify multiple inputs and outputs:

% datalad run -m 'run my script' -i 'data/*' \
 -i 'datafile.txt' -o 'output_dir/*' -o \
 'outfile.txt' 'code/script.sh'

Use ** to match any file at any directory depth recursively. Single *
does not check files within matched directories.:

% datalad run -m 'run my script' -i 'data/**/*.dat' \
 -o 'output_dir/**' 'code/script.sh'

Options

COMMAND

command for execution. A leading ‘–’ can be used to disambiguate this command from the preceding options to DataLad.

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

specify the dataset to record the command results in. An attempt is made to identify the dataset based on the current working directory. If a dataset is given, the command will be executed in the root directory of this dataset. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

-i PATH, --input PATH

A dependency for the run. Before running the command, the content for this relative path will be retrieved. A value of “.” means “run datalad get .”. The value can also be a glob. This option can be given more than once.

-o PATH, --output PATH

Prepare this relative path to be an output file of the command. A value of “.” means “run datalad unlock .” (and will fail if some content isn’t present). For any other value, if the content of this file is present, unlock the file. Otherwise, remove it. The value can also be a glob. This option can be given more than once.

--expand {inputs|outputs|both}

Expand globs when storing inputs and/or outputs in the commit message. Constraints: value must be one of (‘inputs’, ‘outputs’, ‘both’)

--assume-ready {inputs|outputs|both}

Assume that inputs do not need to be retrieved and/or outputs do not need to unlocked or removed before running the command. This option allows you to avoid the expense of these preparation steps if you know that they are unnecessary. Constraints: value must be one of (‘inputs’, ‘outputs’, ‘both’)

--explicit

Consider the specification of inputs and outputs to be explicit. Don’t warn if the repository is dirty, and only save modifications to the listed outputs.

-m MESSAGE, --message MESSAGE

a description of the state or the changes made to a dataset. Constraints: value must be a string or value must be NONE

--sidecar {yes|no}

By default, the configuration variable ‘datalad.run.record-sidecar’ determines whether a record with information on a command’s execution is placed into a separate record file instead of the commit message (default: off). This option can be used to override the configured behavior on a case-by-case basis. Sidecar files are placed into the dataset’s ‘.datalad/runinfo’ directory (customizable via the ‘datalad.run.record-directory’ configuration variable). Constraints: value must be NONE or value must be convertible to type bool

--dry-run {basic|command}

Do not run the command; just display details about the command execution. A value of “basic” reports a few important details about the execution, including the expanded command and expanded inputs and outputs. “command” displays the expanded command only. Note that input and output globs underneath an uninstalled dataset will be left unexpanded because no subdatasets will be installed for a dry run. Constraints: value must be one of (‘basic’, ‘command’)

-J NJOBS, --jobs NJOBS

how many parallel jobs (where possible) to use. “auto” corresponds to the number defined by ‘datalad.runtime.max-annex-jobs’ configuration item NOTE: This option can only parallelize input retrieval (get) and output recording (save). DataLad does NOT parallelize your scripts for you. Constraints: value must be convertible to type ‘int’ or value must be NONE or value must be one of (‘auto’,)

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad status

Synopsis

datalad status [-h] [-d DATASET] [--annex [{basic|availability|all}]] [--untracked
 {no|normal|all}] [-r] [-R LEVELS] [-e {no|commit|full}] [-t
 {raw|eval}] [--version] [PATH ...]

Description

Report on the state of dataset content.

This is an analog to git status that is simultaneously crippled and more
powerful. It is crippled, because it only supports a fraction of the
functionality of its counter part and only distinguishes a subset of the
states that Git knows about. But it is also more powerful as it can handle
status reports for a whole hierarchy of datasets, with the ability to
report on a subset of the content (selection of paths) across any number
of datasets in the hierarchy.

Path conventions

All reports are guaranteed to use absolute paths that are underneath the
given or detected reference dataset, regardless of whether query paths are
given as absolute or relative paths (with respect to the working directory,
or to the reference dataset, when such a dataset is given explicitly).
Moreover, so-called “explicit relative paths” (i.e. paths that start with
‘.’ or ‘..’) are also supported, and are interpreted as relative paths with
respect to the current working directory regardless of whether a reference
dataset with specified.

When it is necessary to address a subdataset record in a superdataset
without causing a status query for the state _within_ the subdataset
itself, this can be achieved by explicitly providing a reference dataset
and the path to the root of the subdataset like so:

datalad status --dataset . subdspath

In contrast, when the state of the subdataset within the superdataset is
not relevant, a status query for the content of the subdataset can be
obtained by adding a trailing path separator to the query path (rsync-like
syntax):

datalad status --dataset . subdspath/

When both aspects are relevant (the state of the subdataset content
and the state of the subdataset within the superdataset), both queries
can be combined:

datalad status --dataset . subdspath subdspath/

When performing a recursive status query, both status aspects of subdataset
are always included in the report.

Content types

The following content types are distinguished:

	‘dataset’ – any top-level dataset, or any subdataset that is properly
registered in superdataset

	‘directory’ – any directory that does not qualify for type ‘dataset’

	‘file’ – any file, or any symlink that is placeholder to an annexed
file when annex-status reporting is enabled

	‘symlink’ – any symlink that is not used as a placeholder for an annexed
file

Content states

The following content states are distinguished:

	‘clean’

	‘added’

	‘modified’

	‘deleted’

	‘untracked’

Examples

Report on the state of a dataset:

% datalad status

Report on the state of a dataset and all subdatasets:

% datalad status -r

Address a subdataset record in a superdataset without causing a status
query for the state _within_ the subdataset itself:

% datalad status -d . mysubdataset

Get a status query for the state within the subdataset without causing
a status query for the superdataset (using trailing path separator in
the query path)::

% datalad status -d . mysubdataset/

Report on the state of a subdataset in a superdataset and on the state
within the subdataset:

% datalad status -d . mysubdataset mysubdataset/

Report the file size of annexed content in a dataset:

% datalad status --annex

Options

PATH

path to be evaluated. Constraints: value must be a string or value must be NONE

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

specify the dataset to query. If no dataset is given, an attempt is made to identify the dataset based on the current working directory. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

--annex [{basic|availability|all}]

Switch whether to include information on the annex content of individual files in the status report, such as recorded file size. By default no annex information is reported (faster). Three report modes are available: basic information like file size and key name (‘basic’); additionally test whether file content is present in the local annex (‘availability’; requires one or two additional file system stat calls, but does not call git-annex), this will add the result properties ‘has_content’ (boolean flag) and ‘objloc’ (absolute path to an existing annex object file); or ‘all’ which will report all available information (presently identical to ‘availability’). The ‘basic’ mode will be assumed when this option is given, but no mode is specified. Constraints: value must be one of (‘basic’, ‘availability’, ‘all’)

--untracked {no|normal|all}

If and how untracked content is reported when comparing a revision to the state of the working tree. ‘no’: no untracked content is reported; ‘normal’: untracked files and entire untracked directories are reported as such; ‘all’: report individual files even in fully untracked directories. Constraints: value must be one of (‘no’, ‘normal’, ‘all’) [Default: ‘normal’]

-r, --recursive

if set, recurse into potential subdatasets.

-R LEVELS, --recursion-limit LEVELS

limit recursion into subdatasets to the given number of levels. Constraints: value must be convertible to type ‘int’ or value must be NONE

-e {no|commit|full}, --eval-subdataset-state {no|commit|full}

Evaluation of subdataset state (clean vs. modified) can be expensive for deep dataset hierarchies as subdataset have to be tested recursively for uncommitted modifications. Setting this option to ‘no’ or ‘commit’ can substantially boost performance by limiting what is being tested. With ‘no’ no state is evaluated and subdataset result records typically do not contain a ‘state’ property. With ‘commit’ only a discrepancy of the HEAD commit shasum of a subdataset and the shasum recorded in the superdataset’s record is evaluated, and the ‘state’ result property only reflects this aspect. With ‘full’ any other modification is considered too (see the ‘untracked’ option for further tailoring modification testing). Constraints: value must be one of (‘no’, ‘commit’, ‘full’) [Default: ‘full’]

-t {raw|eval}, --report-filetype {raw|eval}

THIS OPTION IS IGNORED. It will be removed in a future release. Dataset component types are always reported as-is (previous ‘raw’ mode), unless annex- reporting is enabled with the –annex option, in which case symlinks that represent annexed files will be reported as type=’file’. Constraints: value must be one of (‘raw’, ‘eval’)

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad diff

Synopsis

datalad diff [-h] [-f REVISION] [-t REVISION] [-d DATASET] [--annex
 [{basic|availability|all}]] [--untracked {no|normal|all}] [-r]
 [-R LEVELS] [--version] [PATH ...]

Description

Report differences between two states of a dataset (hierarchy)

The two to-be-compared states are given via the –from and –to options.
These state identifiers are evaluated in the context of the (specified
or detected) dataset. In the case of a recursive report on a dataset
hierarchy, corresponding state pairs for any subdataset are determined
from the subdataset record in the respective superdataset. Only changes
recorded in a subdataset between these two states are reported, and so on.

Any paths given as additional arguments will be used to constrain the
difference report. As with Git’s diff, it will not result in an error when
a path is specified that does not exist on the filesystem.

Reports are very similar to those of the STATUS command, with the
distinguished content types and states being identical.

Examples

Show unsaved changes in a dataset:

% datalad diff

Compare a previous dataset state identified by shasum against current
worktree:

% datalad diff --from <SHASUM>

Compare two branches against each other:

% datalad diff --from branch1 --to branch2

Show unsaved changes in the dataset and potential subdatasets:

% datalad diff -r

Show unsaved changes made to a particular file:

% datalad diff <path/to/file>

Options

PATH

path to constrain the report to. Constraints: value must be a string or value must be NONE

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-f REVISION, --from REVISION

original state to compare to, as given by any identifier that Git understands. Constraints: value must be a string [Default: ‘HEAD’]

-t REVISION, --to REVISION

state to compare against the original state, as given by any identifier that Git understands. If none is specified, the state of the working tree will be compared. Constraints: value must be a string or value must be NONE

-d DATASET, --dataset DATASET

specify the dataset to query. If no dataset is given, an attempt is made to identify the dataset based on the current working directory. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

--annex [{basic|availability|all}]

Switch whether to include information on the annex content of individual files in the status report, such as recorded file size. By default no annex information is reported (faster). Three report modes are available: basic information like file size and key name (‘basic’); additionally test whether file content is present in the local annex (‘availability’; requires one or two additional file system stat calls, but does not call git-annex), this will add the result properties ‘has_content’ (boolean flag) and ‘objloc’ (absolute path to an existing annex object file); or ‘all’ which will report all available information (presently identical to ‘availability’). The ‘basic’ mode will be assumed when this option is given, but no mode is specified. Constraints: value must be one of (‘basic’, ‘availability’, ‘all’)

--untracked {no|normal|all}

If and how untracked content is reported when comparing a revision to the state of the working tree. ‘no’: no untracked content is reported; ‘normal’: untracked files and entire untracked directories are reported as such; ‘all’: report individual files even in fully untracked directories. Constraints: value must be one of (‘no’, ‘normal’, ‘all’) [Default: ‘normal’]

-r, --recursive

if set, recurse into potential subdatasets.

-R LEVELS, --recursion-limit LEVELS

limit recursion into subdatasets to the given number of levels. Constraints: value must be convertible to type ‘int’ or value must be NONE

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad clone

Synopsis

datalad clone [-h] [-d DATASET] [-D DESCRIPTION] [--reckless
 [auto|ephemeral|shared-...]] [--version] SOURCE [PATH] ...

Description

Obtain a dataset (copy) from a URL or local directory

The purpose of this command is to obtain a new clone (copy) of a dataset
and place it into a not-yet-existing or empty directory. As such CLONE
provides a strict subset of the functionality offered by install. Only a
single dataset can be obtained, and immediate recursive installation of
subdatasets is not supported. However, once a (super)dataset is installed
via CLONE, any content, including subdatasets can be obtained by a
subsequent get command.

Primary differences over a direct git clone call are 1) the automatic
initialization of a dataset annex (pure Git repositories are equally
supported); 2) automatic registration of the newly obtained dataset as a
subdataset (submodule), if a parent dataset is specified; 3) support
for additional resource identifiers (DataLad resource identifiers as used
on datasets.datalad.org, and RIA store URLs as used for store.datalad.org
- optionally in specific versions as identified by a branch or a tag; see
examples); and 4) automatic configurable generation of alternative access
URL for common cases (such as appending ‘.git’ to the URL in case the
accessing the base URL failed).

In case the clone is registered as a subdataset, the original URL passed to
CLONE is recorded in .gitmodules of the parent dataset in addition
to the resolved URL used internally for git-clone. This allows to preserve
datalad specific URLs like ria+ssh://… for subsequent calls to GET if
the subdataset was locally removed later on.

URL mapping configuration

‘clone’ supports the transformation of URLs via (multi-part) substitution
specifications. A substitution specification is defined as a configuration
setting ‘datalad.clone.url-substition.<seriesID>’ with a string containing
a match and substitution expression, each following Python’s regular
expression syntax. Both expressions are concatenated to a single string
with an arbitrary delimiter character. The delimiter is defined by
prefixing the string with the delimiter. Prefix and delimiter are stripped
from the expressions (Example: “,^http://(.*)$,https://1”). This setting
can be defined multiple times, using the same ‘<seriesID>’. Substitutions
in a series will be applied incrementally, in order of their definition.
The first substitution in such a series must match, otherwise no further
substitutions in a series will be considered. However, following the first
match all further substitutions in a series are processed, regardless
whether intermediate expressions match or not. Substitution series themselves
have no particular order, each matching series will result in a candidate
clone URL. Consequently, the initial match specification in a series should
be as precise as possible to prevent inflation of candidate URLs.

SEEALSO

	handbook:3-001 (http://handbook.datalad.org/symbols)
	More information on Remote Indexed Archive (RIA) stores

Examples

Install a dataset from GitHub into the current directory:

% datalad clone https://github.com/datalad-datasets/longnow-podcasts.git

Install a dataset into a specific directory:

% datalad clone https://github.com/datalad-datasets/longnow-podcasts.git \
 myfavpodcasts

Install a dataset as a subdataset into the current dataset:

% datalad clone -d . https://github.com/datalad-datasets/longnow-podcasts.git

Install the main superdataset from datasets.datalad.org:

% datalad clone ///

Install a dataset identified by a literal alias from store.datalad.org:

% datalad clone ria+http://store.datalad.org#~hcp-openaccess

Install a dataset in a specific version as identified by a branch or
tag name from store.datalad.org:

% datalad clone ria+http://store.datalad.org#76b6ca66-36b1-11ea-a2e6-f0d5bf7b5561@myidentifier

Install a dataset with group-write access permissions:

% datalad clone http://example.com/dataset --reckless shared-group

Options

SOURCE

URL, DataLad resource identifier, local path or instance of dataset to be cloned. Constraints: value must be a string

PATH

path to clone into. If no PATH is provided a destination path will be derived from a source URL similar to git clone.

GIT CLONE OPTIONS

Options to pass to git clone. Any argument specified after SOURCE and the optional PATH will be passed to git-clone. Note that not all options will lead to viable results. For example ‘–single-branch’ will not result in a functional annex repository because both a regular branch and the git-annex branch are required. Note that a version in a RIA URL takes precedence over ‘–branch’.

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

(parent) dataset to clone into. If given, the newly cloned dataset is registered as a subdataset of the parent. Also, if given, relative paths are interpreted as being relative to the parent dataset, and not relative to the working directory. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

-D DESCRIPTION, --description DESCRIPTION

short description to use for a dataset location. Its primary purpose is to help humans to identify a dataset copy (e.g., “mike’s dataset on lab server”). Note that when a dataset is published, this information becomes available on the remote side. Constraints: value must be a string or value must be NONE

--reckless [auto|ephemeral|shared-…]

Obtain a dataset or subdatset and set it up in a potentially unsafe way for performance, or access reasons. Use with care, any dataset is marked as ‘untrusted’. The reckless mode is stored in a dataset’s local configuration under ‘datalad.clone.reckless’, and will be inherited to any of its subdatasets. Supported modes are: [‘auto’]: hard-link files between local clones. In-place modification in any clone will alter original annex content. [‘ephemeral’]: symlink annex to origin’s annex and discard local availability info via git- annex-dead ‘here’ and declares this annex private. Shares an annex between origin and clone w/o git-annex being aware of it. In case of a change in origin you need to update the clone before you’re able to save new content on your end. Alternative to ‘auto’ when hardlinks are not an option, or number of consumed inodes needs to be minimized. Note that this mode can only be used with clones from non-bare repositories or a RIA store! Otherwise two different annex object tree structures (dirhashmixed vs dirhashlower) will be used simultaneously, and annex keys using the respective other structure will be inaccessible. [‘shared-<mode>’]: set up repository and annex permission to enable multi-user access. This disables the standard write protection of annex’ed files. <mode> can be any value support by ‘git init –shared=’, such as ‘group’, or ‘all’. Constraints: value must be one of (True, False, ‘auto’, ‘ephemeral’) or value must start with ‘shared-’

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad push

Synopsis

datalad push [-h] [-d DATASET] [--to SIBLING] [--since SINCE] [--data
 {anything|nothing|auto|auto-if-wanted}] [-f
 {all|gitpush|checkdatapresent}] [-r] [-R LEVELS] [-J NJOBS]
 [--version] [PATH ...]

Description

Push a dataset to a known sibling.

This makes a saved state of a dataset available to a sibling or special
remote data store of a dataset. Any target sibling must already exist and
be known to the dataset.

By default, all files tracked in the last saved state (of the current
branch) will be copied to the target location. Optionally, it is
possible to limit a push to changes relative to a particular point in
the version history of a dataset (e.g. a release tag) using the
–since option in conjunction with the specification of a reference
dataset. In recursive mode subdatasets will also be evaluated, and
only those subdatasets are pushed where a change was recorded that is
reflected in the current state of the top-level reference dataset.

	NOTE
	Power-user info: This command uses git push, and git
annex copy to push a dataset. Publication targets are either configured
remote Git repositories, or git-annex special remotes (if they support
data upload).

Options

PATH

path to constrain a push to. If given, only data or changes for those paths are considered for a push. Constraints: value must be a string or value must be NONE

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

specify the dataset to push. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

--to SIBLING

name of the target sibling. If no name is given an attempt is made to identify the target based on the dataset’s configuration (i.e. a configured tracking branch, or a single sibling that is configured for push). Constraints: value must be a string or value must be NONE

--since SINCE

specifies commit-ish (tag, shasum, etc.) from which to look for changes to decide whether pushing is necessary. If ‘^’ is given, the last state of the current branch at the sibling is taken as a starting point. Constraints: value must be a string or value must be NONE

--data {anything|nothing|auto|auto-if-wanted}

what to do with (annex’ed) data. ‘anything’ would cause transfer of all annexed content, ‘nothing’ would avoid call to git annex copy altogether. ‘auto’ would use ‘git annex copy’ with ‘–auto’ thus transferring only data which would satisfy “wanted” or “numcopies” settings for the remote (thus “nothing” otherwise). ‘auto-if-wanted’ would enable ‘–auto’ mode only if there is a “wanted” setting for the remote, and transfer ‘anything’ otherwise. Constraints: value must be one of (‘anything’, ‘nothing’, ‘auto’, ‘auto-if-wanted’) [Default: ‘auto-if-wanted’]

-f {all|gitpush|checkdatapresent}, --force {all|gitpush|checkdatapresent}

force particular operations, possibly overruling safety protections or optimizations: use –force with git-push (‘gitpush’); do not use –fast with git-annex copy (‘checkdatapresent’); combine all force modes (‘all’). Constraints: value must be one of (‘all’, ‘gitpush’, ‘checkdatapresent’)

-r, --recursive

if set, recurse into potential subdatasets.

-R LEVELS, --recursion-limit LEVELS

limit recursion into subdatasets to the given number of levels. Constraints: value must be convertible to type ‘int’ or value must be NONE

-J NJOBS, --jobs NJOBS

how many parallel jobs (where possible) to use. “auto” corresponds to the number defined by ‘datalad.runtime.max-annex-jobs’ configuration item NOTE: This option can only parallelize input retrieval (get) and output recording (save). DataLad does NOT parallelize your scripts for you. Constraints: value must be convertible to type ‘int’ or value must be NONE or value must be one of (‘auto’,)

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad add-readme

Synopsis

datalad add-readme [-h] [-d DATASET] [--existing {skip|append|replace}] [--version]
 [PATH]

Description

Add basic information about DataLad datasets to a README file

The README file is added to the dataset and the addition is saved
in the dataset.
Note: Make sure that no unsaved modifications to your dataset’s
.gitattributes file exist.

Options

PATH

Path of the README file within the dataset. Constraints: value must be a string [Default: ‘README.md’]

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

Dataset to add information to. If no dataset is given, an attempt is made to identify the dataset based on the current working directory. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

--existing {skip|append|replace}

How to react if a file with the target name already exists: ‘skip’: do nothing; ‘append’: append information to the existing file; ‘replace’: replace the existing file with new content. Constraints: value must be one of (‘skip’, ‘append’, ‘replace’) [Default: ‘skip’]

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad addurls

Synopsis

datalad addurls [-h] [-d DATASET] [-t TYPE] [-x REGEXP] [-m FORMAT] [--key FORMAT]
 [--message MESSAGE] [-n] [--fast] [--ifexists {overwrite|skip}]
 [--missing-value VALUE] [--nosave] [--version-urls] [-c PROC]
 [-J NJOBS] [--drop-after] [--on-collision
 {error|error-if-different|take-first|take-last}] [--version]
 URL-FILE URL-FORMAT FILENAME-FORMAT

Description

Create and update a dataset from a list of URLs.

Format specification

Several arguments take format strings. These are similar to normal Python
format strings where the names from URL-FILE (column names for a comma-
or tab-separated file or properties for JSON) are available as
placeholders. If URL-FILE is a CSV or TSV file, a positional index can
also be used (i.e., “{0}” for the first column). Note that a placeholder
cannot contain a ‘:’ or ‘!’.

In addition, the FILENAME-FORMAT arguments has a few special
placeholders.

	_repindex

The constructed file names must be unique across all fields rows. To
avoid collisions, the special placeholder “_repindex” can be added to
the formatter. Its value will start at 0 and increment every time a
file name repeats.

	_url_hostname, _urlN, _url_basename*

Various parts of the formatted URL are available. Take
“http://datalad.org/asciicast/seamless_nested_repos.sh” as an example.

“datalad.org” is stored as “_url_hostname”. Components of the URL’s
path can be referenced as “_urlN”. “_url0” and “_url1” would map to
“asciicast” and “seamless_nested_repos.sh”, respectively. The final
part of the path is also available as “_url_basename”.

This name is broken down further. “_url_basename_root” and
“_url_basename_ext” provide access to the root name and extension.
These values are similar to the result of os.path.splitext, but, in the
case of multiple periods, the extension is identified using the same
length heuristic that git-annex uses. As a result, the extension of
“file.tar.gz” would be “.tar.gz”, not “.gz”. In addition, the fields
“_url_basename_root_py” and “_url_basename_ext_py” provide access to
the result of os.path.splitext.

	_url_filename*

These are similar to _url_basename* fields, but they are obtained with
a server request. This is useful if the file name is set in the
Content-Disposition header.

Examples

Consider a file “avatars.csv” that contains:

who,ext,link
neurodebian,png,https://avatars3.githubusercontent.com/u/260793
datalad,png,https://avatars1.githubusercontent.com/u/8927200

To download each link into a file name composed of the ‘who’ and ‘ext’
fields, we could run:

$ datalad addurls -d avatar_ds avatars.csv '{link}' '{who}.{ext}'

The -d avatar_ds is used to create a new dataset in “$PWD/avatar_ds”.

If we were already in a dataset and wanted to create a new subdataset in an
“avatars” subdirectory, we could use “//” in the FILENAME-FORMAT
argument:

$ datalad addurls avatars.csv '{link}' 'avatars//{who}.{ext}'

If the information is represented as JSON lines instead of comma separated
values or a JSON array, you can use a utility like jq to transform the JSON
lines into an array that addurls accepts:

$... | jq --slurp . | datalad addurls - '{link}' '{who}.{ext}'

NOTE

For users familiar with ‘git annex addurl’: A large part of this
plugin’s functionality can be viewed as transforming data from
URL-FILE into a “url filename” format that fed to ‘git annex addurl
–batch –with-files’.

Options

URL-FILE

A file that contains URLs or information that can be used to construct URLs. Depending on the value of –input-type, this should be a comma- or tab-separated file (with a header as the first row) or a JSON file (structured as a list of objects with string values). If ‘-’, read from standard input, taking the content as JSON when –input-type is at its default value of ‘ext’.

URL-FORMAT

A format string that specifies the URL for each entry. See the ‘Format Specification’ section above.

FILENAME-FORMAT

Like URL-FORMAT, but this format string specifies the file to which the URL’s content will be downloaded. The name should be a relative path and will be taken as relative to the top-level dataset, regardless of whether it is specified via –dataset or inferred. The file name may contain directories. The separator “//” can be used to indicate that the left-side directory should be created as a new subdataset. See the ‘Format Specification’ section above.

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

Add the URLs to this dataset (or possibly subdatasets of this dataset). An empty or non-existent directory is passed to create a new dataset. New subdatasets can be specified with FILENAME-FORMAT. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

-t TYPE, --input-type TYPE

Whether URL-FILE should be considered a CSV file, TSV file, or JSON file. The default value, “ext”, means to consider URL-FILE as a JSON file if it ends with “.json” or a TSV file if it ends with “.tsv”. Otherwise, treat it as a CSV file. Constraints: value must be one of (‘ext’, ‘csv’, ‘tsv’, ‘json’) [Default: ‘ext’]

-x REGEXP, --exclude-autometa REGEXP

By default, metadata field=value pairs are constructed with each column in URL- FILE, excluding any single column that is specified via URL-FORMAT. This argument can be used to exclude columns that match a regular expression. If set to ‘*’ or an empty string, automatic metadata extraction is disabled completely. This argument does not affect metadata set explicitly with –meta.

-m FORMAT, --meta FORMAT

A format string that specifies metadata. It should be structured as “<field>=<value>”. As an example, “location={3}” would mean that the value for the “location” metadata field should be set the value of the fourth column. This option can be given multiple times.

--key FORMAT

A format string that specifies an annex key for the file content. In this case, the file is not downloaded; instead the key is used to create the file without content. The value should be structured as “[et:]<input backend>[-s<bytes>]–<hash>”. The optional “et:” prefix, which requires git- annex 8.20201116 or later, signals to toggle extension state of the input backend (i.e., MD5 vs MD5E). As an example, “et:MD5-s{size}–{md5sum}” would use the ‘md5sum’ and ‘size’ columns to construct the key, migrating the key from MD5 to MD5E, with an extension based on the file name. Note: If the input backend itself is an annex extension backend (i.e., a backend with a trailing “E”), the key’s extension will not be updated to match the extension of the corresponding file name. Thus, unless the input keys and file names are generated from git- annex, it is recommended to avoid using extension backends as input. If an extension is desired, use the plain variant as input and prepend “et:” so that git-annex will migrate from the plain backend to the extension variant.

--message MESSAGE

Use this message when committing the URL additions. Constraints: value must be NONE or value must be a string

-n, --dry-run

Report which URLs would be downloaded to which files and then exit.

--fast

If True, add the URLs, but don’t download their content. WARNING: ONLY USE THIS OPTION IF YOU UNDERSTAND THE CONSEQUENCES. If the content of the URLs is not downloaded, then datalad will refuse to retrieve the contents with datalad get <file> by default because the content of the URLs is not verified. Add annex.security.allow-unverified-downloads = ACKTHPPT to your git config to bypass the safety check. Underneath, this passes the –fast flag to git annex addurl.

--ifexists {overwrite|skip}

What to do if a constructed file name already exists. The default behavior is to proceed with the git annex addurl, which will fail if the file size has changed. If set to ‘overwrite’, remove the old file before adding the new one. If set to ‘skip’, do not add the new file. Constraints: value must be one of (‘overwrite’, ‘skip’)

--missing-value VALUE

When an empty string is encountered, use this value instead. Constraints: value must be NONE or value must be a string

--nosave

by default all modifications to a dataset are immediately saved. Giving this option will disable this behavior.

--version-urls

Try to add a version ID to the URL. This currently only has an effect on HTTP URLs for AWS S3 buckets. s3:// URL versioning is not yet supported, but any URL that already contains a “versionId=” parameter will be used as is.

-c PROC, --cfg-proc PROC

Pass this –cfg_proc value when calling CREATE to make datasets.

-J NJOBS, --jobs NJOBS

how many parallel jobs (where possible) to use. “auto” corresponds to the number defined by ‘datalad.runtime.max-annex-jobs’ configuration item. Constraints: value must be convertible to type ‘int’ or value must be NONE or value must be one of (‘auto’,)

--drop-after

drop files after adding to annex.

--on-collision {error|error-if-different|take-first|take-last}

What to do when more than one row produces the same file name. By default an error is triggered. “error-if-different” suppresses that error if rows for a given file name collision have the same URL and metadata. “take-first” or “take- last” indicate to instead take the first row or last row from each set of colliding rows. Constraints: value must be one of (‘error’, ‘error-if- different’, ‘take-first’, ‘take-last’) [Default: ‘error’]

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad copy-file

Synopsis

datalad copy-file [-h] [-d DATASET] [--recursive] [--target-dir DIRECTORY] [--specs-from
 SOURCE] [-m MESSAGE] [--version] [PATH ...]

Description

Copy files and their availability metadata from one dataset to another.

The difference to a system copy command is that here additional content
availability information, such as registered URLs, is also copied to the
target dataset. Moreover, potentially required git-annex special remote
configurations are detected in a source dataset and are applied to a target
dataset in an analogous fashion. It is possible to copy a file for which no
content is available locally, by just copying the required metadata on
content identity and availability.

	NOTE
	At the moment, only URLs for the special remotes ‘web’ (git-annex built-in)
and ‘datalad’ are recognized and transferred.

The interface is modeled after the POSIX ‘cp’ command, but with one
additional way to specify what to copy where: –specs-from allows the
caller to flexibly input source-destination path pairs.

This command can copy files out of and into a hierarchy of nested
datasets. Unlike with other DataLad command, the –recursive switch
does not enable recursion into subdatasets, but is analogous to the
POSIX ‘cp’ command switch and enables subdirectory recursion,
regardless of dataset boundaries. It is not necessary to enable
recursion in order to save changes made to nested target subdatasets.

Examples

Copy a file into a dataset ‘myds’ using a path and a target directory
specification, and save its addition to ‘myds’:

% datalad copy-file path/to/myfile -d path/to/myds

Copy a file to a dataset ‘myds’ and save it under a new name by
providing two paths:

% datalad copy-file path/to/myfile path/to/myds/new -d path/to/myds

Copy a file into a dataset without saving it:

% datalad copy-file path/to/myfile -t path/to/myds

Copy a directory and its subdirectories into a dataset ‘myds’ and save
the addition in ‘myds’:

% datalad copy-file path/to/dir -r -d path/to/myds

Copy files using a path and optionally target specification from a
file:

% datalad copy-file -d path/to/myds --specs-from specfile

Read a specification from stdin and pipe the output of a find command
into the copy-file command:

% find <expr> | datalad copy-file -d path/to/myds --specs-from -

Options

PATH

paths to copy (and possibly a target path to copy to). Constraints: value must be a string or value must be NONE

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

root dataset to save after copy operations are completed. All destination paths must be within this dataset, or its subdatasets. If no dataset is given, dataset modifications will be left unsaved. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

--recursive, -r

copy directories recursively.

--target-dir DIRECTORY, -t DIRECTORY

copy all source files into this DIRECTORY. This value is overridden by any explicit destination path provided via –specs-from. When not given, this defaults to the path of the dataset specified via –dataset. Constraints: value must be a string or value must be NONE

--specs-from SOURCE

read list of source (and destination) path names from a given file, or stdin (with ‘-‘). Each line defines either a source path, or a source/destination path pair (separated by a null byte character).

-m MESSAGE, --message MESSAGE

a description of the state or the changes made to a dataset. Constraints: value must be a string or value must be NONE

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad drop

Synopsis

datalad drop [-h] [--what {filecontent|allkeys|datasets|all}] [--reckless
 {modification|availability|undead|kill}] [-d DATASET] [-r] [-R
 LEVELS] [-J NJOBS] [--nocheck] [--if-dirty IF_DIRTY] [--version]
 [PATH ...]

Description

Drop content of individual files or entire (sub)datasets

This command is the antagonist of ‘get’. It can undo the retrieval of file
content, and the installation of subdatasets.

Dropping is a safe-by-default operation. Before dropping any information,
the command confirms the continued availability of file-content (see e.g.,
configuration ‘annex.numcopies’), and the state of all dataset branches
from at least one known dataset sibling. Moreover, prior removal of an
entire dataset annex, that it is confirmed that it is no longer marked
as existing in the network of dataset siblings.

Importantly, all checks regarding version history availability and local
annex availability are performed using the current state of remote
siblings as known to the local dataset. This is done for performance
reasons and for resilience in case of absent network connectivity. To
ensure decision making based on up-to-date information, it is advised to
execute a dataset update before dropping dataset components.

Examples

Drop single file content:

% datalad drop <path/to/file>

Drop all file content in the current dataset:

% datalad drop

Drop all file content in a dataset and all its subdatasets:

% datalad drop -d <path/to/dataset> -r

Disable check to ensure the configured minimum number of remote
sources for dropped data:

% datalad drop <path/to/content> --reckless availability

Drop (uninstall) an entire dataset (will fail with subdatasets
present):

% datalad drop --what all

Kill a dataset recklessly with any existing subdatasets too(this will
be fast, but will disable any and all safety checks):

% datalad drop --what all, --reckless kill --recursive

Options

PATH

path of a dataset or dataset component to be dropped. Constraints: value must be a string or value must be NONE

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

--what {filecontent|allkeys|datasets|all}

select what type of items shall be dropped. With ‘filecontent’, only the file content (git-annex keys) of files in a dataset’s worktree will be dropped. With ‘allkeys’, content of any version of any file in any branch (including, but not limited to the worktree) will be dropped. This effectively empties the annex of a local dataset. With ‘datasets’, only complete datasets will be dropped (implies ‘allkeys’ mode for each such dataset), but no filecontent will be dropped for any files in datasets that are not dropped entirely. With ‘all’, content for any matching file or dataset will be dropped entirely. Constraints: value must be one of (‘filecontent’, ‘allkeys’, ‘datasets’, ‘all’) [Default: ‘filecontent’]

--reckless {modification|availability|undead|kill}

disable individual or all data safety measures that would normally prevent potentially irreversible data-loss. With ‘modification’, unsaved modifications in a dataset will not be detected. This improves performance at the cost of permitting potential loss of unsaved or untracked dataset components. With ‘availability’, detection of dataset/branch-states that are only available in the local dataset, and detection of an insufficient number of file-content copies will be disabled. Especially the latter is a potentially expensive check which might involve numerous network transactions. With ‘undead’, detection of whether a to-be-removed local annex is still known to exist in the network of dataset-clones is disabled. This could cause zombie-records of invalid file availability. With ‘kill’, all safety-checks are disabled. Constraints: value must be one of (‘modification’, ‘availability’, ‘undead’, ‘kill’)

-d DATASET, --dataset DATASET

specify the dataset to perform drop from. If no dataset is given, the current working directory is used as operation context. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

-r, --recursive

if set, recurse into potential subdatasets.

-R LEVELS, --recursion-limit LEVELS

limit recursion into subdatasets to the given number of levels. Constraints: value must be convertible to type ‘int’ or value must be NONE

-J NJOBS, --jobs NJOBS

how many parallel jobs (where possible) to use. “auto” corresponds to the number defined by ‘datalad.runtime.max-annex-jobs’ configuration item. Constraints: value must be convertible to type ‘int’ or value must be NONE or value must be one of (‘auto’,)

--nocheck

DEPRECATED: use ‘–reckless availability’.

--if-dirty IF_DIRTY

DEPRECATED and IGNORED: use –reckless instead.

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad get

Synopsis

datalad get [-h] [-s LABEL] [-d PATH] [-r] [-R LEVELS] [-n] [-D DESCRIPTION]
 [--reckless [auto|ephemeral|shared-...]] [-J NJOBS] [--version]
 [PATH ...]

Description

Get any dataset content (files/directories/subdatasets).

This command only operates on dataset content. To obtain a new independent
dataset from some source use the CLONE command.

By default this command operates recursively within a dataset, but not
across potential subdatasets, i.e. if a directory is provided, all files in
the directory are obtained. Recursion into subdatasets is supported too. If
enabled, relevant subdatasets are detected and installed in order to
fulfill a request.

Known data locations for each requested file are evaluated and data are
obtained from some available location (according to git-annex configuration
and possibly assigned remote priorities), unless a specific source is
specified.

Getting subdatasets

Just as DataLad supports getting file content from more than one location,
the same is supported for subdatasets, including a ranking of individual
sources for prioritization.

The following location candidates are considered. For each candidate a
cost is given in parenthesis, higher values indicate higher cost, and thus
lower priority:

	A datalad URL recorded in .gitmodules (cost 590). This allows for
datalad URLs that require additional handling/resolution by datalad, like
ria-schemes (ria+http, ria+ssh, etc.)

	A URL or absolute path recorded for git in .gitmodules (cost 600).

	URL of any configured superdataset remote that is known to have the
desired submodule commit, with the submodule path appended to it.
There can be more than one candidate (cost 650).

	In case .gitmodules contains a relative path instead of a URL,
the URL of any configured superdataset remote that is known to have the
desired submodule commit, with this relative path appended to it.
There can be more than one candidate (cost 650).

	In case .gitmodules contains a relative path as a URL, the absolute
path of the superdataset, appended with this relative path (cost 900).

Additional candidate URLs can be generated based on templates specified as
configuration variables with the pattern

datalad.get.subdataset-source-candidate-<name>

where NAME is an arbitrary identifier. If name starts with three digits
(e.g. ‘400myserver’) these will be interpreted as a cost, and the
respective candidate will be sorted into the generated candidate list
according to this cost. If no cost is given, a default of 700 is used.

A template string assigned to such a variable can utilize the Python format
mini language and may reference a number of properties that are inferred
from the parent dataset’s knowledge about the target subdataset. Properties
include any submodule property specified in the respective .gitmodules
record. For convenience, an existing datalad-id record is made available
under the shortened name ID.

Additionally, the URL of any configured remote that contains the respective
submodule commit is available as remoteurl-<name> property, where NAME
is the configured remote name.

Hence, such a template could be http://example.org/datasets/{id} or
http://example.org/datasets/{path}, where {id} and {path} would be
replaced by the datalad-id or PATH entry in the .gitmodules record.

If this config is committed in .datalad/config, a clone of a dataset can
look up any subdataset’s URL according to such scheme(s) irrespective of
what URL is recorded in .gitmodules.

Lastly, all candidates are sorted according to their cost (lower values
first), and duplicate URLs are stripped, while preserving the first item in the
candidate list.

	NOTE
	Power-user info: This command uses git annex get to fulfill
file handles.

Examples

Get a single file:

% datalad get <path/to/file>

Get contents of a directory:

% datalad get <path/to/dir/>

Get all contents of the current dataset and its subdatasets:

% datalad get . -r

Get (clone) a registered subdataset, but don’t retrieve data:

% datalad get -n <path/to/subds>

Options

PATH

path/name of the requested dataset component. The component must already be known to a dataset. To add new components to a dataset use the ADD command. Constraints: value must be a string or value must be NONE

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-s LABEL, --source LABEL

label of the data source to be used to fulfill requests. This can be the name of a dataset sibling or another known source. Constraints: value must be a string or value must be NONE

-d PATH, --dataset PATH

specify the dataset to perform the add operation on, in which case PATH arguments are interpreted as being relative to this dataset. If no dataset is given, an attempt is made to identify a dataset for each input path. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

-r, --recursive

if set, recurse into potential subdatasets.

-R LEVELS, --recursion-limit LEVELS

limit recursion into subdataset to the given number of levels. Alternatively, ‘existing’ will limit recursion to subdatasets that already existed on the filesystem at the start of processing, and prevent new subdatasets from being obtained recursively. Constraints: value must be convertible to type ‘int’ or value must be one of (‘existing’,) or value must be NONE

-n, --no-data

whether to obtain data for all file handles. If disabled, GET operations are limited to dataset handles. This option prevents data for file handles from being obtained.

-D DESCRIPTION, --description DESCRIPTION

short description to use for a dataset location. Its primary purpose is to help humans to identify a dataset copy (e.g., “mike’s dataset on lab server”). Note that when a dataset is published, this information becomes available on the remote side. Constraints: value must be a string or value must be NONE

--reckless [auto|ephemeral|shared-…]

Obtain a dataset or subdatset and set it up in a potentially unsafe way for performance, or access reasons. Use with care, any dataset is marked as ‘untrusted’. The reckless mode is stored in a dataset’s local configuration under ‘datalad.clone.reckless’, and will be inherited to any of its subdatasets. Supported modes are: [‘auto’]: hard-link files between local clones. In-place modification in any clone will alter original annex content. [‘ephemeral’]: symlink annex to origin’s annex and discard local availability info via git- annex-dead ‘here’ and declares this annex private. Shares an annex between origin and clone w/o git-annex being aware of it. In case of a change in origin you need to update the clone before you’re able to save new content on your end. Alternative to ‘auto’ when hardlinks are not an option, or number of consumed inodes needs to be minimized. Note that this mode can only be used with clones from non-bare repositories or a RIA store! Otherwise two different annex object tree structures (dirhashmixed vs dirhashlower) will be used simultaneously, and annex keys using the respective other structure will be inaccessible. [‘shared-<mode>’]: set up repository and annex permission to enable multi-user access. This disables the standard write protection of annex’ed files. <mode> can be any value support by ‘git init –shared=’, such as ‘group’, or ‘all’. Constraints: value must be one of (True, False, ‘auto’, ‘ephemeral’) or value must start with ‘shared-’

-J NJOBS, --jobs NJOBS

how many parallel jobs (where possible) to use. “auto” corresponds to the number defined by ‘datalad.runtime.max-annex-jobs’ configuration item NOTE: This option can only parallelize input retrieval (get) and output recording (save). DataLad does NOT parallelize your scripts for you. Constraints: value must be convertible to type ‘int’ or value must be NONE or value must be one of (‘auto’,) [Default: ‘auto’]

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad install

Synopsis

datalad install [-h] [-s URL-OR-PATH] [-d DATASET] [-g] [-D DESCRIPTION] [-r] [-R
 LEVELS] [--reckless [auto|ephemeral|shared-...]] [-J NJOBS]
 [--branch BRANCH] [--version] [URL-OR-PATH ...]

Description

Install one or many datasets from remote URL(s) or local PATH source(s).

This command creates local sibling(s) of existing dataset(s) from
(remote) locations specified as URL(s) or path(s). Optional recursion into
potential subdatasets, and download of all referenced data is supported.
The new dataset(s) can be optionally registered in an existing
superdataset by identifying it via the DATASET argument (the new
dataset’s path needs to be located within the superdataset for that).

If no explicit -s|–source option is specified, then all positional
URL-OR-PATH arguments are considered to be “sources” if they are URLs
or target locations if they are paths. If a target location path
corresponds to a submodule, the source location for it is figured out
from its record in the .gitmodules. If -s|–source is specified,
then a single optional positional PATH would be taken as the
destination path for that dataset.

It is possible to provide a brief description to label the dataset’s
nature and location, e.g. “Michael’s music on black laptop”. This helps
humans to identify data locations in distributed scenarios. By default an
identifier comprised of user and machine name, plus path will be generated.

When only partial dataset content shall be obtained, it is recommended to
use this command without the get-data flag, followed by a
get operation to obtain the desired data.

	NOTE
	Power-user info: This command uses git clone, and
git annex init to prepare the dataset. Registering to a
superdataset is performed via a git submodule add operation
in the discovered superdataset.

Examples

Install a dataset from GitHub into the current directory:

% datalad install https://github.com/datalad-datasets/longnow-podcasts.git

Install a dataset as a subdataset into the current dataset:

% datalad install -d . \
 --source='https://github.com/datalad-datasets/longnow-podcasts.git'

Install a dataset into ‘podcasts’ (not ‘longnow-podcasts’) directory,
and get all content right away:

% datalad install --get-data \
 -s https://github.com/datalad-datasets/longnow-podcasts.git podcasts

Install a dataset with all its subdatasets:

% datalad install -r \
 https://github.com/datalad-datasets/longnow-podcasts.git

Options

URL-OR-PATH

path/name of the installation target. If no PATH is provided a destination path will be derived from a source URL similar to git clone.

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-s URL-OR-PATH, --source URL-OR-PATH

URL or local path of the installation source. Constraints: value must be a string or value must be NONE

-d DATASET, --dataset DATASET

specify the dataset to perform the install operation on. If no dataset is given, an attempt is made to identify the dataset in a parent directory of the current working directory and/or the PATH given. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

-g, --get-data

if given, obtain all data content too.

-D DESCRIPTION, --description DESCRIPTION

short description to use for a dataset location. Its primary purpose is to help humans to identify a dataset copy (e.g., “mike’s dataset on lab server”). Note that when a dataset is published, this information becomes available on the remote side. Constraints: value must be a string or value must be NONE

-r, --recursive

if set, recurse into potential subdatasets.

-R LEVELS, --recursion-limit LEVELS

limit recursion into subdatasets to the given number of levels. Constraints: value must be convertible to type ‘int’ or value must be NONE

--reckless [auto|ephemeral|shared-…]

Obtain a dataset or subdatset and set it up in a potentially unsafe way for performance, or access reasons. Use with care, any dataset is marked as ‘untrusted’. The reckless mode is stored in a dataset’s local configuration under ‘datalad.clone.reckless’, and will be inherited to any of its subdatasets. Supported modes are: [‘auto’]: hard-link files between local clones. In-place modification in any clone will alter original annex content. [‘ephemeral’]: symlink annex to origin’s annex and discard local availability info via git- annex-dead ‘here’ and declares this annex private. Shares an annex between origin and clone w/o git-annex being aware of it. In case of a change in origin you need to update the clone before you’re able to save new content on your end. Alternative to ‘auto’ when hardlinks are not an option, or number of consumed inodes needs to be minimized. Note that this mode can only be used with clones from non-bare repositories or a RIA store! Otherwise two different annex object tree structures (dirhashmixed vs dirhashlower) will be used simultaneously, and annex keys using the respective other structure will be inaccessible. [‘shared-<mode>’]: set up repository and annex permission to enable multi-user access. This disables the standard write protection of annex’ed files. <mode> can be any value support by ‘git init –shared=’, such as ‘group’, or ‘all’. Constraints: value must be one of (True, False, ‘auto’, ‘ephemeral’) or value must start with ‘shared-’

-J NJOBS, --jobs NJOBS

how many parallel jobs (where possible) to use. “auto” corresponds to the number defined by ‘datalad.runtime.max-annex-jobs’ configuration item NOTE: This option can only parallelize input retrieval (get) and output recording (save). DataLad does NOT parallelize your scripts for you. Constraints: value must be convertible to type ‘int’ or value must be NONE or value must be one of (‘auto’,) [Default: ‘auto’]

--branch BRANCH

Clone source at this branch or tag. This option applies only to the top-level dataset not any subdatasets that may be cloned when installing recursively. Note that if the source is a RIA URL with a version, it takes precedence over this option. Constraints: value must be a string or value must be NONE

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad no-annex

Synopsis

datalad no-annex [-h] [-d DATASET] [--pattern PATTERN [PATTERN ...]] [--ref-dir
 REF_DIR] [--makedirs] [--version]

Description

Configure a dataset to never put some content into the dataset’s annex

This can be useful in mixed datasets that also contain textual data, such
as source code, which can be efficiently and more conveniently managed
directly in Git.

Patterns generally look like this:

code/*

which would match all file in the code directory. In order to match all
files under code/, including all its subdirectories use such a
pattern:

code/**

Note that this command works incrementally, hence any existing configuration
(e.g. from a previous plugin run) is amended, not replaced.

Options

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

“specify the dataset to configure. If no dataset is given, an attempt is made to identify the dataset based on the current working directory. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

--pattern PATTERN [PATTERN …]

list of path patterns. Any content whose path is matching any pattern will not be annexed when added to a dataset, but instead will be tracked directly in Git. Path pattern have to be relative to the directory given by the REF_DIR option. By default, patterns should be relative to the root of the dataset.

--ref-dir REF_DIR

Relative path (within the dataset) to the directory that is to be configured. All patterns are interpreted relative to this path, and configuration is written to a .gitattributes file in this directory. [Default: ‘.’]

--makedirs

If set, any missing directories will be created in order to be able to place a file into --ref-dir.

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad remove

Synopsis

datalad remove [-h] [-d DATASET] [--drop {datasets|all}] [--reckless
 {modification|availability|undead|kill}] [-m MESSAGE] [-J NJOBS]
 [--recursive] [--nocheck] [--nosave] [--if-dirty IF_DIRTY]
 [--version] [PATH ...]

Description

Remove components from datasets

Removing “unlinks” a dataset component, such as a file or subdataset, from
a dataset. Such a removal advances the state of a dataset, just like adding
new content. A remove operation can be undone, by restoring a previous
dataset state, but might require re-obtaining file content and subdatasets
from remote locations.

This command relies on the ‘drop’ command for safe operation. By default,
only file content from datasets which will be uninstalled as part of
a removal will be dropped. Otherwise file content is retained, such that
restoring a previous version also immediately restores file content access,
just as it is the case for files directly committed to Git. This default
behavior can be changed to always drop content prior removal, for cases
where a minimal storage footprint for local datasets installations is
desirable.

Removing a dataset component is always a recursive operation. Removing a
directory, removes all content underneath the directory too. If
subdatasets are located under a to-be-removed path, they will be
uninstalled entirely, and all their content dropped. If any subdataset
can not be uninstalled safely, the remove operation will fail and halt.

	Changed in version 0.16
	More in-depth and comprehensive safety-checks are now performed by
default.
The --if-dirty argument is ignored, will be removed in
a future release, and can be removed for a safe-by-default behavior. For
other cases consider the --reckless argument.
The --save argument is ignored and will be removed in a future
release, a dataset modification is now always saved. Consider save’s
--amend argument for post-remove fix-ups.
The --recursive argument is ignored, and will be removed
in a future release. Removal operations are always recursive, and the
parameter can be stripped from calls for a safe-by-default behavior.

	Deprecated in version 0.16
	The --check argument will be removed in a future release.
It needs to be replaced with --reckless.

Examples

Permanently remove a subdataset (and all further subdatasets contained
in it) from a dataset:

% datalad remove -d <path/to/dataset> <path/to/subds>

Permanently remove a superdataset (with all subdatasets) from the
filesystem:

% datalad remove -d <path/to/dataset>

DANGER-ZONE: Fast wipe-out a dataset and all its subdataset, bypassing
all safety checks:

% datalad remove -d <path/to/dataset> --reckless kill

Options

PATH

path of a dataset or dataset component to be removed. Constraints: value must be a string or value must be NONE

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

specify the dataset to perform remove from. If no dataset is given, the current working directory is used as operation context. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

--drop {datasets|all}

which dataset components to drop prior removal. This parameter is passed on to the underlying drop operation as its ‘what’ argument. Constraints: value must be one of (‘datasets’, ‘all’) [Default: ‘datasets’]

--reckless {modification|availability|undead|kill}

disable individual or all data safety measures that would normally prevent potentially irreversible data-loss. With ‘modification’, unsaved modifications in a dataset will not be detected. This improves performance at the cost of permitting potential loss of unsaved or untracked dataset components. With ‘availability’, detection of dataset/branch-states that are only available in the local dataset, and detection of an insufficient number of file-content copies will be disabled. Especially the latter is a potentially expensive check which might involve numerous network transactions. With ‘undead’, detection of whether a to-be-removed local annex is still known to exist in the network of dataset-clones is disabled. This could cause zombie-records of invalid file availability. With ‘kill’, all safety-checks are disabled. Constraints: value must be one of (‘modification’, ‘availability’, ‘undead’, ‘kill’)

-m MESSAGE, --message MESSAGE

a description of the state or the changes made to a dataset. Constraints: value must be a string or value must be NONE

-J NJOBS, --jobs NJOBS

how many parallel jobs (where possible) to use. “auto” corresponds to the number defined by ‘datalad.runtime.max-annex-jobs’ configuration item. Constraints: value must be convertible to type ‘int’ or value must be NONE or value must be one of (‘auto’,)

--recursive, -r

DEPRECATED and IGNORED: removal is always a recursive operation.

--nocheck

DEPRECATED: use ‘–reckless availability’.

--nosave

DEPRECATED and IGNORED; use save –amend instead.

--if-dirty IF_DIRTY

DEPRECATED and IGNORED: use –reckless instead.

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad subdatasets

Synopsis

datalad subdatasets [-h] [-d DATASET] [--state {present|absent|any}] [--fulfilled
 FULFILLED] [-r] [-R LEVELS] [--contains PATH] [--bottomup]
 [--set-property NAME VALUE] [--delete-property NAME] [--version]
 [PATH ...]

Description

Report subdatasets and their properties.

The following properties are reported (if possible) for each matching
subdataset record.

	“name”
	Name of the subdataset in the parent (often identical with the
relative path in the parent dataset)

	“path”
	Absolute path to the subdataset

	“parentds”
	Absolute path to the parent dataset

	“gitshasum”
	SHA1 of the subdataset commit recorded in the parent dataset

	“state”
	Condition of the subdataset: ‘absent’, ‘present’

	“gitmodule_url”
	URL of the subdataset recorded in the parent

	“gitmodule_name”
	Name of the subdataset recorded in the parent

	“gitmodule_<label>”
	Any additional configuration property on record.

Performance note: Property modification, requesting BOTTOMUP reporting
order, or a particular numerical recursion_limit implies an internal
switch to an alternative query implementation for recursive query that is
more flexible, but also notably slower (performs one call to Git per
dataset versus a single call for all combined).

The following properties for subdatasets are recognized by DataLad
(without the ‘gitmodule_’ prefix that is used in the query results):

	“datalad-recursiveinstall”
	If set to ‘skip’, the respective subdataset is skipped when DataLad
is recursively installing its superdataset. However, the subdataset
remains installable when explicitly requested, and no other features
are impaired.

	“datalad-url”
	If a subdataset was originally established by cloning, ‘datalad-url’
records the URL that was used to do so. This might be different from
‘url’ if the URL contains datalad specific pieces like any URL of the
form “ria+<some protocol>…”.

Options

PATH

path/name to query for subdatasets. Defaults to the current directory. Constraints: value must be a string or value must be NONE

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

specify the dataset to query. If no dataset is given, an attempt is made to identify the dataset based on the input and/or the current working directory. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

--state {present|absent|any}

indicate which (sub)datasets to consider: either only locally present, absent, or any of those two kinds. Constraints: value must be one of (‘present’, ‘absent’, ‘any’) [Default: ‘any’]

--fulfilled FULFILLED

DEPRECATED: use –state instead. If given, must be a boolean flag indicating whether to consider either only locally present or absent datasets. By default all subdatasets are considered regardless of their status. Constraints: value must be convertible to type bool or value must be NONE [Default: None(DEPRECATED)]

-r, --recursive

if set, recurse into potential subdatasets.

-R LEVELS, --recursion-limit LEVELS

limit recursion into subdatasets to the given number of levels. Constraints: value must be convertible to type ‘int’ or value must be NONE

--contains PATH

limit to the subdatasets containing the given path. If a root path of a subdataset is given, the last considered dataset will be the subdataset itself. This option can be given multiple times, in which case datasets that contain any of the given paths will be considered. Constraints: value must be a string or value must be NONE

--bottomup

whether to report subdatasets in bottom-up order along each branch in the dataset tree, and not top-down.

--set-property NAME VALUE

Name and value of one or more subdataset properties to be set in the parent dataset’s .gitmodules file. The property name is case-insensitive, must start with a letter, and consist only of alphanumeric characters. The value can be a Python format() template string wrapped in ‘<>’ (e.g. ‘<{gitmodule_name}>’). Supported keywords are any item reported in the result properties of this command, plus ‘refds_relpath’ and ‘refds_relname’: the relative path of a subdataset with respect to the base dataset of the command call, and, in the latter case, the same string with all directory separators replaced by dashes. This option can be given multiple times. Constraints: value must be a string or value must be NONE

--delete-property NAME

Name of one or more subdataset properties to be removed from the parent dataset’s .gitmodules file. This option can be given multiple times. Constraints: value must be a string or value must be NONE

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad unlock

Synopsis

datalad unlock [-h] [-d DATASET] [-r] [-R LEVELS] [--version] [path ...]

Description

Unlock file(s) of a dataset

Unlock files of a dataset in order to be able to edit the actual content

Examples

Unlock a single file:

% datalad unlock <path/to/file>

Unlock all contents in the dataset:

% datalad unlock .

Options

path

file(s) to unlock. Constraints: value must be a string or value must be NONE

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

“specify the dataset to unlock files in. If no dataset is given, an attempt is made to identify the dataset based on the current working directory. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

-r, --recursive

if set, recurse into potential subdatasets.

-R LEVELS, --recursion-limit LEVELS

limit recursion into subdatasets to the given number of levels. Constraints: value must be convertible to type ‘int’ or value must be NONE

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad siblings

Synopsis

datalad siblings [-h] [-d DATASET] [-s NAME] [--url [URL]] [--pushurl PUSHURL] [-D
 DESCRIPTION] [--fetch] [--as-common-datasrc NAME]
 [--publish-depends SIBLINGNAME] [--publish-by-default REFSPEC]
 [--annex-wanted EXPR] [--annex-required EXPR] [--annex-group
 EXPR] [--annex-groupwanted EXPR] [--inherit] [--no-annex-info]
 [-r] [-R LEVELS] [--version]
 [{query|add|remove|configure|enable}]

Description

Manage sibling configuration

This command offers four different actions: ‘query’, ‘add’, ‘remove’,
‘configure’, ‘enable’. ‘query’ is the default action and can be used to obtain
information about (all) known siblings. ‘add’ and ‘configure’ are highly
similar actions, the only difference being that adding a sibling
with a name that is already registered will fail, whereas
re-configuring a (different) sibling under a known name will not
be considered an error. ‘enable’ can be used to complete access
configuration for non-Git sibling (aka git-annex special remotes).
Lastly, the ‘remove’ action allows for the
removal (or de-configuration) of a registered sibling.

For each sibling (added, configured, or queried) all known sibling
properties are reported. This includes:

	“name”
	Name of the sibling

	“path”
	Absolute path of the dataset

	“url”
	For regular siblings at minimum a “fetch” URL, possibly also a
“pushurl”

Additionally, any further configuration will also be reported using
a key that matches that in the Git configuration.

By default, sibling information is rendered as one line per sibling
following this scheme:

<dataset_path>: <sibling_name>(<+|->) [<access_specification]

where the + and - labels indicate the presence or absence of a
remote data annex at a particular remote, and ACCESS_SPECIFICATION
contains either a URL and/or a type label for the sibling.

Options

{query|add|remove|configure|enable}

command action selection (see general documentation). Constraints: value must be one of (‘query’, ‘add’, ‘remove’, ‘configure’, ‘enable’) [Default: ‘query’]

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

specify the dataset to configure. If no dataset is given, an attempt is made to identify the dataset based on the input and/or the current working directory. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

-s NAME, --name NAME

name of the sibling. For addition with path “URLs” and sibling removal this option is mandatory, otherwise the hostname part of a given URL is used as a default. This option can be used to limit ‘query’ to a specific sibling. Constraints: value must be a string or value must be NONE

--url [URL]

the URL of or path to the dataset sibling named by NAME. For recursive operation it is required that a template string for building subdataset sibling URLs is given. List of currently available placeholders: %NAME the name of the dataset, where slashes are replaced by dashes. Constraints: value must be a string or value must be NONE

--pushurl PUSHURL

in case the URL cannot be used to publish to the dataset sibling, this option specifies a URL to be used instead. If no url is given, PUSHURL serves as url as well. Constraints: value must be a string or value must be NONE

-D DESCRIPTION, --description DESCRIPTION

short description to use for a dataset location. Its primary purpose is to help humans to identify a dataset copy (e.g., “mike’s dataset on lab server”). Note that when a dataset is published, this information becomes available on the remote side. Constraints: value must be a string or value must be NONE

--fetch

fetch the sibling after configuration.

--as-common-datasrc NAME

configure a sibling as a common data source of the dataset that can be automatically used by all consumers of the dataset. The sibling must be a regular Git remote with a configured HTTP(S) URL.

--publish-depends SIBLINGNAME

add a dependency such that the given existing sibling is always published prior to the new sibling. This equals setting a configuration item ‘remote.SIBLINGNAME.datalad-publish-depends’. This option can be given more than once to configure multiple dependencies. Constraints: value must be a string or value must be NONE

--publish-by-default REFSPEC

add a refspec to be published to this sibling by default if nothing specified. Constraints: value must be a string or value must be NONE

--annex-wanted EXPR

expression to specify ‘wanted’ content for the repository/sibling. See https://git-annex.branchable.com/git-annex-wanted/ for more information. Constraints: value must be a string or value must be NONE

--annex-required EXPR

expression to specify ‘required’ content for the repository/sibling. See https://git-annex.branchable.com/git-annex-required/ for more information. Constraints: value must be a string or value must be NONE

--annex-group EXPR

expression to specify a group for the repository. See https://git- annex.branchable.com/git-annex-group/ for more information. Constraints: value must be a string or value must be NONE

--annex-groupwanted EXPR

expression for the groupwanted. Makes sense only if –annex-wanted=”groupwanted” and annex-group is given too. See https://git-annex.branchable.com/git-annex- groupwanted/ for more information. Constraints: value must be a string or value must be NONE

--inherit

if sibling is missing, inherit settings (git config, git annex wanted/group/groupwanted) from its super-dataset.

--no-annex-info

Whether to query all information about the annex configurations of siblings. Can be disabled if speed is a concern.

-r, --recursive

if set, recurse into potential subdatasets.

-R LEVELS, --recursion-limit LEVELS

limit recursion into subdatasets to the given number of levels. Constraints: value must be convertible to type ‘int’ or value must be NONE

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad create-sibling

Synopsis

datalad create-sibling [-h] [-s [NAME]] [--target-dir PATH] [--target-url URL]
 [--target-pushurl URL] [--dataset DATASET] [-r] [-R LEVELS]
 [--existing MODE] [--shared
 {false|true|umask|group|all|world|everybody|0xxx}] [--group
 GROUP] [--ui {false|true|html_filename}] [--as-common-datasrc
 NAME] [--publish-by-default REFSPEC] [--publish-depends
 SIBLINGNAME] [--annex-wanted EXPR] [--annex-group EXPR]
 [--annex-groupwanted EXPR] [--inherit] [--since SINCE]
 [--version] [SSHURL]

Description

Create a dataset sibling on a UNIX-like Shell (local or SSH)-accessible machine

Given a local dataset, and a path or SSH login information this command
creates a remote dataset repository and configures it as a dataset sibling
to be used as a publication target (see PUBLISH command).

Various properties of the remote sibling can be configured (e.g. name
location on the server, read and write access URLs, and access
permissions.

Optionally, a basic web-viewer for DataLad datasets can be installed
at the remote location.

This command supports recursive processing of dataset hierarchies, creating
a remote sibling for each dataset in the hierarchy. By default, remote
siblings are created in hierarchical structure that reflects the
organization on the local file system. However, a simple templating
mechanism is provided to produce a flat list of datasets (see
–target-dir).

Options

SSHURL

Login information for the target server. This can be given as a URL (ssh://host/path), SSH-style (user@host:path) or just a local path. Unless overridden, this also serves the future dataset’s access URL and path on the server. Constraints: value must be a string

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-s [NAME], --name [NAME]

sibling name to create for this publication target. If RECURSIVE is set, the same name will be used to label all the subdatasets’ siblings. When creating a target dataset fails, no sibling is added. Constraints: value must be a string or value must be NONE

--target-dir PATH

path to the directory on the server where the dataset shall be created. By default this is set to the URL (or local path) specified via SSHURL. If a relative path is provided here, it is interpreted as being relative to the user’s home directory on the server (or relative to SSHURL, when that is a local path). Additional features are relevant for recursive processing of datasets with subdatasets. By default, the local dataset structure is replicated on the server. However, it is possible to provide a template for generating different target directory names for all (sub)datasets. Templates can contain certain placeholder that are substituted for each (sub)dataset. For example: “/mydirectory/dataset%RELNAME”. Supported placeholders: %RELNAME - the name of the datasets, with any slashes replaced by dashes. Constraints: value must be a string or value must be NONE

--target-url URL

“public” access URL of the to-be-created target dataset(s) (default: SSHURL). Accessibility of this URL determines the access permissions of potential consumers of the dataset. As with target_dir, templates (same set of placeholders) are supported. Also, if specified, it is provided as the annex description. Constraints: value must be a string or value must be NONE

--target-pushurl URL

In case the TARGET_URL cannot be used to publish to the dataset, this option specifies an alternative URL for this purpose. As with target_url, templates (same set of placeholders) are supported. Constraints: value must be a string or value must be NONE

--dataset DATASET, -d DATASET

specify the dataset to create the publication target for. If no dataset is given, an attempt is made to identify the dataset based on the current working directory. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

-r, --recursive

if set, recurse into potential subdatasets.

-R LEVELS, --recursion-limit LEVELS

limit recursion into subdatasets to the given number of levels. Constraints: value must be convertible to type ‘int’ or value must be NONE

--existing MODE

action to perform, if a sibling is already configured under the given name and/or a target (non-empty) directory already exists. In this case, a dataset can be skipped (‘skip’), the sibling configuration be updated (‘reconfigure’), or process interrupts with error (‘error’). DANGER ZONE: If ‘replace’ is used, an existing target directory will be forcefully removed, re-initialized, and the sibling (re-)configured (thus implies ‘reconfigure’). REPLACE could lead to data loss, so use with care. To minimize possibility of data loss, in interactive mode DataLad will ask for confirmation, but it would raise an exception in non- interactive mode. Constraints: value must be one of (‘skip’, ‘error’, ‘reconfigure’, ‘replace’) [Default: ‘error’]

--shared {false|true|umask|group|all|world|everybody|0xxx}

if given, configures the access permissions on the server for multi-users (this could include access by a webserver!). Possible values for this option are identical to those of git init –shared and are described in its documentation. Constraints: value must be a string or value must be convertible to type bool or value must be NONE

--group GROUP

Filesystem group for the repository. Specifying the group is particularly important when –shared=group. Constraints: value must be a string or value must be NONE

--ui {false|true|html_filename}

publish a web interface for the dataset with an optional user-specified name for the html at publication target. defaults to index.html at dataset root. Constraints: value must be convertible to type bool or value must be a string [Default: False]

--as-common-datasrc NAME

configure the created sibling as a common data source of the dataset that can be automatically used by all consumers of the dataset (technical: git-annex auto- enabled special remote).

--publish-by-default REFSPEC

add a refspec to be published to this sibling by default if nothing specified. Constraints: value must be a string or value must be NONE

--publish-depends SIBLINGNAME

add a dependency such that the given existing sibling is always published prior to the new sibling. This equals setting a configuration item ‘remote.SIBLINGNAME.datalad-publish-depends’. This option can be given more than once to configure multiple dependencies. Constraints: value must be a string or value must be NONE

--annex-wanted EXPR

expression to specify ‘wanted’ content for the repository/sibling. See https://git-annex.branchable.com/git-annex-wanted/ for more information. Constraints: value must be a string or value must be NONE

--annex-group EXPR

expression to specify a group for the repository. See https://git- annex.branchable.com/git-annex-group/ for more information. Constraints: value must be a string or value must be NONE

--annex-groupwanted EXPR

expression for the groupwanted. Makes sense only if –annex-wanted=”groupwanted” and annex-group is given too. See https://git-annex.branchable.com/git-annex- groupwanted/ for more information. Constraints: value must be a string or value must be NONE

--inherit

if sibling is missing, inherit settings (git config, git annex wanted/group/groupwanted) from its super-dataset.

--since SINCE

limit processing to subdatasets that have been changed since a given state (by tag, branch, commit, etc). This can be used to create siblings for recently added subdatasets. If ‘^’ is given, the last state of the current branch at the sibling is taken as a starting point. Constraints: value must be a string or value must be NONE

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad create-sibling-github

Synopsis

datalad create-sibling-github [-h] [--dataset DATASET] [-r] [-R LEVELS] [-s NAME] [--existing
 {skip|error|reconfigure|replace}] [--github-login TOKEN]
 [--credential NAME] [--github-organization NAME]
 [--access-protocol {https|ssh|https-ssh}] [--publish-depends
 SIBLINGNAME] [--private] [--description DESCRIPTION] [--dryrun]
 [--dry-run] [--api URL] [--version] [<org-name>/]<repo-basename>

Description

Create dataset sibling on GitHub.org (or an enterprise deployment).

GitHub is a popular commercial solution for code hosting and collaborative
development. GitHub cannot host dataset content (but see LFS,
http://handbook.datalad.org/r.html?LFS). However, in combination with other
data sources and siblings, publishing a dataset to GitHub can facilitate
distribution and exchange, while still allowing any dataset consumer to
obtain actual data content from alternative sources.

In order to be able to use this command, a personal access token has to be
generated on the platform (Account->Settings->Developer Settings->Personal
access tokens->Generate new token).

This command can be configured with
“datalad.create-sibling-ghlike.extra-remote-settings.NETLOC.KEY=VALUE” in
order to add any local KEY = VALUE configuration to the created sibling in
the local .git/config file. NETLOC is the domain of the Github instance to
apply the configuration for.
This leads to a behavior that is equivalent to calling datalad’s
siblings('configure', ...)``||``siblings configure command with the
respective KEY-VALUE pair after creating the sibling.
The configuration, like any other, could be set at user- or system level, so
users do not need to add this configuration to every sibling created with
the service at NETLOC themselves.

	Changed in version 0.16
	The API has been aligned with the some create-sibling-...
commands of other GitHub-like services, such as GOGS, GIN,
GitTea.

	Deprecated in version 0.16
	The --dryrun option will be removed in a future release, use
the renamed --dry-run option instead.
The --github-login option will be removed in a future
release, use the --credential option instead.
The --github-organization option will be
removed in a future release, prefix the repository name with <org>/
instead.

Examples

Use a new sibling on GIN as a common data source that is auto-
available when cloning from GitHub:

% datalad create-sibling-gin myrepo -s gin

the sibling on GitHub will be used for collaborative work
% datalad create-sibling-github myrepo -s github

register the storage of the public GIN repo as a data source
% datalad siblings configure -s gin --as-common-datasrc gin-storage

announce its availability on github
% datalad push --to github

Options

[<org-name>/]<repo-(base)name>

repository name, optionally including an ‘<organization>/’ prefix if the repository shall not reside under a user’s namespace. When operating recursively, a suffix will be appended to this name for each subdataset. Constraints: value must be a string

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

--dataset DATASET, -d DATASET

dataset to create the publication target for. If not given, an attempt is made to identify the dataset based on the current working directory. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

-r, --recursive

if set, recurse into potential subdatasets.

-R LEVELS, --recursion-limit LEVELS

limit recursion into subdatasets to the given number of levels. Constraints: value must be convertible to type ‘int’ or value must be NONE

-s NAME, --name NAME

name of the sibling in the local dataset installation (remote name). Constraints: value must be a string or value must be NONE [Default: ‘github’]

--existing {skip|error|reconfigure|replace}

behavior when already existing or configured siblings are discovered: skip the dataset (‘skip’), update the configuration (‘reconfigure’), or fail (‘error’). DEPRECATED DANGER ZONE: With ‘replace’, an existing repository will be irreversibly removed, re-initialized, and the sibling (re-)configured (thus implies ‘reconfigure’). REPLACE could lead to data loss! In interactive sessions a confirmation prompt is shown, an exception is raised in non-interactive sessions. The ‘replace’ mode will be removed in a future release. Constraints: value must be one of (‘skip’, ‘error’, ‘reconfigure’, ‘replace’) [Default: ‘error’]

--github-login TOKEN

Deprecated, use the credential parameter instead. If given must be a personal access token. Constraints: value must be a string or value must be NONE

--credential NAME

name of the credential providing a personal access token to be used for authorization. The token can be supplied via configuration setting ‘datalad.credential.<name>.token’, or environment variable DATALAD_CREDENTIAL_<NAME>_TOKEN, or will be queried from the active credential store using the provided name. If none is provided, the host-part of the API URL is used as a name (e.g. ‘https://api.github.com’ -> ‘api.github.com’). Constraints: value must be a string or value must be NONE

--github-organization NAME

Deprecated, prepend a repo name with an ‘<orgname>/’ prefix instead. Constraints: value must be a string or value must be NONE

--access-protocol {https|ssh|https-ssh}

access protocol/URL to configure for the sibling. With ‘https-ssh’ SSH will be used for write access, whereas HTTPS is used for read access. Constraints: value must be one of (‘https’, ‘ssh’, ‘https-ssh’) [Default: ‘https’]

--publish-depends SIBLINGNAME

add a dependency such that the given existing sibling is always published prior to the new sibling. This equals setting a configuration item ‘remote.SIBLINGNAME.datalad-publish-depends’. This option can be given more than once to configure multiple dependencies. Constraints: value must be a string or value must be NONE

--private

if set, create a private repository.

--description DESCRIPTION

Brief description, displayed on the project’s page. Constraints: value must be a string or value must be NONE

--dryrun

Deprecated. Use the renamed --dry-run parameter.

--dry-run

if set, no repository will be created, only tests for sibling name collisions will be performed, and would-be repository names are reported for all relevant datasets.

--api URL

URL of the GitHub instance API. Constraints: value must be a string or value must be NONE [Default: ‘https://api.github.com’]

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad create-sibling-gitlab

Synopsis

datalad create-sibling-gitlab [-h] [--site SITENAME] [--project NAME/LOCATION] [--layout
 {collection|flat}] [--dataset DATASET] [-r] [-R LEVELS] [-s
 NAME] [--existing {skip|error|reconfigure}] [--access
 {http|ssh|ssh+http}] [--publish-depends SIBLINGNAME]
 [--description DESCRIPTION] [--dryrun] [--dry-run] [--version]
 [PATH ...]

Description

Create dataset sibling at a GitLab site

An existing GitLab project, or a project created via the GitLab web
interface can be configured as a sibling with the siblings
command. Alternatively, this command can create a GitLab project at any
location/path a given user has appropriate permissions for. This is
particularly helpful for recursive sibling creation for subdatasets. API
access and authentication are implemented via python-gitlab, and all its
features are supported. A particular GitLab site must be configured in a
named section of a python-gitlab.cfg file (see
https://python-gitlab.readthedocs.io/en/stable/cli-usage.html#configuration-file-format
for details), such as:

[mygit]
url = https://git.example.com
api_version = 4
private_token = abcdefghijklmnopqrst

Subsequently, this site is identified by its name (‘mygit’ in the example
above).

(Recursive) sibling creation for all, or a selected subset of subdatasets
is supported with two different project layouts (see –layout):

	“flat”
	All datasets are placed as GitLab projects in the same group. The project name
of the top-level dataset follows the configured
datalad.gitlab-SITENAME-project configuration. The project names of
contained subdatasets extend the configured name with the subdatasets’
s relative path within the root dataset, with all path separator
characters replaced by ‘-’. This path separator is configurable
(see Configuration).

	“collection”
	A new group is created for the dataset hierarchy, following the
datalad.gitlab-SITENAME-project configuration. The root dataset is placed
in a “project” project inside this group, and all nested subdatasets are
represented inside the group using a “flat” layout. The root datasets
project name is configurable (see Configuration).

GitLab cannot host dataset content. However, in combination with
other data sources (and siblings), publishing a dataset to GitLab can
facilitate distribution and exchange, while still allowing any dataset
consumer to obtain actual data content from alternative sources.

Configuration

Many configuration switches and options for GitLab sibling creation can
be provided as arguments to the command. However, it is also possible to
specify a particular setup in a dataset’s configuration. This is
particularly important when managing large collections of datasets.
Configuration options are:

	“datalad.gitlab-default-site”
	Name of the default GitLab site (see –site)

	“datalad.gitlab-SITENAME-siblingname”
	Name of the sibling configured for the local dataset that points
to the GitLab instance SITENAME (see –name)

	“datalad.gitlab-SITENAME-layout”
	Project layout used at the GitLab instance SITENAME (see –layout)

	“datalad.gitlab-SITENAME-access”
	Access method used for the GitLab instance SITENAME (see –access)

	“datalad.gitlab-SITENAME-project”
	Project “location/path” used for a datasets at GitLab instance
SITENAME (see –project). Configuring this is useful for deriving
project paths for subdatasets, relative to superdataset.
The root-level group (“location”) needs to be created beforehand via
GitLab’s web interface.

	“datalad.gitlab-default-projectname”
	The collection layout publishes (sub)datasets as projects
with a custom name. The default name “project” can be overridden with
this configuration.

	“datalad.gitlab-default-pathseparator”
	The flat and collection layout represent subdatasets with project names
that correspond to their path within the superdataset, with the regular path separator replaced
with a “-”: superdataset-subdataset. This configuration can be used to override
this default separator.

This command can be configured with
“datalad.create-sibling-ghlike.extra-remote-settings.NETLOC.KEY=VALUE” in
order to add any local KEY = VALUE configuration to the created sibling in
the local .git/config file. NETLOC is the domain of the Gitlab instance to
apply the configuration for.
This leads to a behavior that is equivalent to calling datalad’s
siblings('configure', ...)``||``siblings configure command with the
respective KEY-VALUE pair after creating the sibling.
The configuration, like any other, could be set at user- or system level, so
users do not need to add this configuration to every sibling created with
the service at NETLOC themselves.

Options

PATH

selectively create siblings for any datasets underneath a given path. By default only the root dataset is considered.

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

--site SITENAME

name of the GitLab site to create a sibling at. Must match an existing python- gitlab configuration section with location and authentication settings (see https://python-gitlab.readthedocs.io/en/stable/cli-usage.html#configuration). By default the dataset configuration is consulted. Constraints: value must be NONE or value must be a string

--project NAME/LOCATION

project name/location at the GitLab site. If a subdataset of the reference dataset is processed, its project path is automatically determined by the LAYOUT configuration, by default. Users need to create the root-level GitLab group (NAME) via the webinterface before running the command. Constraints: value must be NONE or value must be a string

--layout {collection|flat}

layout of projects at the GitLab site, if a collection, or a hierarchy of datasets and subdatasets is to be created. By default the dataset configuration is consulted. Constraints: value must be one of (‘collection’, ‘flat’)

--dataset DATASET, -d DATASET

reference or root dataset. If no path constraints are given, a sibling for this dataset will be created. In this and all other cases, the reference dataset is also consulted for the GitLab configuration, and desired project layout. If no dataset is given, an attempt is made to identify the dataset based on the current working directory. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

-r, --recursive

if set, recurse into potential subdatasets.

-R LEVELS, --recursion-limit LEVELS

limit recursion into subdatasets to the given number of levels. Constraints: value must be convertible to type ‘int’ or value must be NONE

-s NAME, --name NAME

name to represent the GitLab sibling remote in the local dataset installation. If not specified a name is looked up in the dataset configuration, or defaults to the SITE name. Constraints: value must be a string or value must be NONE

--existing {skip|error|reconfigure}

desired behavior when already existing or configured siblings are discovered. ‘skip’: ignore; ‘error’: fail, if access URLs differ; ‘reconfigure’: use the existing repository and reconfigure the local dataset to use it as a sibling. Constraints: value must be one of (‘skip’, ‘error’, ‘reconfigure’) [Default: ‘error’]

--access {http|ssh|ssh+http}

access method used for data transfer to and from the sibling. ‘ssh’: read and write access used the SSH protocol; ‘http’: read and write access use HTTP requests; ‘ssh+http’: read access is done via HTTP and write access performed with SSH. Dataset configuration is consulted for a default, ‘http’ is used otherwise. Constraints: value must be one of (‘http’, ‘ssh’, ‘ssh+http’)

--publish-depends SIBLINGNAME

add a dependency such that the given existing sibling is always published prior to the new sibling. This equals setting a configuration item ‘remote.SIBLINGNAME.datalad-publish-depends’. This option can be given more than once to configure multiple dependencies. Constraints: value must be a string or value must be NONE

--description DESCRIPTION

brief description for the GitLab project (displayed on the site). Constraints: value must be a string or value must be NONE

--dryrun

Deprecated. Use the renamed --dry-run parameter.

--dry-run

if set, no repository will be created, only tests for name collisions will be performed, and would-be repository names are reported for all relevant datasets.

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad create-sibling-gogs

Synopsis

datalad create-sibling-gogs [-h] [--api URL] [--dataset DATASET] [-r] [-R LEVELS] [-s NAME]
 [--existing {skip|error|reconfigure|replace}] [--credential
 NAME] [--access-protocol {https|ssh|https-ssh}]
 [--publish-depends SIBLINGNAME] [--private] [--description
 DESCRIPTION] [--dry-run] [--version]
 [<org-name>/]<repo-basename>

Description

Create a dataset sibling on a GOGS site

GOGS is a self-hosted, free and open source code hosting solution with
low resource demands that enable running it on inexpensive devices like
a Raspberry Pi, or even directly on a NAS device.

In order to be able to use this command, a personal access token has to be
generated on the platform
(Account->Your Settings->Applications->Generate New Token).

This command can be configured with
“datalad.create-sibling-ghlike.extra-remote-settings.NETLOC.KEY=VALUE” in
order to add any local KEY = VALUE configuration to the created sibling in
the local .git/config file. NETLOC is the domain of the Gogs instance to
apply the configuration for.
This leads to a behavior that is equivalent to calling datalad’s
siblings('configure', ...)``||``siblings configure command with the
respective KEY-VALUE pair after creating the sibling.
The configuration, like any other, could be set at user- or system level, so
users do not need to add this configuration to every sibling created with
the service at NETLOC themselves.

New in version 0.16

Options

[<org-name>/]<repo-(base)name>

repository name, optionally including an ‘<organization>/’ prefix if the repository shall not reside under a user’s namespace. When operating recursively, a suffix will be appended to this name for each subdataset. Constraints: value must be a string

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

--api URL

URL of the GOGS instance without a ‘api/<version>’ suffix. Constraints: value must be a string or value must be NONE

--dataset DATASET, -d DATASET

dataset to create the publication target for. If not given, an attempt is made to identify the dataset based on the current working directory. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

-r, --recursive

if set, recurse into potential subdatasets.

-R LEVELS, --recursion-limit LEVELS

limit recursion into subdatasets to the given number of levels. Constraints: value must be convertible to type ‘int’ or value must be NONE

-s NAME, --name NAME

name of the sibling in the local dataset installation (remote name). Constraints: value must be a string or value must be NONE

--existing {skip|error|reconfigure|replace}

behavior when already existing or configured siblings are discovered: skip the dataset (‘skip’), update the configuration (‘reconfigure’), or fail (‘error’). DEPRECATED DANGER ZONE: With ‘replace’, an existing repository will be irreversibly removed, re-initialized, and the sibling (re-)configured (thus implies ‘reconfigure’). REPLACE could lead to data loss! In interactive sessions a confirmation prompt is shown, an exception is raised in non-interactive sessions. The ‘replace’ mode will be removed in a future release. Constraints: value must be one of (‘skip’, ‘error’, ‘reconfigure’, ‘replace’) [Default: ‘error’]

--credential NAME

name of the credential providing a personal access token to be used for authorization. The token can be supplied via configuration setting ‘datalad.credential.<name>.token’, or environment variable DATALAD_CREDENTIAL_<NAME>_TOKEN, or will be queried from the active credential store using the provided name. If none is provided, the host-part of the API URL is used as a name (e.g. ‘https://api.github.com’ -> ‘api.github.com’). Constraints: value must be a string or value must be NONE

--access-protocol {https|ssh|https-ssh}

access protocol/URL to configure for the sibling. With ‘https-ssh’ SSH will be used for write access, whereas HTTPS is used for read access. Constraints: value must be one of (‘https’, ‘ssh’, ‘https-ssh’) [Default: ‘https’]

--publish-depends SIBLINGNAME

add a dependency such that the given existing sibling is always published prior to the new sibling. This equals setting a configuration item ‘remote.SIBLINGNAME.datalad-publish-depends’. This option can be given more than once to configure multiple dependencies. Constraints: value must be a string or value must be NONE

--private

if set, create a private repository.

--description DESCRIPTION

Brief description, displayed on the project’s page. Constraints: value must be a string or value must be NONE

--dry-run

if set, no repository will be created, only tests for sibling name collisions will be performed, and would-be repository names are reported for all relevant datasets.

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad create-sibling-gitea

Synopsis

datalad create-sibling-gitea [-h] [--dataset DATASET] [-r] [-R LEVELS] [-s NAME] [--existing
 {skip|error|reconfigure|replace}] [--api URL] [--credential
 NAME] [--access-protocol {https|ssh|https-ssh}]
 [--publish-depends SIBLINGNAME] [--private] [--description
 DESCRIPTION] [--dry-run] [--version]
 [<org-name>/]<repo-basename>

Description

Create a dataset sibling on a Gitea site

Gitea is a lightweight, free and open source code hosting solution with
low resource demands that enable running it on inexpensive devices like
a Raspberry Pi.

This command uses the main Gitea instance at https://gitea.com as the
default target, but other deployments can be used via the ‘api’
parameter.

In order to be able to use this command, a personal access token has to be
generated on the platform (Account->Settings->Applications->Generate Token).

This command can be configured with
“datalad.create-sibling-ghlike.extra-remote-settings.NETLOC.KEY=VALUE” in
order to add any local KEY = VALUE configuration to the created sibling in
the local .git/config file. NETLOC is the domain of the Gitea instance to
apply the configuration for.
This leads to a behavior that is equivalent to calling datalad’s
siblings('configure', ...)``||``siblings configure command with the
respective KEY-VALUE pair after creating the sibling.
The configuration, like any other, could be set at user- or system level, so
users do not need to add this configuration to every sibling created with
the service at NETLOC themselves.

New in version 0.16

Options

[<org-name>/]<repo-(base)name>

repository name, optionally including an ‘<organization>/’ prefix if the repository shall not reside under a user’s namespace. When operating recursively, a suffix will be appended to this name for each subdataset. Constraints: value must be a string

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

--dataset DATASET, -d DATASET

dataset to create the publication target for. If not given, an attempt is made to identify the dataset based on the current working directory. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

-r, --recursive

if set, recurse into potential subdatasets.

-R LEVELS, --recursion-limit LEVELS

limit recursion into subdatasets to the given number of levels. Constraints: value must be convertible to type ‘int’ or value must be NONE

-s NAME, --name NAME

name of the sibling in the local dataset installation (remote name). Constraints: value must be a string or value must be NONE [Default: ‘gitea’]

--existing {skip|error|reconfigure|replace}

behavior when already existing or configured siblings are discovered: skip the dataset (‘skip’), update the configuration (‘reconfigure’), or fail (‘error’). DEPRECATED DANGER ZONE: With ‘replace’, an existing repository will be irreversibly removed, re-initialized, and the sibling (re-)configured (thus implies ‘reconfigure’). REPLACE could lead to data loss! In interactive sessions a confirmation prompt is shown, an exception is raised in non-interactive sessions. The ‘replace’ mode will be removed in a future release. Constraints: value must be one of (‘skip’, ‘error’, ‘reconfigure’, ‘replace’) [Default: ‘error’]

--api URL

URL of the Gitea instance without a ‘api/<version>’ suffix. Constraints: value must be a string or value must be NONE [Default: ‘https://gitea.com’]

--credential NAME

name of the credential providing a personal access token to be used for authorization. The token can be supplied via configuration setting ‘datalad.credential.<name>.token’, or environment variable DATALAD_CREDENTIAL_<NAME>_TOKEN, or will be queried from the active credential store using the provided name. If none is provided, the host-part of the API URL is used as a name (e.g. ‘https://api.github.com’ -> ‘api.github.com’). Constraints: value must be a string or value must be NONE

--access-protocol {https|ssh|https-ssh}

access protocol/URL to configure for the sibling. With ‘https-ssh’ SSH will be used for write access, whereas HTTPS is used for read access. Constraints: value must be one of (‘https’, ‘ssh’, ‘https-ssh’) [Default: ‘https’]

--publish-depends SIBLINGNAME

add a dependency such that the given existing sibling is always published prior to the new sibling. This equals setting a configuration item ‘remote.SIBLINGNAME.datalad-publish-depends’. This option can be given more than once to configure multiple dependencies. Constraints: value must be a string or value must be NONE

--private

if set, create a private repository.

--description DESCRIPTION

Brief description, displayed on the project’s page. Constraints: value must be a string or value must be NONE

--dry-run

if set, no repository will be created, only tests for sibling name collisions will be performed, and would-be repository names are reported for all relevant datasets.

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad create-sibling-gin

Synopsis

datalad create-sibling-gin [-h] [--dataset DATASET] [-r] [-R LEVELS] [-s NAME] [--existing
 {skip|error|reconfigure|replace}] [--api URL] [--credential
 NAME] [--access-protocol {https|ssh|https-ssh}]
 [--publish-depends SIBLINGNAME] [--private] [--description
 DESCRIPTION] [--dry-run] [--version]
 [<org-name>/]<repo-basename>

Description

Create a dataset sibling on a GIN site (with content hosting)

GIN (G-Node infrastructure) is a free data management system. It is a
GitHub-like, web-based repository store and provides fine-grained access
control to shared data. GIN is built on Git and git-annex, and can natively
host DataLad datasets, including their data content!

This command uses the main GIN instance at https://gin.g-node.org as the
default target, but other deployments can be used via the ‘api’
parameter.

An SSH key, properly registered at the GIN instance, is required for data
upload via DataLad. Data download from public projects is also possible via
anonymous HTTP.

In order to be able to use this command, a personal access token has to be
generated on the platform (Account->Your Settings->Applications->Generate
New Token).

This command can be configured with
“datalad.create-sibling-ghlike.extra-remote-settings.NETLOC.KEY=VALUE” in
order to add any local KEY = VALUE configuration to the created sibling in
the local .git/config file. NETLOC is the domain of the Gin instance to
apply the configuration for.
This leads to a behavior that is equivalent to calling datalad’s
siblings('configure', ...)``||``siblings configure command with the
respective KEY-VALUE pair after creating the sibling.
The configuration, like any other, could be set at user- or system level, so
users do not need to add this configuration to every sibling created with
the service at NETLOC themselves.

New in version 0.16

Examples

Create a repo ‘myrepo’ on GIN and register it as sibling ‘mygin’:

% datalad create-sibling-gin myrepo -s mygin

Create private repos with name(-prefix) ‘myrepo’ on GIN for a dataset
and all its present subdatasets:

% datalad create-sibling-gin myrepo -r --private

Create a sibling repo on GIN, and register it as a common data source
in the dataset that is available regardless of whether the dataset was
directly cloned from GIN:

% datalad create-sibling-gin myrepo -s gin
first push creates git-annex branch remotely and obtains annex UUID
% datalad push --to gin
% datalad siblings configure -s gin --as-common-datasrc gin-storage
announce availability (redo for other siblings)
% datalad push --to gin

Options

[<org-name>/]<repo-(base)name>

repository name, optionally including an ‘<organization>/’ prefix if the repository shall not reside under a user’s namespace. When operating recursively, a suffix will be appended to this name for each subdataset. Constraints: value must be a string

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

--dataset DATASET, -d DATASET

dataset to create the publication target for. If not given, an attempt is made to identify the dataset based on the current working directory. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

-r, --recursive

if set, recurse into potential subdatasets.

-R LEVELS, --recursion-limit LEVELS

limit recursion into subdatasets to the given number of levels. Constraints: value must be convertible to type ‘int’ or value must be NONE

-s NAME, --name NAME

name of the sibling in the local dataset installation (remote name). Constraints: value must be a string or value must be NONE [Default: ‘gin’]

--existing {skip|error|reconfigure|replace}

behavior when already existing or configured siblings are discovered: skip the dataset (‘skip’), update the configuration (‘reconfigure’), or fail (‘error’). DEPRECATED DANGER ZONE: With ‘replace’, an existing repository will be irreversibly removed, re-initialized, and the sibling (re-)configured (thus implies ‘reconfigure’). REPLACE could lead to data loss! In interactive sessions a confirmation prompt is shown, an exception is raised in non-interactive sessions. The ‘replace’ mode will be removed in a future release. Constraints: value must be one of (‘skip’, ‘error’, ‘reconfigure’, ‘replace’) [Default: ‘error’]

--api URL

URL of the GIN instance without an ‘api/<version>’ suffix. Constraints: value must be a string or value must be NONE [Default: ‘https://gin.g-node.org’]

--credential NAME

name of the credential providing a personal access token to be used for authorization. The token can be supplied via configuration setting ‘datalad.credential.<name>.token’, or environment variable DATALAD_CREDENTIAL_<NAME>_TOKEN, or will be queried from the active credential store using the provided name. If none is provided, the host-part of the API URL is used as a name (e.g. ‘https://api.github.com’ -> ‘api.github.com’). Constraints: value must be a string or value must be NONE

--access-protocol {https|ssh|https-ssh}

access protocol/URL to configure for the sibling. With ‘https-ssh’ SSH will be used for write access, whereas HTTPS is used for read access. Constraints: value must be one of (‘https’, ‘ssh’, ‘https-ssh’) [Default: ‘https-ssh’]

--publish-depends SIBLINGNAME

add a dependency such that the given existing sibling is always published prior to the new sibling. This equals setting a configuration item ‘remote.SIBLINGNAME.datalad-publish-depends’. This option can be given more than once to configure multiple dependencies. Constraints: value must be a string or value must be NONE

--private

if set, create a private repository.

--description DESCRIPTION

Brief description, displayed on the project’s page. Constraints: value must be a string or value must be NONE

--dry-run

if set, no repository will be created, only tests for sibling name collisions will be performed, and would-be repository names are reported for all relevant datasets.

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad create-sibling-ria

Synopsis

datalad create-sibling-ria [-h] -s NAME [-d DATASET] [--storage-name NAME] [--alias ALIAS]
 [--post-update-hook] [--shared
 {false|true|umask|group|all|world|everybody|0xxx}] [--group
 GROUP] [--storage-sibling MODE] [--existing MODE]
 [--new-store-ok] [--trust-level TRUST-LEVEL] [-r] [-R LEVELS]
 [--no-storage-sibling] [--push-url
 ria+<ssh|file>://<host>[/path]] [--version]
 ria+<ssh|file|https>://<host>[/path]

Description

Creates a sibling to a dataset in a RIA store

Communication with a dataset in a RIA store is implemented via two
siblings. A regular Git remote (repository sibling) and a git-annex
special remote for data transfer (storage sibling) – with the former
having a publication dependency on the latter. By default, the name of the
storage sibling is derived from the repository sibling’s name by appending
“-storage”.

The store’s base path is expected to not exist, be an empty directory,
or a valid RIA store.

Notes

RIA URL format

Interactions with new or existing RIA stores require RIA URLs to identify
the store or specific datasets inside of it.

The general structure of a RIA URL pointing to a store takes the form
ria+[scheme]://<storelocation> (e.g.,
ria+ssh://[user@]hostname:/absolute/path/to/ria-store, or
ria+file:///absolute/path/to/ria-store)

The general structure of a RIA URL pointing to a dataset in a store (for
example for cloning) takes a similar form, but appends either the datasets
UUID or a “~” symbol followed by the dataset’s alias name:
ria+[scheme]://<storelocation>#<dataset-UUID> or
ria+[scheme]://<storelocation>#~<aliasname>.
In addition, specific version identifiers can be appended to the URL with an
additional “@” symbol:
ria+[scheme]://<storelocation>#<dataset-UUID>@<dataset-version>,
where dataset-version refers to a branch or tag.

RIA store layout

A RIA store is a directory tree with a dedicated subdirectory for each
dataset in the store. The subdirectory name is constructed from the
DataLad dataset ID, e.g. 124/68afe-59ec-11ea-93d7-f0d5bf7b5561, where
the first three characters of the ID are used for an intermediate
subdirectory in order to mitigate files system limitations for stores
containing a large number of datasets.

By default, a dataset in a RIA store consists of two components:
A Git repository (for all dataset contents stored in Git) and a
storage sibling (for dataset content stored in git-annex).

It is possible to selectively disable either component using
storage-sibling 'off' or storage-sibling 'only', respectively.
If neither component is disabled, a dataset’s subdirectory layout in a RIA
store contains a standard bare Git repository and an annex/ subdirectory
inside of it.
The latter holds a Git-annex object store and comprises the storage sibling.
Disabling the standard git-remote (storage-sibling='only') will result
in not having the bare git repository, disabling the storage sibling
(storage-sibling='off') will result in not having the annex/
subdirectory.

Optionally, there can be a further subdirectory archives with
(compressed) 7z archives of annex objects. The storage remote is able to
pull annex objects from these archives, if it cannot find in the regular
annex object store. This feature can be useful for storing large
collections of rarely changing data on systems that limit the number of
files that can be stored.

Each dataset directory also contains a ria-layout-version file that
identifies the data organization (as, for example, described above).

Lastly, there is a global ria-layout-version file at the store’s
base path that identifies where dataset subdirectories themselves are
located. At present, this file must contain a single line stating the
version (currently “1”). This line MUST end with a newline character.

It is possible to define an alias for an individual dataset in a store by
placing a symlink to the dataset location into an alias/ directory
in the root of the store. This enables dataset access via URLs of format:
ria+<protocol>://<storelocation>#~<aliasname>.

Compared to standard git-annex object stores, the annex/ subdirectories
used as storage siblings follow a different layout naming scheme
(‘dirhashmixed’ instead of ‘dirhashlower’).
This is mostly noted as a technical detail, but also serves to remind
git-annex powerusers to refrain from running git-annex commands
directly in-store as it can cause severe damage due to the layout
difference. Interactions should be handled via the ORA special remote
instead.

Error logging

To enable error logging at the remote end, append a pipe symbol and an “l”
to the version number in ria-layout-version (like so: 1|l\n).

Error logging will create files in an “error_log” directory whenever the
git-annex special remote (storage sibling) raises an exception, storing the
Python traceback of it. The logfiles are named according to the scheme
<dataset id>.<annex uuid of the remote>.log showing “who” ran into this
issue with which dataset. Because logging can potentially leak personal
data (like local file paths for example), it can be disabled client-side
by setting the configuration variable
annex.ora-remote.<storage-sibling-name>.ignore-remote-config.

Options

ria+<ssh|file|http(s)>://<host>[/path]

URL identifying the target RIA store and access protocol. If --push-url is given in addition, this is used for read access only. Otherwise it will be used for write access too and to create the repository sibling in the RIA store. Note, that HTTP(S) currently is valid for consumption only thus requiring to provide --push-url. Constraints: value must be a string or value must be NONE

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-s NAME, --name NAME

Name of the sibling. With RECURSIVE, the same name will be used to label all the subdatasets’ siblings. Constraints: value must be a string or value must be NONE

-d DATASET, --dataset DATASET

specify the dataset to process. If no dataset is given, an attempt is made to identify the dataset based on the current working directory. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

--storage-name NAME

Name of the storage sibling (git-annex special remote). Must not be identical to the sibling name. If not specified, defaults to the sibling name plus ‘-storage’ suffix. If only a storage sibling is created, this setting is ignored, and the primary sibling name is used. Constraints: value must be a string or value must be NONE

--alias ALIAS

Alias for the dataset in the RIA store. Add the necessary symlink so that this dataset can be cloned from the RIA store using the given ALIAS instead of its ID. With recursive=True, only the top dataset will be aliased. Constraints: value must be a string or value must be NONE

--post-update-hook

Enable Git’s default post-update-hook for the created sibling. This is useful when the sibling is made accessible via a “dumb server” that requires running ‘git update-server-info’ to let Git interact properly with it.

--shared {false|true|umask|group|all|world|everybody|0xxx}

If given, configures the permissions in the RIA store for multi-users access. Possible values for this option are identical to those of git init –shared and are described in its documentation. Constraints: value must be a string or value must be convertible to type bool or value must be NONE

--group GROUP

Filesystem group for the repository. Specifying the group is crucial when –shared=group. Constraints: value must be a string or value must be NONE

--storage-sibling MODE

By default, an ORA storage sibling and a Git repository sibling are created (on). Alternatively, creation of the storage sibling can be disabled (off), or a storage sibling created only and no Git sibling (only). In the latter mode, no Git installation is required on the target host. Constraints: value must be one of (‘only’,) or value must be convertible to type bool or value must be NONE [Default: True]

--existing MODE

Action to perform, if a (storage) sibling is already configured under the given name and/or a target already exists. In this case, a dataset can be skipped (‘skip’), an existing target repository be forcefully re-initialized, and the sibling (re-)configured (‘reconfigure’), or the command be instructed to fail (‘error’). Constraints: value must be one of (‘skip’, ‘error’, ‘reconfigure’) [Default: ‘error’]

--new-store-ok

When set, a new store will be created, if necessary. Otherwise, a sibling will only be created if the url points to an existing RIA store.

--trust-level TRUST-LEVEL

specify a trust level for the storage sibling. If not specified, the default git-annex trust level is used. ‘trust’ should be used with care (see the git- annex-trust man page). Constraints: value must be one of (‘trust’, ‘semitrust’, ‘untrust’)

-r, --recursive

if set, recurse into potential subdatasets.

-R LEVELS, --recursion-limit LEVELS

limit recursion into subdatasets to the given number of levels. Constraints: value must be convertible to type ‘int’ or value must be NONE

--no-storage-sibling

This option is deprecated. Use ‘–storage-sibling off’ instead.

--push-url ria+<ssh|file>://<host>[/path]

URL identifying the target RIA store and access protocol for write access to the storage sibling. If given this will also be used for creation of the repository sibling in the RIA store. Constraints: value must be a string or value must be NONE

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad export-archive

Synopsis

datalad export-archive [-h] [-d DATASET] [-t {tar|zip}] [-c {gz|bz2|}] [--missing-content
 {error|continue|ignore}] [--version] [PATH]

Description

Export the content of a dataset as a TAR/ZIP archive.

Options

PATH

File name of the generated TAR archive. If no file name is given the archive will be generated in the current directory and will be named: datalad_<dataset_uuid>.(tar.*|zip). To generate that file in a different directory, provide an existing directory as the file name. Constraints: value must be a string or value must be NONE

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

“specify the dataset to export. If no dataset is given, an attempt is made to identify the dataset based on the current working directory. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

-t {tar|zip}, --archivetype {tar|zip}

Type of archive to generate. Constraints: value must be one of (‘tar’, ‘zip’) [Default: ‘tar’]

-c {gz|bz2|}, --compression {gz|bz2|}

Compression method to use. ‘bz2’ is not supported for ZIP archives. No compression is used when an empty string is given. Constraints: value must be one of (‘gz’, ‘bz2’, ‘’) [Default: ‘gz’]

--missing-content {error|continue|ignore}

By default, any discovered file with missing content will result in an error and the export is aborted. Setting this to ‘continue’ will issue warnings instead of failing on error. The value ‘ignore’ will only inform about problem at the ‘debug’ log level. The latter two can be helpful when generating a TAR archive from a dataset where some file content is not available locally. Constraints: value must be one of (‘error’, ‘continue’, ‘ignore’) [Default: ‘error’]

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad export-archive-ora

Synopsis

datalad export-archive-ora [-h] [-d DATASET] [--for LABEL] [--annex-wanted FILTERS] [--from FROM
 [FROM ...]] [--missing-content {error|continue|ignore}]
 [--version] TARGET ...

Description

Export an archive of a local annex object store for the ORA remote.

Keys in the local annex object store are reorganized in a temporary
directory (using links to avoid storage duplication) to use the
‘hashdirlower’ setup used by git-annex for bare repositories and
the directory-type special remote. This alternative object store is
then moved into a 7zip archive that is suitable for use in a
ORA remote dataset store. Placing such an archive into:

<dataset location>/archives/archive.7z

Enables the ORA special remote to locate and retrieve all keys contained
in the archive.

Options

TARGET

if an existing directory, an ‘archive.7z’ is placed into it, otherwise this is the path to the target archive. Constraints: value must be a string or value must be NONE

…

list of options for 7z to replace the default ‘-mx0’ to generate an uncompressed archive.

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

specify the dataset to process. If no dataset is given, an attempt is made to identify the dataset based on the current working directory. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

--for LABEL

name of the target sibling, wanted/preferred settings will be used to filter the files added to the archives. Constraints: value must be a string or value must be NONE

--annex-wanted FILTERS

git-annex-preferred-content expression for git-annex find to filter files. Should start with ‘or’ or ‘and’ when used in combination with –for.

--from FROM [FROM …]

one or multiple tree-ish from which to select files.

--missing-content {error|continue|ignore}

By default, any discovered file with missing content will result in an error and the export is aborted. Setting this to ‘continue’ will issue warnings instead of failing on error. The value ‘ignore’ will only inform about problem at the ‘debug’ log level. The latter two can be helpful when generating a TAR archive from a dataset where some file content is not available locally. Constraints: value must be one of (‘error’, ‘continue’, ‘ignore’) [Default: ‘error’]

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad export-to-figshare

Synopsis

datalad export-to-figshare [-h] [-d DATASET] [--missing-content {error|continue|ignore}]
 [--no-annex] [--article-id ID] [--version] [PATH]

Description

Export the content of a dataset as a ZIP archive to figshare

Very quick and dirty approach. Ideally figshare should be supported as
a proper git annex special remote. Unfortunately, figshare does not support
having directories, and can store only a flat list of files. That makes
it impossible for any sensible publishing of complete datasets.

The only workaround is to publish dataset as a zip-ball, where the entire
content is wrapped into a .zip archive for which figshare would provide a
navigator.

Options

PATH

File name of the generated ZIP archive. If no file name is given the archive will be generated in the top directory of the dataset and will be named: datalad_<dataset_uuid>.zip. Constraints: value must be a string or value must be NONE

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

“specify the dataset to export. If no dataset is given, an attempt is made to identify the dataset based on the current working directory. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

--missing-content {error|continue|ignore}

By default, any discovered file with missing content will result in an error and the plugin is aborted. Setting this to ‘continue’ will issue warnings instead of failing on error. The value ‘ignore’ will only inform about problem at the ‘debug’ log level. The latter two can be helpful when generating a TAR archive from a dataset where some file content is not available locally. Constraints: value must be one of (‘error’, ‘continue’, ‘ignore’) [Default: ‘error’]

--no-annex

By default the generated .zip file would be added to annex, and all files would get registered in git-annex to be available from such a tarball. Also upon upload we will register for that archive to be a possible source for it in annex. Setting this flag disables this behavior.

--article-id ID

Which article to publish to. Constraints: value must be convertible to type ‘int’ or value must be NONE

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad update

Synopsis

datalad update [-h] [-s SIBLING] [--merge [ALLOWED]] [--how
 [{fetch|merge|ff-only|reset|checkout}]] [--how-subds
 [{fetch|merge|ff-only|reset|checkout}]] [--follow
 {sibling|parentds|parentds-lazy}] [-d DATASET] [-r] [-R LEVELS]
 [--fetch-all] [--reobtain-data] [--version] [PATH ...]

Description

Update a dataset from a sibling.

Examples

Update from a particular sibling:

% datalad update -s <siblingname>

Update from a particular sibling and merge the changes from a
configured or matching branch from the sibling (see –follow for details):

% datalad update --how=merge -s <siblingname>

Update from the sibling ‘origin’, traversing into subdatasets. For
subdatasets, merge the revision registered in the parent dataset into
the current branch:

% datalad update -s origin --how=merge --follow=parentds -r

Fetch and merge the remote tracking branch into the current dataset.
Then update each subdataset by resetting its current branch to the
revision registered in the parent dataset, fetching only if the
revision isn’t already present:

% datalad update --how=merge --how-subds=reset --follow=parentds-lazy -r

Options

PATH

constrain to-be-updated subdatasets to the given path for recursive operation. Constraints: value must be a string or value must be NONE

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-s SIBLING, --sibling SIBLING

name of the sibling to update from. When unspecified, updates from all siblings are fetched. If there is more than one sibling and changes will be brought into the working tree (as requested via –merge, –how, or –how-subds), a sibling will be chosen based on the configured remote for the current branch. Constraints: value must be a string or value must be NONE

--merge [ALLOWED]

merge obtained changes from the sibling. This is a subset of the functionality that can be achieved via the newer –how. –merge or –merge=any is equivalent to –how=merge. –merge=ff-only is equivalent to –how=ff-only. Constraints: value must be convertible to type bool or value must be one of (‘any’, ‘ff- only’) [Default: False]

--how [{fetch|merge|ff-only|reset|checkout}]

how to update the dataset. The default (“fetch”) simply fetches the changes from the sibling but doesn’t incorporate them into the working tree. A value of “merge” or “ff-only” merges in changes, with the latter restricting the allowed merges to fast-forwards. “reset” incorporates the changes with ‘git reset –hard <target>’, staying on the current branch but discarding any changes that aren’t shared with the target. “checkout”, on the other hand, runs ‘git checkout <target>’, switching from the current branch to a detached state. When –recursive is specified, this action will also apply to subdatasets unless overridden by –how-subds. Constraints: value must be one of (‘fetch’, ‘merge’, ‘ff-only’, ‘reset’, ‘checkout’)

--how-subds [{fetch|merge|ff-only|reset|checkout}]

Override the behavior of –how in subdatasets. Constraints: value must be one of (‘fetch’, ‘merge’, ‘ff-only’, ‘reset’, ‘checkout’)

--follow {sibling|parentds|parentds-lazy}

source of updates for subdatasets. For ‘sibling’, the update will be done by merging in a branch from the (specified or inferred) sibling. The branch brought in will either be the current branch’s configured branch, if it points to a branch that belongs to the sibling, or a sibling branch with a name that matches the current branch. For ‘parentds’, the revision registered in the parent dataset of the subdataset is merged in. ‘parentds-lazy’ is like ‘parentds’, but prevents fetching from a subdataset’s sibling if the registered revision is present in the subdataset. Note that the current dataset is always updated according to ‘sibling’. This option has no effect unless a merge is requested and –recursive is specified. Constraints: value must be one of (‘sibling’, ‘parentds’, ‘parentds-lazy’) [Default: ‘sibling’]

-d DATASET, --dataset DATASET

specify the dataset to update. If no dataset is given, an attempt is made to identify the dataset based on the current working directory. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

-r, --recursive

if set, recurse into potential subdatasets.

-R LEVELS, --recursion-limit LEVELS

limit recursion into subdatasets to the given number of levels. Constraints: value must be convertible to type ‘int’ or value must be NONE

--fetch-all

this option has no effect and will be removed in a future version. When no siblings are given, an all-sibling update will be performed.

--reobtain-data

if enabled, file content that was present before an update will be re-obtained in case a file was changed by the update.

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad rerun

Synopsis

datalad rerun [-h] [--since SINCE] [-d DATASET] [-b NAME] [-m MESSAGE] [--onto base]
 [--script FILE] [--report] [--assume-ready
 {inputs|outputs|both}] [--explicit] [-J NJOBS] [--version]
 [REVISION]

Description

Re-execute previous datalad run commands.

This will unlock any dataset content that is on record to have
been modified by the command in the specified revision. It will
then re-execute the command in the recorded path (if it was inside
the dataset). Afterwards, all modifications will be saved.

Report mode

When called with –report, this command reports information about what
would be re-executed as a series of records. There will be a record
for each revision in the specified revision range. Each of these will
have one of the following “rerun_action” values:

	run: the revision has a recorded command that would be re-executed

	skip-or-pick: the revision does not have a recorded command and would
be either skipped or cherry picked

	merge: the revision is a merge commit and a corresponding merge would
be made

The decision to skip rather than cherry pick a revision is based on whether
the revision would be reachable from HEAD at the time of execution.

In addition, when a starting point other than HEAD is specified, there is a
rerun_action value “checkout”, in which case the record includes
information about the revision the would be checked out before rerunning
any commands.

	NOTE
	Currently the “onto” feature only sets the working tree of the current
dataset to a previous state. The working trees of any subdatasets remain
unchanged.

Examples

Re-execute the command from the previous commit:

% datalad rerun

Re-execute any commands in the last five commits:

% datalad rerun --since=HEAD~5

Do the same as above, but re-execute the commands on top of HEAD~5 in
a detached state:

% datalad rerun --onto= --since=HEAD~5

Re-execute all previous commands and compare the old and new results:

% # on master branch
% datalad rerun --branch=verify --since=
% # now on verify branch
% datalad diff --revision=master..
% git log --oneline --left-right --cherry-pick master...

Options

REVISION

rerun command(s) in REVISION. By default, the command from this commit will be executed, but –since can be used to construct a revision range. The default value is like “HEAD” but resolves to the main branch when on an adjusted branch. Constraints: value must be a string or value must be NONE

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

--since SINCE

If SINCE is a commit-ish, the commands from all commits that are reachable from revision but not SINCE will be re-executed (in other words, the commands in git log SINCE..REVISION). If SINCE is an empty string, it is set to the parent of the first commit that contains a recorded command (i.e., all commands in git log REVISION will be re-executed). Constraints: value must be a string or value must be NONE

-d DATASET, --dataset DATASET

specify the dataset from which to rerun a recorded command. If no dataset is given, an attempt is made to identify the dataset based on the current working directory. If a dataset is given, the command will be executed in the root directory of this dataset. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

-b NAME, --branch NAME

create and checkout this branch before rerunning the commands. Constraints: value must be a string or value must be NONE

-m MESSAGE, --message MESSAGE

use MESSAGE for the reran commit rather than the recorded commit message. In the case of a multi-commit rerun, all the reran commits will have this message. Constraints: value must be a string or value must be NONE

--onto base

start point for rerunning the commands. If not specified, commands are executed at HEAD. This option can be used to specify an alternative start point, which will be checked out with the branch name specified by –branch or in a detached state otherwise. As a special case, an empty value for this option means the parent of the first run commit in the specified revision list. Constraints: value must be a string or value must be NONE

--script FILE

extract the commands into FILE rather than rerunning. Use - to write to stdout instead. This option implies –report. Constraints: value must be a string or value must be NONE

--report

Don’t actually re-execute anything, just display what would be done. Note: If you give this option, you most likely want to set –output-format to ‘json’ or ‘json_pp’.

--assume-ready {inputs|outputs|both}

Assume that inputs do not need to be retrieved and/or outputs do not need to unlocked or removed before running the command. This option allows you to avoid the expense of these preparation steps if you know that they are unnecessary. Note that this option also affects any additional outputs that are automatically inferred based on inspecting changed files in the run commit. Constraints: value must be one of (‘inputs’, ‘outputs’, ‘both’)

--explicit

Consider the specification of inputs and outputs in the run record to be explicit. Don’t warn if the repository is dirty, and only save modifications to the outputs from the original record. Note that when several run commits are specified, this applies to every one. Care should also be taken when using –onto because checking out a new HEAD can easily fail when the working tree has modifications.

-J NJOBS, --jobs NJOBS

how many parallel jobs (where possible) to use. “auto” corresponds to the number defined by ‘datalad.runtime.max-annex-jobs’ configuration item NOTE: This option can only parallelize input retrieval (get) and output recording (save). DataLad does NOT parallelize your scripts for you. Constraints: value must be convertible to type ‘int’ or value must be NONE or value must be one of (‘auto’,)

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad run-procedure

Synopsis

datalad run-procedure [-h] [-d PATH] [--discover] [--help-proc] [--version] ...

Description

Run prepared procedures (DataLad scripts) on a dataset

Concept

A “procedure” is an algorithm with the purpose to process a dataset in a
particular way. Procedures can be useful in a wide range of scenarios,
like adjusting dataset configuration in a uniform fashion, populating
a dataset with particular content, or automating other routine tasks,
such as synchronizing dataset content with certain siblings.

Implementations of some procedures are shipped together with DataLad,
but additional procedures can be provided by 1) any DataLad extension,
2) any (sub-)dataset, 3) a local user, or 4) a local system administrator.
DataLad will look for procedures in the following locations and order:

Directories identified by the configuration settings

	‘datalad.locations.user-procedures’ (determined by
platformdirs.user_config_dir; defaults to ‘$HOME/.config/datalad/procedures’
on GNU/Linux systems)

	‘datalad.locations.system-procedures’ (determined by
platformdirs.site_config_dir; defaults to ‘/etc/xdg/datalad/procedures’ on
GNU/Linux systems)

	‘datalad.locations.dataset-procedures’

and subsequently in the ‘resources/procedures/’ directories of any
installed extension, and, lastly, of the DataLad installation itself.

Please note that a dataset that defines
‘datalad.locations.dataset-procedures’ provides its procedures to
any dataset it is a subdataset of. That way you can have a collection of
such procedures in a dedicated dataset and install it as a subdataset into
any dataset you want to use those procedures with. In case of a naming
conflict with such a dataset hierarchy, the dataset you’re calling
run-procedures on will take precedence over its subdatasets and so on.

Each configuration setting can occur multiple times to indicate multiple
directories to be searched. If a procedure matching a given name is found
(filename without a possible extension), the search is aborted and this
implementation will be executed. This makes it possible for individual
datasets, users, or machines to override externally provided procedures
(enabling the implementation of customizable processing “hooks”).

Procedure implementation

A procedure can be any executable. Executables must have the appropriate
permissions and, in the case of a script, must contain an appropriate
“shebang” line. If a procedure is not executable, but its filename ends
with ‘.py’, it is automatically executed by the ‘python’ interpreter
(whichever version is available in the present environment). Likewise,
procedure implementations ending on ‘.sh’ are executed via ‘bash’.

Procedures can implement any argument handling, but must be capable
of taking at least one positional argument (the absolute path to the
dataset they shall operate on).

For further customization there are two configuration settings per procedure
available:

	‘datalad.procedures.<NAME>.call-format’
fully customizable format string to determine how to execute procedure
NAME (see also datalad-run).
It currently requires to include the following placeholders:

	‘{script}’: will be replaced by the path to the procedure

	‘{ds}’: will be replaced by the absolute path to the dataset the
procedure shall operate on

	‘{args}’: (not actually required) will be replaced by
all additional arguments passed into run-procedure after NAME

As an example the default format string for a call to a python script is:
“python {script} {ds} {args}”

	‘datalad.procedures.<NAME>.help’
will be shown on datalad run-procedure –help-proc NAME to provide a
description and/or usage info for procedure NAME

Examples

Find out which procedures are available on the current system:

% datalad run-procedure --discover

Run the ‘yoda’ procedure in the current dataset:

% datalad run-procedure cfg_yoda

Options

NAME [ARGS]

Name and possibly additional arguments of the to-be-executed procedure. [PY: Can also be a dictionary coming from run-procedure(discover=True).]Note, that all options to run-procedure need to be put before NAME, since all ARGS get assigned to NAME.

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-d PATH, --dataset PATH

specify the dataset to run the procedure on. An attempt is made to identify the dataset based on the current working directory. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

--discover

if given, all configured paths are searched for procedures and one result record per discovered procedure is yielded, but no procedure is executed.

--help-proc

if given, get a help message for procedure NAME from config setting datalad.procedures.NAME.help.

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad add-archive-content

Synopsis

datalad add-archive-content [-h] [-d DATASET] [--annex ANNEX] [--add-archive-leading-dir]
 [--strip-leading-dirs] [--leading-dirs-depth LEADING_DIRS_DEPTH]
 [--leading-dirs-consider LEADING_DIRS_CONSIDER]
 [--use-current-dir] [-D] [--key] [-e EXCLUDE] [-r RENAME]
 [--existing {fail,overwrite,archive-suffix,numeric-suffix}] [-o
 ANNEX_OPTIONS] [--copy] [--no-commit] [--allow-dirty] [--stats
 STATS] [--drop-after] [--delete-after] [--version] archive

Description

Add content of an archive under git annex control.

Given an already annex’ed archive, extract and add its files to the
dataset, and reference the original archive as a custom special remote.

Examples

Add files from the archive ‘big_tarball.tar.gz’, but
keep big_tarball.tar.gz in the index:

% datalad add-archive-content big_tarball.tar.gz

Add files from the archive ‘tarball.tar.gz’, and
remove big_tarball.tar.gz from the index:

% datalad add-archive-content big_tarball.tar.gz --delete

Add files from the archive ‘s3.zip’ but remove the leading
directory:

% datalad add-archive-content s3.zip --strip-leading-dirs

Options

archive

archive file or a key (if –key specified). Constraints: value must be a string

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

“specify the dataset to save. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

--annex ANNEX

DEPRECATED. Use the ‘dataset’ parameter instead.

--add-archive-leading-dir

place extracted content under a directory which would correspond to the archive name with all suffixes stripped. E.g. the content of archive.tar.gz will be extracted under archive/.

--strip-leading-dirs

remove one or more leading directories from the archive layout on extraction.

--leading-dirs-depth LEADING_DIRS_DEPTH

maximum depth of leading directories to strip. If not specified (None), no limit.

--leading-dirs-consider LEADING_DIRS_CONSIDER

regular expression(s) for directories to consider to strip away. Constraints: value must be a string or value must be NONE

--use-current-dir

extract the archive under the current directory, not the directory where the archive is located. This parameter is applied automatically if –key was used.

-D, --delete

delete original archive from the filesystem/Git in current tree. Note that it will be of no effect if –key is given.

--key

signal if provided archive is not actually a filename on its own but an annex key. The archive will be extracted in the current directory.

-e EXCLUDE, --exclude EXCLUDE

regular expressions for filenames which to exclude from being added to annex. Applied after –rename if that one is specified. For exact matching, use anchoring. Constraints: value must be a string or value must be NONE

-r RENAME, --rename RENAME

regular expressions to rename files before added them under to Git. The first defines how to split provided string into two parts: Python regular expression (with groups), and replacement string. Constraints: value must be a string or value must be NONE

--existing {fail,overwrite,archive-suffix,numeric-suffix}

what operation to perform if a file from an archive tries to overwrite an existing file with the same name. ‘fail’ (default) leads to an error result, ‘overwrite’ silently replaces existing file, ‘archive-suffix’ instructs to add a suffix (prefixed with a ‘-’) matching archive name from which file gets extracted, and if that one is present as well, ‘numeric-suffix’ is in effect in addition, when incremental numeric suffix (prefixed with a ‘.’) is added until no name collision is longer detected. [Default: ‘fail’]

-o ANNEX_OPTIONS, --annex-options ANNEX_OPTIONS

additional options to pass to git-annex. Constraints: value must be a string or value must be NONE

--copy

copy the content of the archive instead of moving.

--no-commit

don’t commit upon completion.

--allow-dirty

flag that operating on a dirty repository (uncommitted or untracked content) is ok.

--stats STATS

ActivityStats instance for global tracking.

--drop-after

drop extracted files after adding to annex.

--delete-after

extract under a temporary directory, git-annex add, and delete afterwards. To be used to “index” files within annex without actually creating corresponding files under git. Note that annex dropunused would later remove that load.

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad clean

Synopsis

datalad clean [-h] [-d DATASET] [--what [WHAT ...]] [--dry-run] [-r] [-R LEVELS]
 [--version]

Description

Clean up after DataLad (possible temporary files etc.)

Removes temporary files and directories left behind by DataLad and
git-annex in a dataset.

Examples

Clean all known temporary locations of a dataset:

% datalad clean

Report on all existing temporary locations of a dataset:

% datalad clean --dry-run

Clean all known temporary locations of a dataset and all its
subdatasets:

% datalad clean -r

Clean only the archive extraction caches of a dataset and all its
subdatasets:

% datalad clean --what cached-archives -r

Report on existing annex transfer files of a dataset and all its
subdatasets:

% datalad clean --what annex-transfer -r --dry-run

Options

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

specify the dataset to perform the clean operation on. If no dataset is given, an attempt is made to identify the dataset in current working directory. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

--what [WHAT …]

What to clean. If none specified – all known targets are considered. Constraints: value must be one of (‘cached-archives’, ‘annex-tmp’, ‘annex- transfer’, ‘search-index’) or value must be NONE

--dry-run

Report on cleanable locations - not actually cleaning up anything.

-r, --recursive

if set, recurse into potential subdatasets.

-R LEVELS, --recursion-limit LEVELS

limit recursion into subdatasets to the given number of levels. Constraints: value must be convertible to type ‘int’ or value must be NONE

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad check-dates

Synopsis

datalad check-dates [-h] [-D DATE] [--rev REVISION] [--annex {all|tree|none}] [--no-tags]
 [--older] [--version] [PATH ...]

Description

Find repository dates that are more recent than a reference date.

The main purpose of this tool is to find “leaked” real dates in
repositories that are configured to use fake dates. It checks dates from
three sources: (1) commit timestamps (author and committer dates), (2)
timestamps within files of the “git-annex” branch, and (3) the timestamps
of annotated tags.

Options

PATH

Root directory in which to search for Git repositories. The current working directory will be used by default. Constraints: value must be a string or value must be NONE

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-D DATE, --reference-date DATE

Compare dates to this date. If dateutil is installed, this value can be any format that its parser recognizes. Otherwise, it should be a unix timestamp that starts with a “@”. The default value corresponds to 01 Jan, 2018 00:00:00 -0000. Constraints: value must be a string [Default: ‘@1514764800’]

--rev REVISION

Search timestamps from commits that are reachable from REVISION. Any revision specification supported by git log, including flags like –all and –tags, can be used. This option can be given multiple times.

--annex {all|tree|none}

Mode for “git-annex” branch search. If ‘all’, all blobs within the branch are searched. ‘tree’ limits the search to blobs that are referenced by the tree at the tip of the branch. ‘none’ disables search of “git-annex” blobs. Constraints: value must be one of (‘all’, ‘tree’, ‘none’) [Default: ‘all’]

--no-tags

Don’t check the dates of annotated tags.

--older

Find dates which are older than the reference date rather than newer.

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad configuration

Synopsis

datalad configuration [-h] [--scope {global|local|branch}] [-d DATASET] [-r] [-R LEVELS]
 [--version] [{dump|get|set|unset}] [name[=value] ...]

Description

Get and set dataset, dataset-clone-local, or global configuration

This command works similar to git-config, but some features are not
supported (e.g., modifying system configuration), while other features
are not available in git-config (e.g., multi-configuration queries).

Query and modification of three distinct configuration scopes is
supported:

	‘branch’: the persistent configuration in .datalad/config of a dataset
branch

	‘local’: a dataset clone’s Git repository configuration in .git/config

	‘global’: non-dataset-specific configuration (usually in $USER/.gitconfig)

Modifications of the persistent ‘branch’ configuration will not be saved
by this command, but have to be committed with a subsequent SAVE
call.

Rules of precedence regarding different configuration scopes are the same
as in Git, with two exceptions: 1) environment variables can be used to
override any datalad configuration, and have precedence over any other
configuration scope (see below). 2) the ‘branch’ scope is considered in
addition to the standard git configuration scopes. Its content has lower
precedence than Git configuration scopes, but it is committed to a branch,
hence can be used to ship (default and branch-specific) configuration with
a dataset.

Besides storing configuration settings statically via this command or git
config, DataLad also reads any DATALAD_* environment on process
startup or import, and maps it to a configuration item. Their values take
precedence over any other specification. In variable names _ encodes a
. in the configuration name, and __ encodes a -, such that
DATALAD_SOME__VAR is mapped to datalad.some-var. Additionally, a
DATALAD_CONFIG_OVERRIDES_JSON environment variable is
queried, which may contain configuration key-value mappings as a
JSON-formatted string of a JSON-object:

DATALAD_CONFIG_OVERRIDES_JSON='{"datalad.credential.example_com.user": "jane", ...}'

This is useful when characters are part of the configuration key that
cannot be encoded into an environment variable name. If both individual
configuration variables and JSON-overrides are used, the former take
precedent over the latter, overriding the respective individual settings
from configurations declared in the JSON-overrides.

This command supports recursive operation for querying and modifying
configuration across a hierarchy of datasets.

Examples

Dump the effective configuration, including an annotation for common
items:

% datalad configuration

Query two configuration items:

% datalad configuration get user.name user.email

Recursively set configuration in all (sub)dataset repositories:

% datalad configuration -r set my.config=value

Modify the persistent branch configuration (changes are not committed):

% datalad configuration --scope branch set my.config=value

Options

{dump|get|set|unset}

which action to perform. Constraints: value must be one of (‘dump’, ‘get’, ‘set’, ‘unset’) [Default: ‘dump’]

name[=value]

configuration name (for actions ‘get’ and ‘unset’), or name/value pair (for action ‘set’).

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

--scope {global|local|branch}

scope for getting or setting configuration. If no scope is declared for a query, all configuration sources (including overrides via environment variables) are considered according to the normal rules of precedence. For action ‘get’ only ‘branch’ and ‘local’ (which include ‘global’ here) are supported. For action ‘dump’, a scope selection is ignored and all available scopes are considered. Constraints: value must be one of (‘global’, ‘local’, ‘branch’)

-d DATASET, --dataset DATASET

specify the dataset to query or to configure. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

-r, --recursive

if set, recurse into potential subdatasets.

-R LEVELS, --recursion-limit LEVELS

limit recursion into subdatasets to the given number of levels. Constraints: value must be convertible to type ‘int’ or value must be NONE

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad create-test-dataset

Synopsis

datalad create-test-dataset [-h] [--spec SPEC] [--seed SEED] [--version] path

Description

Create test (meta-)dataset.

Options

path

path/name where to create (if specified, must not exist). Constraints: value must be a string or value must be NONE

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

--spec SPEC

spec for hierarchy, defined as a min-max (min could be omitted to assume 0) defining how many (random number from min to max) of sub-datasets to generate at any given level of the hierarchy. Each level separated from each other with /. Example: 1-3/-2 would generate from 1 to 3 subdatasets at the top level, and up to two within those at the 2nd level. Constraints: value must be a string or value must be NONE

--seed SEED

seed for rng. Constraints: value must be convertible to type ‘int’ or value must be NONE

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad download-url

Synopsis

datalad download-url [-h] [-d PATH] [-O PATH] [-o] [--archive] [--nosave] [-m MESSAGE]
 [--version] url [url ...]

Description

Download content

It allows for a uniform download interface to various supported URL
schemes (see command help for details), re-using or asking for
authentication details maintained by datalad.

Examples

Download files from an http and S3 URL:

% datalad download-url http://example.com/file.dat s3://bucket/file2.dat

Download a file to a path and provide a commit message:

% datalad download-url -m 'added a file' -O myfile.dat \
 s3://bucket/file2.dat

Append a trailing slash to the target path to download into a
specified directory:

% datalad download-url --path=data/ http://example.com/file.dat

Leave off the trailing slash to download into a regular file:

% datalad download-url --path=data http://example.com/file.dat

Options

url

URL(s) to be downloaded. Supported protocols: ‘ftp’, ‘http’, ‘https’, ‘s3’, ‘shub’. Constraints: value must be a string

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-d PATH, --dataset PATH

specify the dataset to add files to. If no dataset is given, an attempt is made to identify the dataset based on the current working directory. Use –nosave to prevent adding files to the dataset. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

-O PATH, --path PATH

target for download. If the path has a trailing separator, it is treated as a directory, and each specified URL is downloaded under that directory to a base name taken from the URL. Without a trailing separator, the value specifies the name of the downloaded file (file name extensions inferred from the URL may be added to it, if they are not yet present) and only a single URL should be given. In both cases, leading directories will be created if needed. This argument defaults to the current directory. Constraints: value must be a string or value must be NONE

-o, --overwrite

flag to overwrite it if target file exists.

--archive

pass the downloaded files to datalad add-archive-content –delete.

--nosave

by default all modifications to a dataset are immediately saved. Giving this option will disable this behavior.

-m MESSAGE, --message MESSAGE

a description of the state or the changes made to a dataset. Constraints: value must be a string or value must be NONE

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad foreach-dataset

Synopsis

datalad foreach-dataset [-h] [--cmd-type {auto|external|exec|eval}] [-d DATASET] [--state
 {present|absent|any}] [-r] [-R LEVELS] [--contains PATH]
 [--bottomup] [-s] [--output-streams
 {capture|pass-through|relpath}] [--chpwd {ds|pwd}]
 [--safe-to-consume {auto|all-subds-done|superds-done|always}]
 [-J NJOBS] [--version] ...

Description

Run a command or Python code on the dataset and/or each of its sub-datasets.

This command provides a convenience for the cases were no dedicated DataLad command
is provided to operate across the hierarchy of datasets. It is very similar to
git submodule foreach command with the following major differences

	by default (unless –subdatasets-only) it would
include operation on the original dataset as well,

	subdatasets could be traversed in bottom-up order,

	can execute commands in parallel (see JOBS option), but would account for the order,
e.g. in bottom-up order command is executed in super-dataset only after it is executed
in all subdatasets.

Additional notes:

	for execution of “external” commands we use the environment used to execute external
git and git-annex commands.

Command format

–cmd-type external: A few placeholders are supported in the command
via Python format specification:

	“{pwd}” will be replaced with the full path of the current working directory.

	“{ds}” and “{refds}” will provide instances of the dataset currently
operated on and the reference “context” dataset which was provided via dataset
argument.

	“{tmpdir}” will be replaced with the full path of a temporary directory.

Examples

Aggressively git clean all datasets, running 5 parallel jobs:

% datalad foreach-dataset -r -J 5 git clean -dfx

Options

COMMAND

command for execution. A leading ‘–’ can be used to disambiguate this command from the preceding options to DataLad. For –cmd-type exec or eval only a single command argument (Python code) is supported.

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

--cmd-type {auto|external|exec|eval}

type of the command. EXTERNAL: to be run in a child process using dataset’s runner; ‘exec’: Python source code to execute using ‘exec(), no value returned; ‘eval’: Python source code to evaluate using ‘eval()’, return value is placed into ‘result’ field. ‘auto’: If used via Python API, and cmd is a Python function, it will use ‘eval’, and otherwise would assume ‘external’. Constraints: value must be one of (‘auto’, ‘external’, ‘exec’, ‘eval’) [Default: ‘auto’]

-d DATASET, --dataset DATASET

specify the dataset to operate on. If no dataset is given, an attempt is made to identify the dataset based on the input and/or the current working directory. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

--state {present|absent|any}

indicate which (sub)datasets to consider: either only locally present, absent, or any of those two kinds. Constraints: value must be one of (‘present’, ‘absent’, ‘any’) [Default: ‘present’]

-r, --recursive

if set, recurse into potential subdatasets.

-R LEVELS, --recursion-limit LEVELS

limit recursion into subdatasets to the given number of levels. Constraints: value must be convertible to type ‘int’ or value must be NONE

--contains PATH

limit to the subdatasets containing the given path. If a root path of a subdataset is given, the last considered dataset will be the subdataset itself. This option can be given multiple times, in which case datasets that contain any of the given paths will be considered. Constraints: value must be a string or value must be NONE

--bottomup

whether to report subdatasets in bottom-up order along each branch in the dataset tree, and not top-down.

-s, --subdatasets-only

whether to exclude top level dataset. It is implied if a non-empty CONTAINS is used.

--output-streams {capture|pass-through|relpath}, --o-s {capture|pass-through|relpath}

ways to handle outputs. ‘capture’ and return outputs from ‘cmd’ in the record (‘stdout’, ‘stderr’); ‘pass-through’ to the screen (and thus absent from returned record); prefix with ‘relpath’ captured output (similar to like grep does) and write to stdout and stderr. In ‘relpath’, relative path is relative to the top of the dataset if DATASET is specified, and if not - relative to current directory. Constraints: value must be one of (‘capture’, ‘pass-through’, ‘relpath’) [Default: ‘pass-through’]

--chpwd {ds|pwd}

‘ds’ will change working directory to the top of the corresponding dataset. With ‘pwd’ no change of working directory will happen. Note that for Python commands, due to use of threads, we do not allow chdir=ds to be used with jobs > 1. Hint: use ‘ds’ and ‘refds’ objects’ methods to execute commands in the context of those datasets. Constraints: value must be one of (‘ds’, ‘pwd’) [Default: ‘ds’]

--safe-to-consume {auto|all-subds-done|superds-done|always}

Important only in the case of parallel (jobs greater than 1) execution. ‘all- subds-done’ instructs to not consider superdataset until command finished execution in all subdatasets (it is the value in case of ‘auto’ if traversal is bottomup). ‘superds-done’ instructs to not process subdatasets until command finished in the super-dataset (it is the value in case of ‘auto’ in traversal is not bottom up, which is the default). With ‘always’ there is no constraint on either to execute in sub or super dataset. Constraints: value must be one of (‘auto’, ‘all-subds-done’, ‘superds-done’, ‘always’) [Default: ‘auto’]

-J NJOBS, --jobs NJOBS

how many parallel jobs (where possible) to use. “auto” corresponds to the number defined by ‘datalad.runtime.max-annex-jobs’ configuration item NOTE: This option can only parallelize input retrieval (get) and output recording (save). DataLad does NOT parallelize your scripts for you. Constraints: value must be convertible to type ‘int’ or value must be NONE or value must be one of (‘auto’,)

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad sshrun

Synopsis

datalad sshrun [-h] [-p PORT] [-4] [-6] [-o OPTION] [-n] [--version] login cmd

Description

Run command on remote machines via SSH.

This is a replacement for a small part of the functionality of SSH.
In addition to SSH alone, this command can make use of datalad’s SSH
connection management. Its primary use case is to be used with Git
as ‘core.sshCommand’ or via “GIT_SSH_COMMAND”.

Configure datalad.ssh.identityfile to pass a file to the ssh’s -i option.

Options

login

[user@]hostname.

cmd

command for remote execution.

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-p PORT, --port PORT

port to connect to on the remote host.

-4

use IPv4 addresses only.

-6

use IPv6 addresses only.

-o OPTION

configuration option passed to SSH.

-n

Do not connect stdin to the process.

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad shell-completion

Synopsis

datalad shell-completion [-h] [--version]

Description

Display shell script for enabling shell completion for DataLad.

Output of this command should be “sourced” by the bash or zsh to enable
shell completions provided by argcomplete.

Example:

$ source <(datalad shell-completion)
$ datalad –<PRESS TAB to display available option>

Options

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad wtf

Synopsis

datalad wtf [-h] [-d DATASET] [-s {some|all}] [-S SECTION] [--flavor {full|short}]
 [-D {html_details}] [-c] [--version]

Description

Generate a report about the DataLad installation and configuration

IMPORTANT: Sharing this report with untrusted parties (e.g. on the web)
should be done with care, as it may include identifying information, and/or
credentials or access tokens.

Options

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

“specify the dataset to report on. no dataset is given, an attempt is made to identify the dataset based on the current working directory. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

-s {some|all}, --sensitive {some|all}

if set to ‘some’ or ‘all’, it will display sections such as config and metadata which could potentially contain sensitive information (credentials, names, etc.). If ‘some’, the fields which are known to be sensitive will still be masked out. Constraints: value must be one of (‘some’, ‘all’)

-S SECTION, --section SECTION

section to include. If not set - depends on flavor. ‘*’ could be used to force all sections. If there are subsections like section.subsection available, then specifying just ‘section’ would select all subsections for that section. This option can be given multiple times. Constraints: value must be one of (‘configuration’, ‘credentials’, ‘datalad’, ‘dataset’, ‘dependencies’, ‘environment’, ‘extensions’, ‘git-annex’, ‘location’, ‘metadata’, ‘metadata.extractors’, ‘metadata.filters’, ‘metadata.indexers’, ‘python’, ‘system’, ‘*’)

--flavor {full|short}

Flavor of WTF. ‘full’ would produce markdown with exhaustive list of sections. ‘short’ will provide a condensed summary only of datalad and dependencies by default. Use –section to list other sections. Constraints: value must be one of (‘full’, ‘short’) [Default: ‘full’]

-D {html_details}, --decor {html_details}

decoration around the rendering to facilitate embedding into issues etc, e.g. use ‘html_details’ for posting collapsible entry to GitHub issues. Constraints: value must be one of (‘html_details’,)

-c, --clipboard

if set, do not print but copy to clipboard (requires pyperclip module).

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

datalad uninstall

Synopsis

datalad uninstall [-h] [-d DATASET] [-r] [--nocheck] [--if-dirty
 {fail,save-before,ignore}] [--version] [PATH ...]

Description

DEPRECATED: use the DROP command

Options

PATH

path/name of the component to be uninstalled. Constraints: value must be a string or value must be NONE

-h, --help, --help-np

show this help message. –help-np forcefully disables the use of a pager for displaying the help message

-d DATASET, --dataset DATASET

specify the dataset to perform the operation on. If no dataset is given, an attempt is made to identify a dataset based on the PATH given. Constraints: Value must be a Dataset or a valid identifier of a Dataset (e.g. a path) or value must be NONE

-r, --recursive

if set, recurse into potential subdatasets.

--nocheck

whether to perform checks to assure the configured minimum number (remote) source for data. Give this option to skip checks.

--if-dirty {fail,save-before,ignore}

desired behavior if a dataset with unsaved changes is discovered: ‘fail’ will trigger an error and further processing is aborted; ‘save-before’ will save all changes prior any further action; ‘ignore’ let’s datalad proceed as if the dataset would not have unsaved changes. [Default: ‘save-before’]

--version

show the module and its version which provides the command

Authors

datalad is developed by The DataLad Team and Contributors <team@datalad.org>.

Python module reference

This module reference extends the manual with a comprehensive overview of the
available functionality built into datalad. Each module in the package is
documented by a general summary of its purpose and the list of classes and
functions it provides.

High-level user interface

Dataset operations

	api.Dataset(*args, **kwargs)

	Representation of a DataLad dataset/repository

	api.create([path, initopts, force, ...])

	Create a new dataset from scratch.

	api.create_sibling(sshurl, *[, name, ...])

	Create a dataset sibling on a UNIX-like Shell (local or SSH)-accessible machine

	api.create_sibling_github(reponame, *[, ...])

	Create dataset sibling on GitHub.org (or an enterprise deployment).

	api.create_sibling_gitlab([path, site, ...])

	Create dataset sibling at a GitLab site

	api.create_sibling_gogs(reponame, *[, api, ...])

	Create a dataset sibling on a GOGS site

	api.create_sibling_gitea(reponame, *[, ...])

	Create a dataset sibling on a Gitea site

	api.create_sibling_gin(reponame, *[, ...])

	Create a dataset sibling on a GIN site (with content hosting)

	api.create_sibling_ria(url, name, *[, ...])

	Creates a sibling to a dataset in a RIA store

	api.drop([path, what, reckless, dataset, ...])

	Drop content of individual files or entire (sub)datasets

	api.get([path, source, dataset, recursive, ...])

	Get any dataset content (files/directories/subdatasets).

	api.install([path, source, dataset, ...])

	Install one or many datasets from remote URL(s) or local PATH source(s).

	api.push([path, dataset, to, since, data, ...])

	Push a dataset to a known sibling.

	api.remove([path, dataset, drop, reckless, ...])

	Remove components from datasets

	api.save([path, message, dataset, ...])

	Save the current state of a dataset

	api.status([path, dataset, annex, ...])

	Report on the state of dataset content.

	api.update([path, sibling, merge, how, ...])

	Update a dataset from a sibling.

	api.unlock([path, dataset, recursive, ...])

	Unlock file(s) of a dataset

Reproducible execution

	api.run([cmd, dataset, inputs, outputs, ...])

	Run an arbitrary shell command and record its impact on a dataset.

	api.rerun([revision, since, dataset, ...])

	Re-execute previous datalad run commands.

	api.run_procedure([spec, dataset, discover, ...])

	Run prepared procedures (DataLad scripts) on a dataset

Plumbing commands

	api.clean(*[, dataset, what, dry_run, ...])

	Clean up after DataLad (possible temporary files etc.)

	api.clone(source[, path, git_clone_opts, ...])

	Obtain a dataset (copy) from a URL or local directory

	api.copy_file([path, dataset, recursive, ...])

	Copy files and their availability metadata from one dataset to another.

	api.create_test_dataset([path, spec, seed])

	Create test (meta-)dataset.

	api.diff([path, fr, to, dataset, annex, ...])

	Report differences between two states of a dataset (hierarchy)

	api.download_url(urls, *[, dataset, path, ...])

	Download content

	api.foreach_dataset(cmd, *[, cmd_type, ...])

	Run a command or Python code on the dataset and/or each of its sub-datasets.

	api.siblings([action, dataset, name, url, ...])

	Manage sibling configuration

	api.sshrun(login, cmd, *[, port, ipv4, ...])

	Run command on remote machines via SSH.

	api.subdatasets([path, dataset, state, ...])

	Report subdatasets and their properties.

Miscellaneous commands

	api.add_archive_content(archive, *[, ...])

	Add content of an archive under git annex control.

	api.add_readme([filename, dataset, existing])

	Add basic information about DataLad datasets to a README file

	api.addurls(urlfile, urlformat, ...[, ...])

	Create and update a dataset from a list of URLs.

	api.check_dates(paths, *[, reference_date, ...])

	Find repository dates that are more recent than a reference date.

	api.configuration([action, spec, scope, ...])

	Get and set dataset, dataset-clone-local, or global configuration

	api.export_archive([filename, dataset, ...])

	Export the content of a dataset as a TAR/ZIP archive.

	api.export_archive_ora(target[, opts, ...])

	Export an archive of a local annex object store for the ORA remote.

	api.export_to_figshare([filename, dataset, ...])

	Export the content of a dataset as a ZIP archive to figshare

	api.no_annex(dataset, pattern[, ref_dir, ...])

	Configure a dataset to never put some content into the dataset's annex

	api.shell_completion()

	Display shell script for enabling shell completion for DataLad.

	api.wtf(*[, dataset, sensitive, sections, ...])

	Generate a report about the DataLad installation and configuration

Support functionality

	cmd

	Class the starts a subprocess and keeps it around to communicate with it via stdin.

	consts

	constants for datalad

	log

	Logging setup and utilities, including progress reporting

	utils

	

	version

	

	support.gitrepo

	Internal low-level interface to Git repositories

	support.annexrepo

	Interface to git-annex by Joey Hess.

	support.archives

	Various handlers/functionality for different types of files (e.g. for archives).

	support.extensions

	Support functionality for extension development

	customremotes.base

	Base classes to custom git-annex remotes (e.g. extraction from archives).

	customremotes.archives

	Custom remote to get the load from archives present under annex

	runner.nonasyncrunner

	Thread based subprocess execution with stdout and stderr passed to protocol objects

	runner.protocol

	Base class of a protocol to be used with the DataLad runner

Configuration management

	config

	

Test infrastructure

	tests.utils_pytest

	Miscellaneous utilities to assist with testing

	tests.utils_testrepos

	

	tests.heavyoutput

	Helper to provide heavy load on stdout and stderr

Command interface

	interface.base

	High-level interface generation

Command line interface infrastructure

	cli.exec

	Call a command interface

	cli.main

	This is the main() CLI entryproint

	cli.parser

	Components to build the parser instance for the CLI

	cli.renderer

	Render results in a terminal

datalad.api.Dataset

	
class datalad.api.Dataset(*args, **kwargs)

	Representation of a DataLad dataset/repository

This is the core data type of DataLad: a representation of a dataset.
At its core, datasets are (git-annex enabled) Git repositories. This
class provides all operations that can be performed on a dataset.

Creating a dataset instance is cheap, all actual operations are
delayed until they are actually needed. Creating multiple Dataset
class instances for the same Dataset location will automatically
yield references to the same object.

A dataset instance comprises of two major components: a repo
attribute, and a config attribute. The former offers access to
low-level functionality of the Git or git-annex repository. The
latter gives access to a dataset’s configuration manager.

Most functionality is available via methods of this class, but also
as stand-alone functions with the same name in datalad.api.

	
__init__(path)

	
	Parameters:

	path (str or Path) – Path to the dataset location. This location may or may not exist
yet.

Methods

	__init__(path)

	

	add_archive_content(*[, dataset, annex, ...])

	Add content of an archive under git annex control.

	add_readme(*[, dataset, existing])

	Add basic information about DataLad datasets to a README file

	addurls(urlformat, filenameformat, *[, ...])

	Create and update a dataset from a list of URLs.

	clean(*[, what, dry_run, recursive, ...])

	Clean up after DataLad (possible temporary files etc.)

	clone([path, git_clone_opts, dataset, ...])

	Obtain a dataset (copy) from a URL or local directory

	close()

	Perform operations which would close any possible process using this Dataset

	configuration([spec, scope, dataset, ...])

	Get and set dataset, dataset-clone-local, or global configuration

	copy_file(*[, dataset, recursive, ...])

	Copy files and their availability metadata from one dataset to another.

	create([initopts, force, description, ...])

	Create a new dataset from scratch.

	create_sibling(*[, name, target_dir, ...])

	Create a dataset sibling on a UNIX-like Shell (local or SSH)-accessible machine

	create_sibling_gin(*[, dataset, recursive, ...])

	Create a dataset sibling on a GIN site (with content hosting)

	create_sibling_gitea(*[, dataset, ...])

	Create a dataset sibling on a Gitea site

	create_sibling_github(*[, dataset, ...])

	Create dataset sibling on GitHub.org (or an enterprise deployment).

	create_sibling_gitlab(*[, site, project, ...])

	Create dataset sibling at a GitLab site

	create_sibling_gogs(*[, api, dataset, ...])

	Create a dataset sibling on a GOGS site

	create_sibling_ria(name, *[, dataset, ...])

	Creates a sibling to a dataset in a RIA store

	diff(*[, fr, to, dataset, annex, untracked, ...])

	Report differences between two states of a dataset (hierarchy)

	download_url(*[, dataset, path, overwrite, ...])

	Download content

	drop(*[, what, reckless, dataset, ...])

	Drop content of individual files or entire (sub)datasets

	export_archive(*[, dataset, archivetype, ...])

	Export the content of a dataset as a TAR/ZIP archive.

	export_archive_ora([opts, dataset, remote, ...])

	Export an archive of a local annex object store for the ORA remote.

	export_to_figshare(*[, dataset, ...])

	Export the content of a dataset as a ZIP archive to figshare

	foreach_dataset(*[, cmd_type, dataset, ...])

	Run a command or Python code on the dataset and/or each of its sub-datasets.

	get(*[, source, dataset, recursive, ...])

	Get any dataset content (files/directories/subdatasets).

	get_superdataset([datalad_only, topmost, ...])

	Get the dataset's superdataset

	install(*[, source, dataset, get_data, ...])

	Install one or many datasets from remote URL(s) or local PATH source(s).

	is_installed()

	Returns whether a dataset is installed.

	no_annex(pattern[, ref_dir, makedirs])

	Configure a dataset to never put some content into the dataset's annex

	push(*[, dataset, to, since, data, force, ...])

	Push a dataset to a known sibling.

	recall_state(whereto)

	Something that can be used to checkout a particular state (tag, commit) to "undo" a change or switch to a otherwise desired previous state.

	remove(*[, dataset, drop, reckless, ...])

	Remove components from datasets

	rerun(*[, since, dataset, branch, message, ...])

	Re-execute previous datalad run commands.

	run(*[, dataset, inputs, outputs, expand, ...])

	Run an arbitrary shell command and record its impact on a dataset.

	run_procedure(*[, dataset, discover, help_proc])

	Run prepared procedures (DataLad scripts) on a dataset

	save(*[, message, dataset, version_tag, ...])

	Save the current state of a dataset

	siblings(*[, dataset, name, url, pushurl, ...])

	Manage sibling configuration

	status(*[, dataset, annex, untracked, ...])

	Report on the state of dataset content.

	subdatasets(*[, dataset, state, fulfilled, ...])

	Report subdatasets and their properties.

	uninstall(*[, dataset, recursive, check, ...])

	DEPRECATED: use the drop command

	unlock(*[, dataset, recursive, recursion_limit])

	Unlock file(s) of a dataset

	update(*[, sibling, merge, how, how_subds, ...])

	Update a dataset from a sibling.

	wtf(*[, sensitive, sections, flavor, decor, ...])

	Generate a report about the DataLad installation and configuration

Attributes

	config

	Get a ConfigManager instance for a dataset's configuration

	id

	Identifier of the dataset.

	path

	path to the dataset

	pathobj

	pathobj for the dataset

	repo

	Get an instance of the version control system/repo for this dataset, or None if there is none yet (or none anymore).

datalad.api.create

	
datalad.api.create(path=None, initopts=None, *, force=False, description=None, dataset=None, annex=True, fake_dates=False, cfg_proc=None)

	Create a new dataset from scratch.

This command initializes a new dataset at a given location, or the
current directory. The new dataset can optionally be registered in an
existing superdataset (the new dataset’s path needs to be located
within the superdataset for that, and the superdataset needs to be given
explicitly via dataset). It is recommended
to provide a brief description to label the dataset’s nature and
location, e.g. “Michael’s music on black laptop”. This helps humans to
identify data locations in distributed scenarios. By default an identifier
comprised of user and machine name, plus path will be generated.

This command only creates a new dataset, it does not add existing content
to it, even if the target directory already contains additional files or
directories.

Plain Git repositories can be created via annex=False.
However, the result will not be a full dataset, and, consequently,
not all features are supported (e.g. a description).

To create a local version of a remote dataset use the
~datalad.api.install command instead.

Note

Power-user info: This command uses git init and
git annex init to prepare the new dataset. Registering to a
superdataset is performed via a git submodule add operation
in the discovered superdataset.

Examples

Create a dataset ‘mydataset’ in the current directory:

> create(path='mydataset')

Apply the text2git procedure upon creation of a dataset:

> create(path='mydataset', cfg_proc='text2git')

Create a subdataset in the root of an existing dataset:

> create(dataset='.', path='mysubdataset')

Create a dataset in an existing, non-empty directory:

> create(force=True)

Create a plain Git repository:

> create(path='mydataset', annex=False)

	Parameters:

	
	path (str or Dataset or None, optional) – path where the dataset shall be created, directories will be created
as necessary. If no location is provided, a dataset will be created
in the location specified by dataset (if given) or the current
working directory. Either way the command will error if the target
directory is not empty. Use force to create a dataset in a non-
empty directory. [Default: None]

	initopts – options to pass to git init. Options can be given as a list of
command line arguments or as a GitPython-style option dictionary.
Note that not all options will lead to viable results. For example ‘
–bare’ will not yield a repository where DataLad can adjust files
in its working tree. [Default: None]

	force (bool, optional) – enforce creation of a dataset in a non-empty directory. [Default:
False]

	description (str or None, optional) – short description to use for a dataset location. Its primary purpose
is to help humans to identify a dataset copy (e.g., “mike’s dataset
on lab server”). Note that when a dataset is published, this
information becomes available on the remote side. [Default: None]

	dataset (Dataset or None, optional) – specify the dataset to perform the create operation on. If a dataset
is given along with path, a new subdataset will be created in it
at the path provided to the create command. If a dataset is given
but path is unspecified, a new dataset will be created at the
location specified by this option. [Default: None]

	annex (bool, optional) – if disabled, a plain Git repository will be created without any
annex. [Default: True]

	fake_dates (bool, optional) – Configure the repository to use fake dates. The date for a new
commit will be set to one second later than the latest commit in the
repository. This can be used to anonymize dates. [Default: False]

	cfg_proc – Run cfg_PROC procedure(s) (can be specified multiple times) on the
created dataset. Use run_procedure(discover=True) to get a list of
available procedures, such as cfg_text2git. [Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default:
constraint:(action:{create} or status:{ok, notneeded})]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: ‘datasets’]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘item-or-list’]

datalad.api.create_sibling

	
datalad.api.create_sibling(sshurl, *, name=None, target_dir=None, target_url=None, target_pushurl=None, dataset=None, recursive=False, recursion_limit=None, existing='error', shared=None, group=None, ui=False, as_common_datasrc=None, publish_by_default=None, publish_depends=None, annex_wanted=None, annex_group=None, annex_groupwanted=None, inherit=False, since=None)

	Create a dataset sibling on a UNIX-like Shell (local or SSH)-accessible machine

Given a local dataset, and a path or SSH login information this command
creates a remote dataset repository and configures it as a dataset sibling
to be used as a publication target (see publish command).

Various properties of the remote sibling can be configured (e.g. name
location on the server, read and write access URLs, and access
permissions.

Optionally, a basic web-viewer for DataLad datasets can be installed
at the remote location.

This command supports recursive processing of dataset hierarchies, creating
a remote sibling for each dataset in the hierarchy. By default, remote
siblings are created in hierarchical structure that reflects the
organization on the local file system. However, a simple templating
mechanism is provided to produce a flat list of datasets (see
–target-dir).

	Parameters:

	
	sshurl (str) – Login information for the target server. This can be given as a URL
(ssh://host/path), SSH-style (user@host:path) or just a local path.
Unless overridden, this also serves the future dataset’s access URL
and path on the server.

	name (str or None, optional) – sibling name to create for this publication target. If recursive
is set, the same name will be used to label all the subdatasets’
siblings. When creating a target dataset fails, no sibling is added.
[Default: None]

	target_dir (str or None, optional) – path to the directory on the server where the dataset shall be
created. By default this is set to the URL (or local path) specified
via sshurl. If a relative path is provided here, it is interpreted
as being relative to the user’s home directory on the server (or
relative to sshurl, when that is a local path). Additional
features are relevant for recursive processing of datasets with
subdatasets. By default, the local dataset structure is replicated
on the server. However, it is possible to provide a template for
generating different target directory names for all (sub)datasets.
Templates can contain certain placeholder that are substituted for
each (sub)dataset. For example: “/mydirectory/dataset%%RELNAME”.
Supported placeholders: %%RELNAME - the name of the datasets, with
any slashes replaced by dashes. [Default: None]

	target_url (str or None, optional) – “public” access URL of the to-be-created target dataset(s) (default:
sshurl). Accessibility of this URL determines the access
permissions of potential consumers of the dataset. As with
target_dir, templates (same set of placeholders) are supported.
Also, if specified, it is provided as the annex description.
[Default: None]

	target_pushurl (str or None, optional) – In case the target_url cannot be used to publish to the dataset,
this option specifies an alternative URL for this purpose. As with
target_url, templates (same set of placeholders) are supported.
[Default: None]

	dataset (Dataset or None, optional) – specify the dataset to create the publication target for. If no
dataset is given, an attempt is made to identify the dataset based
on the current working directory. [Default: None]

	recursive (bool, optional) – if set, recurse into potential subdatasets. [Default: False]

	recursion_limit (int or None, optional) – limit recursion into subdatasets to the given number of levels.
[Default: None]

	existing ({'skip', 'error', 'reconfigure', 'replace'}, optional) – action to perform, if a sibling is already configured under the
given name and/or a target (non-empty) directory already exists. In
this case, a dataset can be skipped (‘skip’), the sibling
configuration be updated (‘reconfigure’), or process interrupts with
error (‘error’). DANGER ZONE: If ‘replace’ is used, an existing
target directory will be forcefully removed, re-initialized, and the
sibling (re-)configured (thus implies ‘reconfigure’). replace
could lead to data loss, so use with care. To minimize possibility
of data loss, in interactive mode DataLad will ask for confirmation,
but it would raise an exception in non-interactive mode. [Default:
‘error’]

	shared (str or bool or None, optional) – if given, configures the access permissions on the server for multi-
users (this could include access by a webserver!). Possible values
for this option are identical to those of git init –shared and
are described in its documentation. [Default: None]

	group (str or None, optional) – Filesystem group for the repository. Specifying the group is
particularly important when shared=”group”. [Default: None]

	ui (bool or str, optional) – publish a web interface for the dataset with an optional user-
specified name for the html at publication target. defaults to
index.html at dataset root. [Default: False]

	as_common_datasrc – configure the created sibling as a common data source of the dataset
that can be automatically used by all consumers of the dataset
(technical: git-annex auto-enabled special remote). [Default: None]

	publish_by_default (list of str or None, optional) – add a refspec to be published to this sibling by default if nothing
specified. [Default: None]

	publish_depends (list of str or None, optional) – add a dependency such that the given existing sibling is always
published prior to the new sibling. This equals setting a
configuration item ‘remote.SIBLINGNAME.datalad-publish-depends’.
Multiple dependencies can be given as a list of sibling names.
[Default: None]

	annex_wanted (str or None, optional) – expression to specify ‘wanted’ content for the repository/sibling.
See https://git-annex.branchable.com/git-annex-wanted/ for more
information. [Default: None]

	annex_group (str or None, optional) – expression to specify a group for the repository. See https://git-
annex.branchable.com/git-annex-group/ for more information.
[Default: None]

	annex_groupwanted (str or None, optional) – expression for the groupwanted. Makes sense only if
annex_wanted=”groupwanted” and annex-group is given too. See
https://git-annex.branchable.com/git-annex-groupwanted/ for more
information. [Default: None]

	inherit (bool, optional) – if sibling is missing, inherit settings (git config, git annex
wanted/group/groupwanted) from its super-dataset. [Default: False]

	since (str or None, optional) – limit processing to subdatasets that have been changed since a given
state (by tag, branch, commit, etc). This can be used to create
siblings for recently added subdatasets. If ‘^’ is given, the last
state of the current branch at the sibling is taken as a starting
point. [Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.create_sibling_github

	
datalad.api.create_sibling_github(reponame, *, dataset=None, recursive=False, recursion_limit=None, name='github', existing='error', github_login=None, credential=None, github_organization=None, access_protocol='https', publish_depends=None, private=False, description=None, dryrun=False, dry_run=False, api='https://api.github.com')

	Create dataset sibling on GitHub.org (or an enterprise deployment).

GitHub is a popular commercial solution for code hosting and collaborative
development. GitHub cannot host dataset content (but see LFS,
http://handbook.datalad.org/r.html?LFS). However, in combination with other
data sources and siblings, publishing a dataset to GitHub can facilitate
distribution and exchange, while still allowing any dataset consumer to
obtain actual data content from alternative sources.

In order to be able to use this command, a personal access token has to be
generated on the platform (Account->Settings->Developer Settings->Personal
access tokens->Generate new token).

This command can be configured with
“datalad.create-sibling-ghlike.extra-remote-settings.NETLOC.KEY=VALUE” in
order to add any local KEY = VALUE configuration to the created sibling in
the local .git/config file. NETLOC is the domain of the Github instance to
apply the configuration for.
This leads to a behavior that is equivalent to calling datalad’s
siblings('configure', ...)``||``siblings configure command with the
respective KEY-VALUE pair after creating the sibling.
The configuration, like any other, could be set at user- or system level, so
users do not need to add this configuration to every sibling created with
the service at NETLOC themselves.

Changed in version 0.16: The API has been aligned with the some create_sibling_...
commands of other GitHub-like services, such as GOGS, GIN,
GitTea.

Deprecated since version 0.16: The dryrun option will be removed in a future release, use
the renamed dry_run option instead.
The github_login option will be removed in a future
release, use the credential option instead.
The github_organization option will be
removed in a future release, prefix the repository name with <org>/
instead.

Examples

Use a new sibling on GIN as a common data source that is auto-
available when cloning from GitHub:

> ds = Dataset('.')

the sibling on GIN will host data content
> ds.create_sibling_gin('myrepo', name='gin')

the sibling on GitHub will be used for collaborative work
> ds.create_sibling_github('myrepo', name='github')

register the storage of the public GIN repo as a data source
> ds.siblings('configure', name='gin', as_common_datasrc='gin-storage')

announce its availability on github
> ds.push(to='github')

	Parameters:

	
	reponame (str) – repository name, optionally including an ‘<organization>/’ prefix if
the repository shall not reside under a user’s namespace. When
operating recursively, a suffix will be appended to this name for
each subdataset.

	dataset (Dataset or None, optional) – dataset to create the publication target for. If not given, an
attempt is made to identify the dataset based on the current working
directory. [Default: None]

	recursive (bool, optional) – if set, recurse into potential subdatasets. [Default: False]

	recursion_limit (int or None, optional) – limit recursion into subdatasets to the given number of levels.
[Default: None]

	name (str or None, optional) – name of the sibling in the local dataset installation (remote name).
[Default: ‘github’]

	existing ({'skip', 'error', 'reconfigure', 'replace'}, optional) – behavior when already existing or configured siblings are
discovered: skip the dataset (‘skip’), update the configuration
(‘reconfigure’), or fail (‘error’). DEPRECATED DANGER ZONE:
With ‘replace’, an existing repository will be irreversibly removed,
re-initialized, and the sibling (re-)configured (thus implies
‘reconfigure’). replace could lead to data loss! In interactive
sessions a confirmation prompt is shown, an exception is raised in
non-interactive sessions. The ‘replace’ mode will be removed in a
future release. [Default: ‘error’]

	github_login (str or None, optional) – Deprecated, use the credential parameter instead. If given must be a
personal access token. [Default: None]

	credential (str or None, optional) – name of the credential providing a personal access token to be used
for authorization. The token can be supplied via configuration
setting ‘datalad.credential.<name>.token’, or environment variable
DATALAD_CREDENTIAL_<NAME>_TOKEN, or will be queried from the active
credential store using the provided name. If none is provided, the
host-part of the API URL is used as a name (e.g.
‘https://api.github.com’ -> ‘api.github.com’). [Default: None]

	github_organization (str or None, optional) – Deprecated, prepend a repo name with an ‘<orgname>/’ prefix instead.
[Default: None]

	access_protocol ({'https', 'ssh', 'https-ssh'}, optional) – access protocol/URL to configure for the sibling. With ‘https-ssh’
SSH will be used for write access, whereas HTTPS is used for read
access. [Default: ‘https’]

	publish_depends (list of str or None, optional) – add a dependency such that the given existing sibling is always
published prior to the new sibling. This equals setting a
configuration item ‘remote.SIBLINGNAME.datalad-publish-depends’.
Multiple dependencies can be given as a list of sibling names.
[Default: None]

	private (bool, optional) – if set, create a private repository. [Default: False]

	description (str or None, optional) – Brief description, displayed on the project’s page. [Default: None]

	dryrun (bool, optional) – Deprecated. Use the renamed dry_run parameter. [Default: False]

	dry_run (bool, optional) – if set, no repository will be created, only tests for sibling name
collisions will be performed, and would-be repository names are
reported for all relevant datasets. [Default: False]

	api (str or None, optional) – URL of the GitHub instance API. [Default: ‘https://api.github.com’]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.create_sibling_gitlab

	
datalad.api.create_sibling_gitlab(path=None, *, site=None, project=None, layout=None, dataset=None, recursive=False, recursion_limit=None, name=None, existing='error', access=None, publish_depends=None, description=None, dryrun=False, dry_run=False)

	Create dataset sibling at a GitLab site

An existing GitLab project, or a project created via the GitLab web
interface can be configured as a sibling with the siblings
command. Alternatively, this command can create a GitLab project at any
location/path a given user has appropriate permissions for. This is
particularly helpful for recursive sibling creation for subdatasets. API
access and authentication are implemented via python-gitlab, and all its
features are supported. A particular GitLab site must be configured in a
named section of a python-gitlab.cfg file (see
https://python-gitlab.readthedocs.io/en/stable/cli-usage.html#configuration-file-format
for details), such as:

[mygit]
url = https://git.example.com
api_version = 4
private_token = abcdefghijklmnopqrst

Subsequently, this site is identified by its name (‘mygit’ in the example
above).

(Recursive) sibling creation for all, or a selected subset of subdatasets
is supported with two different project layouts (see –layout):

	“flat”
	All datasets are placed as GitLab projects in the same group. The project name
of the top-level dataset follows the configured
datalad.gitlab-SITENAME-project configuration. The project names of
contained subdatasets extend the configured name with the subdatasets’
s relative path within the root dataset, with all path separator
characters replaced by ‘-’. This path separator is configurable
(see Configuration).

	“collection”
	A new group is created for the dataset hierarchy, following the
datalad.gitlab-SITENAME-project configuration. The root dataset is placed
in a “project” project inside this group, and all nested subdatasets are
represented inside the group using a “flat” layout. The root datasets
project name is configurable (see Configuration).

GitLab cannot host dataset content. However, in combination with
other data sources (and siblings), publishing a dataset to GitLab can
facilitate distribution and exchange, while still allowing any dataset
consumer to obtain actual data content from alternative sources.

Configuration

Many configuration switches and options for GitLab sibling creation can
be provided as arguments to the command. However, it is also possible to
specify a particular setup in a dataset’s configuration. This is
particularly important when managing large collections of datasets.
Configuration options are:

	“datalad.gitlab-default-site”
	Name of the default GitLab site (see –site)

	“datalad.gitlab-SITENAME-siblingname”
	Name of the sibling configured for the local dataset that points
to the GitLab instance SITENAME (see –name)

	“datalad.gitlab-SITENAME-layout”
	Project layout used at the GitLab instance SITENAME (see –layout)

	“datalad.gitlab-SITENAME-access”
	Access method used for the GitLab instance SITENAME (see –access)

	“datalad.gitlab-SITENAME-project”
	Project “location/path” used for a datasets at GitLab instance
SITENAME (see –project). Configuring this is useful for deriving
project paths for subdatasets, relative to superdataset.
The root-level group (“location”) needs to be created beforehand via
GitLab’s web interface.

	“datalad.gitlab-default-projectname”
	The collection layout publishes (sub)datasets as projects
with a custom name. The default name “project” can be overridden with
this configuration.

	“datalad.gitlab-default-pathseparator”
	The flat and collection layout represent subdatasets with project names
that correspond to their path within the superdataset, with the regular path separator replaced
with a “-”: superdataset-subdataset. This configuration can be used to override
this default separator.

This command can be configured with
“datalad.create-sibling-ghlike.extra-remote-settings.NETLOC.KEY=VALUE” in
order to add any local KEY = VALUE configuration to the created sibling in
the local .git/config file. NETLOC is the domain of the Gitlab instance to
apply the configuration for.
This leads to a behavior that is equivalent to calling datalad’s
siblings('configure', ...)``||``siblings configure command with the
respective KEY-VALUE pair after creating the sibling.
The configuration, like any other, could be set at user- or system level, so
users do not need to add this configuration to every sibling created with
the service at NETLOC themselves.

	Parameters:

	
	path – selectively create siblings for any datasets underneath a given
path. By default only the root dataset is considered. [Default:
None]

	site (None or str, optional) – name of the GitLab site to create a sibling at. Must match an
existing python-gitlab configuration section with location and
authentication settings (see https://python-
gitlab.readthedocs.io/en/stable/cli-usage.html#configuration). By
default the dataset configuration is consulted. [Default: None]

	project (None or str, optional) – project name/location at the GitLab site. If a subdataset of the
reference dataset is processed, its project path is automatically
determined by the layout configuration, by default. Users need to
create the root-level GitLab group (NAME) via the webinterface
before running the command. [Default: None]

	layout ({None, 'collection', 'flat'}, optional) – layout of projects at the GitLab site, if a collection, or a
hierarchy of datasets and subdatasets is to be created. By default
the dataset configuration is consulted. [Default: None]

	dataset (Dataset or None, optional) – reference or root dataset. If no path constraints are given, a
sibling for this dataset will be created. In this and all other
cases, the reference dataset is also consulted for the GitLab
configuration, and desired project layout. If no dataset is given,
an attempt is made to identify the dataset based on the current
working directory. [Default: None]

	recursive (bool, optional) – if set, recurse into potential subdatasets. [Default: False]

	recursion_limit (int or None, optional) – limit recursion into subdatasets to the given number of levels.
[Default: None]

	name (str or None, optional) – name to represent the GitLab sibling remote in the local dataset
installation. If not specified a name is looked up in the dataset
configuration, or defaults to the site name. [Default: None]

	existing ({'skip', 'error', 'reconfigure'}, optional) – desired behavior when already existing or configured siblings are
discovered. ‘skip’: ignore; ‘error’: fail, if access URLs differ;
‘reconfigure’: use the existing repository and reconfigure the local
dataset to use it as a sibling. [Default: ‘error’]

	access ({None, 'http', 'ssh', 'ssh+http'}, optional) – access method used for data transfer to and from the sibling. ‘ssh’:
read and write access used the SSH protocol; ‘http’: read and write
access use HTTP requests; ‘ssh+http’: read access is done via HTTP
and write access performed with SSH. Dataset configuration is
consulted for a default, ‘http’ is used otherwise. [Default: None]

	publish_depends (list of str or None, optional) – add a dependency such that the given existing sibling is always
published prior to the new sibling. This equals setting a
configuration item ‘remote.SIBLINGNAME.datalad-publish-depends’.
Multiple dependencies can be given as a list of sibling names.
[Default: None]

	description (str or None, optional) – brief description for the GitLab project (displayed on the site).
[Default: None]

	dryrun (bool, optional) – Deprecated. Use the renamed dry_run parameter. [Default: False]

	dry_run (bool, optional) – if set, no repository will be created, only tests for name
collisions will be performed, and would-be repository names are
reported for all relevant datasets. [Default: False]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.create_sibling_gogs

	
datalad.api.create_sibling_gogs(reponame, *, api=None, dataset=None, recursive=False, recursion_limit=None, name=None, existing='error', credential=None, access_protocol='https', publish_depends=None, private=False, description=None, dry_run=False)

	Create a dataset sibling on a GOGS site

GOGS is a self-hosted, free and open source code hosting solution with
low resource demands that enable running it on inexpensive devices like
a Raspberry Pi, or even directly on a NAS device.

In order to be able to use this command, a personal access token has to be
generated on the platform
(Account->Your Settings->Applications->Generate New Token).

This command can be configured with
“datalad.create-sibling-ghlike.extra-remote-settings.NETLOC.KEY=VALUE” in
order to add any local KEY = VALUE configuration to the created sibling in
the local .git/config file. NETLOC is the domain of the Gogs instance to
apply the configuration for.
This leads to a behavior that is equivalent to calling datalad’s
siblings('configure', ...)``||``siblings configure command with the
respective KEY-VALUE pair after creating the sibling.
The configuration, like any other, could be set at user- or system level, so
users do not need to add this configuration to every sibling created with
the service at NETLOC themselves.

Added in version 0.16.

	Parameters:

	
	reponame (str) – repository name, optionally including an ‘<organization>/’ prefix if
the repository shall not reside under a user’s namespace. When
operating recursively, a suffix will be appended to this name for
each subdataset.

	api (str or None, optional) – URL of the GOGS instance without a ‘api/<version>’ suffix. [Default:
None]

	dataset (Dataset or None, optional) – dataset to create the publication target for. If not given, an
attempt is made to identify the dataset based on the current working
directory. [Default: None]

	recursive (bool, optional) – if set, recurse into potential subdatasets. [Default: False]

	recursion_limit (int or None, optional) – limit recursion into subdatasets to the given number of levels.
[Default: None]

	name (str or None, optional) – name of the sibling in the local dataset installation (remote name).
[Default: None]

	existing ({'skip', 'error', 'reconfigure', 'replace'}, optional) – behavior when already existing or configured siblings are
discovered: skip the dataset (‘skip’), update the configuration
(‘reconfigure’), or fail (‘error’). DEPRECATED DANGER ZONE:
With ‘replace’, an existing repository will be irreversibly removed,
re-initialized, and the sibling (re-)configured (thus implies
‘reconfigure’). replace could lead to data loss! In interactive
sessions a confirmation prompt is shown, an exception is raised in
non-interactive sessions. The ‘replace’ mode will be removed in a
future release. [Default: ‘error’]

	credential (str or None, optional) – name of the credential providing a personal access token to be used
for authorization. The token can be supplied via configuration
setting ‘datalad.credential.<name>.token’, or environment variable
DATALAD_CREDENTIAL_<NAME>_TOKEN, or will be queried from the active
credential store using the provided name. If none is provided, the
host-part of the API URL is used as a name (e.g.
‘https://api.github.com’ -> ‘api.github.com’). [Default: None]

	access_protocol ({'https', 'ssh', 'https-ssh'}, optional) – access protocol/URL to configure for the sibling. With ‘https-ssh’
SSH will be used for write access, whereas HTTPS is used for read
access. [Default: ‘https’]

	publish_depends (list of str or None, optional) – add a dependency such that the given existing sibling is always
published prior to the new sibling. This equals setting a
configuration item ‘remote.SIBLINGNAME.datalad-publish-depends’.
Multiple dependencies can be given as a list of sibling names.
[Default: None]

	private (bool, optional) – if set, create a private repository. [Default: False]

	description (str or None, optional) – Brief description, displayed on the project’s page. [Default: None]

	dry_run (bool, optional) – if set, no repository will be created, only tests for sibling name
collisions will be performed, and would-be repository names are
reported for all relevant datasets. [Default: False]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.create_sibling_gitea

	
datalad.api.create_sibling_gitea(reponame, *, dataset=None, recursive=False, recursion_limit=None, name='gitea', existing='error', api='https://gitea.com', credential=None, access_protocol='https', publish_depends=None, private=False, description=None, dry_run=False)

	Create a dataset sibling on a Gitea site

Gitea is a lightweight, free and open source code hosting solution with
low resource demands that enable running it on inexpensive devices like
a Raspberry Pi.

This command uses the main Gitea instance at https://gitea.com as the
default target, but other deployments can be used via the ‘api’
parameter.

In order to be able to use this command, a personal access token has to be
generated on the platform (Account->Settings->Applications->Generate Token).

This command can be configured with
“datalad.create-sibling-ghlike.extra-remote-settings.NETLOC.KEY=VALUE” in
order to add any local KEY = VALUE configuration to the created sibling in
the local .git/config file. NETLOC is the domain of the Gitea instance to
apply the configuration for.
This leads to a behavior that is equivalent to calling datalad’s
siblings('configure', ...)``||``siblings configure command with the
respective KEY-VALUE pair after creating the sibling.
The configuration, like any other, could be set at user- or system level, so
users do not need to add this configuration to every sibling created with
the service at NETLOC themselves.

Added in version 0.16.

	Parameters:

	
	reponame (str) – repository name, optionally including an ‘<organization>/’ prefix if
the repository shall not reside under a user’s namespace. When
operating recursively, a suffix will be appended to this name for
each subdataset.

	dataset (Dataset or None, optional) – dataset to create the publication target for. If not given, an
attempt is made to identify the dataset based on the current working
directory. [Default: None]

	recursive (bool, optional) – if set, recurse into potential subdatasets. [Default: False]

	recursion_limit (int or None, optional) – limit recursion into subdatasets to the given number of levels.
[Default: None]

	name (str or None, optional) – name of the sibling in the local dataset installation (remote name).
[Default: ‘gitea’]

	existing ({'skip', 'error', 'reconfigure', 'replace'}, optional) – behavior when already existing or configured siblings are
discovered: skip the dataset (‘skip’), update the configuration
(‘reconfigure’), or fail (‘error’). DEPRECATED DANGER ZONE:
With ‘replace’, an existing repository will be irreversibly removed,
re-initialized, and the sibling (re-)configured (thus implies
‘reconfigure’). replace could lead to data loss! In interactive
sessions a confirmation prompt is shown, an exception is raised in
non-interactive sessions. The ‘replace’ mode will be removed in a
future release. [Default: ‘error’]

	api (str or None, optional) – URL of the Gitea instance without a ‘api/<version>’ suffix.
[Default: ‘https://gitea.com’]

	credential (str or None, optional) – name of the credential providing a personal access token to be used
for authorization. The token can be supplied via configuration
setting ‘datalad.credential.<name>.token’, or environment variable
DATALAD_CREDENTIAL_<NAME>_TOKEN, or will be queried from the active
credential store using the provided name. If none is provided, the
host-part of the API URL is used as a name (e.g.
‘https://api.github.com’ -> ‘api.github.com’). [Default: None]

	access_protocol ({'https', 'ssh', 'https-ssh'}, optional) – access protocol/URL to configure for the sibling. With ‘https-ssh’
SSH will be used for write access, whereas HTTPS is used for read
access. [Default: ‘https’]

	publish_depends (list of str or None, optional) – add a dependency such that the given existing sibling is always
published prior to the new sibling. This equals setting a
configuration item ‘remote.SIBLINGNAME.datalad-publish-depends’.
Multiple dependencies can be given as a list of sibling names.
[Default: None]

	private (bool, optional) – if set, create a private repository. [Default: False]

	description (str or None, optional) – Brief description, displayed on the project’s page. [Default: None]

	dry_run (bool, optional) – if set, no repository will be created, only tests for sibling name
collisions will be performed, and would-be repository names are
reported for all relevant datasets. [Default: False]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.create_sibling_gin

	
datalad.api.create_sibling_gin(reponame, *, dataset=None, recursive=False, recursion_limit=None, name='gin', existing='error', api='https://gin.g-node.org', credential=None, access_protocol='https-ssh', publish_depends=None, private=False, description=None, dry_run=False)

	Create a dataset sibling on a GIN site (with content hosting)

GIN (G-Node infrastructure) is a free data management system. It is a
GitHub-like, web-based repository store and provides fine-grained access
control to shared data. GIN is built on Git and git-annex, and can natively
host DataLad datasets, including their data content!

This command uses the main GIN instance at https://gin.g-node.org as the
default target, but other deployments can be used via the ‘api’
parameter.

An SSH key, properly registered at the GIN instance, is required for data
upload via DataLad. Data download from public projects is also possible via
anonymous HTTP.

In order to be able to use this command, a personal access token has to be
generated on the platform (Account->Your Settings->Applications->Generate
New Token).

This command can be configured with
“datalad.create-sibling-ghlike.extra-remote-settings.NETLOC.KEY=VALUE” in
order to add any local KEY = VALUE configuration to the created sibling in
the local .git/config file. NETLOC is the domain of the Gin instance to
apply the configuration for.
This leads to a behavior that is equivalent to calling datalad’s
siblings('configure', ...)``||``siblings configure command with the
respective KEY-VALUE pair after creating the sibling.
The configuration, like any other, could be set at user- or system level, so
users do not need to add this configuration to every sibling created with
the service at NETLOC themselves.

Added in version 0.16.

Examples

Create a repo ‘myrepo’ on GIN and register it as sibling ‘mygin’:

> create_sibling_gin('myrepo', name='mygin', dataset='.')

Create private repos with name(-prefix) ‘myrepo’ on GIN for a dataset
and all its present subdatasets:

> create_sibling_gin('myrepo', dataset='.', recursive=True, private=True)

Create a sibling repo on GIN, and register it as a common data source
in the dataset that is available regardless of whether the dataset was
directly cloned from GIN:

> ds = Dataset('.')
> ds.create_sibling_gin('myrepo', name='gin')
first push creates git-annex branch remotely and obtains annex UUID
> ds.push(to='gin')
> ds.siblings('configure', name='gin', as_common_datasrc='gin-storage')
announce availability (redo for other siblings)
> ds.push(to='gin')

	Parameters:

	
	reponame (str) – repository name, optionally including an ‘<organization>/’ prefix if
the repository shall not reside under a user’s namespace. When
operating recursively, a suffix will be appended to this name for
each subdataset.

	dataset (Dataset or None, optional) – dataset to create the publication target for. If not given, an
attempt is made to identify the dataset based on the current working
directory. [Default: None]

	recursive (bool, optional) – if set, recurse into potential subdatasets. [Default: False]

	recursion_limit (int or None, optional) – limit recursion into subdatasets to the given number of levels.
[Default: None]

	name (str or None, optional) – name of the sibling in the local dataset installation (remote name).
[Default: ‘gin’]

	existing ({'skip', 'error', 'reconfigure', 'replace'}, optional) – behavior when already existing or configured siblings are
discovered: skip the dataset (‘skip’), update the configuration
(‘reconfigure’), or fail (‘error’). DEPRECATED DANGER ZONE:
With ‘replace’, an existing repository will be irreversibly removed,
re-initialized, and the sibling (re-)configured (thus implies
‘reconfigure’). replace could lead to data loss! In interactive
sessions a confirmation prompt is shown, an exception is raised in
non-interactive sessions. The ‘replace’ mode will be removed in a
future release. [Default: ‘error’]

	api (str or None, optional) – URL of the GIN instance without an ‘api/<version>’ suffix. [Default:
‘https://gin.g-node.org’]

	credential (str or None, optional) – name of the credential providing a personal access token to be used
for authorization. The token can be supplied via configuration
setting ‘datalad.credential.<name>.token’, or environment variable
DATALAD_CREDENTIAL_<NAME>_TOKEN, or will be queried from the active
credential store using the provided name. If none is provided, the
host-part of the API URL is used as a name (e.g.
‘https://api.github.com’ -> ‘api.github.com’). [Default: None]

	access_protocol ({'https', 'ssh', 'https-ssh'}, optional) – access protocol/URL to configure for the sibling. With ‘https-ssh’
SSH will be used for write access, whereas HTTPS is used for read
access. [Default: ‘https-ssh’]

	publish_depends (list of str or None, optional) – add a dependency such that the given existing sibling is always
published prior to the new sibling. This equals setting a
configuration item ‘remote.SIBLINGNAME.datalad-publish-depends’.
Multiple dependencies can be given as a list of sibling names.
[Default: None]

	private (bool, optional) – if set, create a private repository. [Default: False]

	description (str or None, optional) – Brief description, displayed on the project’s page. [Default: None]

	dry_run (bool, optional) – if set, no repository will be created, only tests for sibling name
collisions will be performed, and would-be repository names are
reported for all relevant datasets. [Default: False]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.create_sibling_ria

	
datalad.api.create_sibling_ria(url, name, *, dataset=None, storage_name=None, alias=None, post_update_hook=False, shared=None, group=None, storage_sibling=True, existing='error', new_store_ok=False, trust_level=None, recursive=False, recursion_limit=None, disable_storage__=None, push_url=None)

	Creates a sibling to a dataset in a RIA store

Communication with a dataset in a RIA store is implemented via two
siblings. A regular Git remote (repository sibling) and a git-annex
special remote for data transfer (storage sibling) – with the former
having a publication dependency on the latter. By default, the name of the
storage sibling is derived from the repository sibling’s name by appending
“-storage”.

The store’s base path is expected to not exist, be an empty directory,
or a valid RIA store.

Notes

RIA URL format

Interactions with new or existing RIA stores require RIA URLs to identify
the store or specific datasets inside of it.

The general structure of a RIA URL pointing to a store takes the form
ria+[scheme]://<storelocation> (e.g.,
ria+ssh://[user@]hostname:/absolute/path/to/ria-store, or
ria+file:///absolute/path/to/ria-store)

The general structure of a RIA URL pointing to a dataset in a store (for
example for cloning) takes a similar form, but appends either the datasets
UUID or a “~” symbol followed by the dataset’s alias name:
ria+[scheme]://<storelocation>#<dataset-UUID> or
ria+[scheme]://<storelocation>#~<aliasname>.
In addition, specific version identifiers can be appended to the URL with an
additional “@” symbol:
ria+[scheme]://<storelocation>#<dataset-UUID>@<dataset-version>,
where dataset-version refers to a branch or tag.

RIA store layout

A RIA store is a directory tree with a dedicated subdirectory for each
dataset in the store. The subdirectory name is constructed from the
DataLad dataset ID, e.g. 124/68afe-59ec-11ea-93d7-f0d5bf7b5561, where
the first three characters of the ID are used for an intermediate
subdirectory in order to mitigate files system limitations for stores
containing a large number of datasets.

By default, a dataset in a RIA store consists of two components:
A Git repository (for all dataset contents stored in Git) and a
storage sibling (for dataset content stored in git-annex).

It is possible to selectively disable either component using
storage-sibling 'off' or storage-sibling 'only', respectively.
If neither component is disabled, a dataset’s subdirectory layout in a RIA
store contains a standard bare Git repository and an annex/ subdirectory
inside of it.
The latter holds a Git-annex object store and comprises the storage sibling.
Disabling the standard git-remote (storage-sibling='only') will result
in not having the bare git repository, disabling the storage sibling
(storage-sibling='off') will result in not having the annex/
subdirectory.

Optionally, there can be a further subdirectory archives with
(compressed) 7z archives of annex objects. The storage remote is able to
pull annex objects from these archives, if it cannot find in the regular
annex object store. This feature can be useful for storing large
collections of rarely changing data on systems that limit the number of
files that can be stored.

Each dataset directory also contains a ria-layout-version file that
identifies the data organization (as, for example, described above).

Lastly, there is a global ria-layout-version file at the store’s
base path that identifies where dataset subdirectories themselves are
located. At present, this file must contain a single line stating the
version (currently “1”). This line MUST end with a newline character.

It is possible to define an alias for an individual dataset in a store by
placing a symlink to the dataset location into an alias/ directory
in the root of the store. This enables dataset access via URLs of format:
ria+<protocol>://<storelocation>#~<aliasname>.

Compared to standard git-annex object stores, the annex/ subdirectories
used as storage siblings follow a different layout naming scheme
(‘dirhashmixed’ instead of ‘dirhashlower’).
This is mostly noted as a technical detail, but also serves to remind
git-annex powerusers to refrain from running git-annex commands
directly in-store as it can cause severe damage due to the layout
difference. Interactions should be handled via the ORA special remote
instead.

Error logging

To enable error logging at the remote end, append a pipe symbol and an “l”
to the version number in ria-layout-version (like so: 1|l\n).

Error logging will create files in an “error_log” directory whenever the
git-annex special remote (storage sibling) raises an exception, storing the
Python traceback of it. The logfiles are named according to the scheme
<dataset id>.<annex uuid of the remote>.log showing “who” ran into this
issue with which dataset. Because logging can potentially leak personal
data (like local file paths for example), it can be disabled client-side
by setting the configuration variable
annex.ora-remote.<storage-sibling-name>.ignore-remote-config.

	Parameters:

	
	url (str or None) – URL identifying the target RIA store and access protocol. If
push_url is given in addition, this is used for read access
only. Otherwise it will be used for write access too and to create
the repository sibling in the RIA store. Note, that HTTP(S)
currently is valid for consumption only thus requiring to provide
push_url.

	name (str or None) – Name of the sibling. With recursive, the same name will be used to
label all the subdatasets’ siblings.

	dataset (Dataset or None, optional) – specify the dataset to process. If no dataset is given, an attempt
is made to identify the dataset based on the current working
directory. [Default: None]

	storage_name (str or None, optional) – Name of the storage sibling (git-annex special remote). Must not be
identical to the sibling name. If not specified, defaults to the
sibling name plus ‘-storage’ suffix. If only a storage sibling is
created, this setting is ignored, and the primary sibling name is
used. [Default: None]

	alias (str or None, optional) – Alias for the dataset in the RIA store. Add the necessary symlink so
that this dataset can be cloned from the RIA store using the given
ALIAS instead of its ID. With recursive=True, only the top dataset
will be aliased. [Default: None]

	post_update_hook (bool, optional) – Enable Git’s default post-update-hook for the created sibling. This
is useful when the sibling is made accessible via a “dumb server”
that requires running ‘git update-server-info’ to let Git interact
properly with it. [Default: False]

	shared (str or bool or None, optional) – If given, configures the permissions in the RIA store for multi-
users access. Possible values for this option are identical to those
of git init –shared and are described in its documentation.
[Default: None]

	group (str or None, optional) – Filesystem group for the repository. Specifying the group is crucial
when shared=”group”. [Default: None]

	storage_sibling ({'only'} or bool or None, optional) – By default, an ORA storage sibling and a Git repository sibling are
created (True|’on’). Alternatively, creation of the storage sibling
can be disabled (False|’off’), or a storage sibling created only and
no Git sibling (‘only’). In the latter mode, no Git installation is
required on the target host. [Default: True]

	existing ({'skip', 'error', 'reconfigure'}, optional) – Action to perform, if a (storage) sibling is already configured
under the given name and/or a target already exists. In this case, a
dataset can be skipped (‘skip’), an existing target repository be
forcefully re-initialized, and the sibling (re-)configured
(‘reconfigure’), or the command be instructed to fail (‘error’).
[Default: ‘error’]

	new_store_ok (bool, optional) – When set, a new store will be created, if necessary. Otherwise, a
sibling will only be created if the url points to an existing RIA
store. [Default: False]

	trust_level ({'trust', 'semitrust', 'untrust', None}, optional) – specify a trust level for the storage sibling. If not specified, the
default git-annex trust level is used. ‘trust’ should be used with
care (see the git-annex-trust man page). [Default: None]

	recursive (bool, optional) – if set, recurse into potential subdatasets. [Default: False]

	recursion_limit (int or None, optional) – limit recursion into subdatasets to the given number of levels.
[Default: None]

	disable_storage (bool, optional) – This option is deprecated. Use ‘–storage-sibling off’ instead.
[Default: None]

	push_url (str or None, optional) – URL identifying the target RIA store and access protocol for write
access to the storage sibling. If given this will also be used for
creation of the repository sibling in the RIA store. [Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.drop

	
datalad.api.drop(path=None, *, what='filecontent', reckless=None, dataset=None, recursive=False, recursion_limit=None, jobs=None, check=None, if_dirty=None)

	Drop content of individual files or entire (sub)datasets

This command is the antagonist of ‘get’. It can undo the retrieval of file
content, and the installation of subdatasets.

Dropping is a safe-by-default operation. Before dropping any information,
the command confirms the continued availability of file-content (see e.g.,
configuration ‘annex.numcopies’), and the state of all dataset branches
from at least one known dataset sibling. Moreover, prior removal of an
entire dataset annex, that it is confirmed that it is no longer marked
as existing in the network of dataset siblings.

Importantly, all checks regarding version history availability and local
annex availability are performed using the current state of remote
siblings as known to the local dataset. This is done for performance
reasons and for resilience in case of absent network connectivity. To
ensure decision making based on up-to-date information, it is advised to
execute a dataset update before dropping dataset components.

Examples

Drop single file content:

> drop('path/to/file')

Drop all file content in the current dataset:

> drop('.')

Drop all file content in a dataset and all its subdatasets:

> drop(dataset='.', recursive=True)

Disable check to ensure the configured minimum number of remote
sources for dropped data:

> drop(path='path/to/content', reckless='availability')

Drop (uninstall) an entire dataset (will fail with subdatasets
present):

> drop(what='all')

Kill a dataset recklessly with any existing subdatasets too(this will
be fast, but will disable any and all safety checks):

> drop(what='all', reckless='kill', recursive=True)

	Parameters:

	
	path (sequence of str or None, optional) – path of a dataset or dataset component to be dropped. [Default:
None]

	what ({'filecontent', 'allkeys', 'datasets', 'all'}, optional) – select what type of items shall be dropped. With ‘filecontent’, only
the file content (git-annex keys) of files in a dataset’s worktree
will be dropped. With ‘allkeys’, content of any version of any file
in any branch (including, but not limited to the worktree) will be
dropped. This effectively empties the annex of a local dataset. With
‘datasets’, only complete datasets will be dropped (implies
‘allkeys’ mode for each such dataset), but no filecontent will be
dropped for any files in datasets that are not dropped entirely.
With ‘all’, content for any matching file or dataset will be dropped
entirely. [Default: ‘filecontent’]

	reckless ({'modification', 'availability', 'undead', 'kill', None}, optional) – disable individual or all data safety measures that would normally
prevent potentially irreversible data-loss. With ‘modification’,
unsaved modifications in a dataset will not be detected. This
improves performance at the cost of permitting potential loss of
unsaved or untracked dataset components. With ‘availability’,
detection of dataset/branch-states that are only available in the
local dataset, and detection of an insufficient number of file-
content copies will be disabled. Especially the latter is a
potentially expensive check which might involve numerous network
transactions. With ‘undead’, detection of whether a to-be-removed
local annex is still known to exist in the network of dataset-clones
is disabled. This could cause zombie-records of invalid file
availability. With ‘kill’, all safety-checks are disabled. [Default:
None]

	dataset (Dataset or None, optional) – specify the dataset to perform drop from. If no dataset is given,
the current working directory is used as operation context.
[Default: None]

	recursive (bool, optional) – if set, recurse into potential subdatasets. [Default: False]

	recursion_limit (int or None, optional) – limit recursion into subdatasets to the given number of levels.
[Default: None]

	jobs (int or None or {'auto'}, optional) – how many parallel jobs (where possible) to use. “auto” corresponds
to the number defined by ‘datalad.runtime.max-annex-jobs’
configuration item NOTE: This option can only parallelize
input retrieval (get) and output recording (save). DataLad does NOT
parallelize your scripts for you. [Default: None]

	check (bool, optional) – DEPRECATED: use ‘–reckless availability’. [Default: None]

	if_dirty – DEPRECATED and IGNORED: use –reckless instead. [Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.get

	
datalad.api.get(path=None, *, source=None, dataset=None, recursive=False, recursion_limit=None, get_data=True, description=None, reckless=None, jobs='auto')

	Get any dataset content (files/directories/subdatasets).

This command only operates on dataset content. To obtain a new independent
dataset from some source use the clone command.

By default this command operates recursively within a dataset, but not
across potential subdatasets, i.e. if a directory is provided, all files in
the directory are obtained. Recursion into subdatasets is supported too. If
enabled, relevant subdatasets are detected and installed in order to
fulfill a request.

Known data locations for each requested file are evaluated and data are
obtained from some available location (according to git-annex configuration
and possibly assigned remote priorities), unless a specific source is
specified.

Getting subdatasets

Just as DataLad supports getting file content from more than one location,
the same is supported for subdatasets, including a ranking of individual
sources for prioritization.

The following location candidates are considered. For each candidate a
cost is given in parenthesis, higher values indicate higher cost, and thus
lower priority:

	A datalad URL recorded in .gitmodules (cost 590). This allows for
datalad URLs that require additional handling/resolution by datalad, like
ria-schemes (ria+http, ria+ssh, etc.)

	A URL or absolute path recorded for git in .gitmodules (cost 600).

	URL of any configured superdataset remote that is known to have the
desired submodule commit, with the submodule path appended to it.
There can be more than one candidate (cost 650).

	In case .gitmodules contains a relative path instead of a URL,
the URL of any configured superdataset remote that is known to have the
desired submodule commit, with this relative path appended to it.
There can be more than one candidate (cost 650).

	In case .gitmodules contains a relative path as a URL, the absolute
path of the superdataset, appended with this relative path (cost 900).

Additional candidate URLs can be generated based on templates specified as
configuration variables with the pattern

datalad.get.subdataset-source-candidate-<name>

where name is an arbitrary identifier. If name starts with three digits
(e.g. ‘400myserver’) these will be interpreted as a cost, and the
respective candidate will be sorted into the generated candidate list
according to this cost. If no cost is given, a default of 700 is used.

A template string assigned to such a variable can utilize the Python format
mini language and may reference a number of properties that are inferred
from the parent dataset’s knowledge about the target subdataset. Properties
include any submodule property specified in the respective .gitmodules
record. For convenience, an existing datalad-id record is made available
under the shortened name id.

Additionally, the URL of any configured remote that contains the respective
submodule commit is available as remoteurl-<name> property, where name
is the configured remote name.

Hence, such a template could be http://example.org/datasets/{id} or
http://example.org/datasets/{path}, where {id} and {path} would be
replaced by the datalad-id or path entry in the .gitmodules record.

If this config is committed in .datalad/config, a clone of a dataset can
look up any subdataset’s URL according to such scheme(s) irrespective of
what URL is recorded in .gitmodules.

Lastly, all candidates are sorted according to their cost (lower values
first), and duplicate URLs are stripped, while preserving the first item in the
candidate list.

Note

Power-user info: This command uses git annex get to fulfill
file handles.

Examples

Get a single file:

> get('path/to/file')

Get contents of a directory:

> get('path/to/dir/')

Get all contents of the current dataset and its subdatasets:

> get(dataset='.', recursive=True)

Get (clone) a registered subdataset, but don’t retrieve data:

> get('path/to/subds', get_data=False)

	Parameters:

	
	path (sequence of str or None, optional) – path/name of the requested dataset component. The component must
already be known to a dataset. To add new components to a dataset
use the add command. [Default: None]

	source (str or None, optional) – label of the data source to be used to fulfill requests. This can be
the name of a dataset sibling or another known source. [Default:
None]

	dataset (Dataset or None, optional) – specify the dataset to perform the add operation on, in which case
path arguments are interpreted as being relative to this dataset.
If no dataset is given, an attempt is made to identify a dataset for
each input path. [Default: None]

	recursive (bool, optional) – if set, recurse into potential subdatasets. [Default: False]

	recursion_limit (int or {'existing'} or None, optional) – limit recursion into subdataset to the given number of levels.
Alternatively, ‘existing’ will limit recursion to subdatasets that
already existed on the filesystem at the start of processing, and
prevent new subdatasets from being obtained recursively. [Default:
None]

	get_data (bool, optional) – whether to obtain data for all file handles. If disabled, get
operations are limited to dataset handles. [Default: True]

	description (str or None, optional) – short description to use for a dataset location. Its primary purpose
is to help humans to identify a dataset copy (e.g., “mike’s dataset
on lab server”). Note that when a dataset is published, this
information becomes available on the remote side. [Default: None]

	reckless ({None, True, False, 'auto', 'ephemeral'} or shared-..., optional) – Obtain a dataset or subdatset and set it up in a potentially unsafe
way for performance, or access reasons. Use with care, any dataset
is marked as ‘untrusted’. The reckless mode is stored in a dataset’s
local configuration under ‘datalad.clone.reckless’, and will be
inherited to any of its subdatasets. Supported modes are: [‘auto’]:
hard-link files between local clones. In-place modification in any
clone will alter original annex content. [‘ephemeral’]: symlink
annex to origin’s annex and discard local availability info via git-
annex-dead ‘here’ and declares this annex private. Shares an annex
between origin and clone w/o git-annex being aware of it. In case of
a change in origin you need to update the clone before you’re able
to save new content on your end. Alternative to ‘auto’ when
hardlinks are not an option, or number of consumed inodes needs to
be minimized. Note that this mode can only be used with clones from
non-bare repositories or a RIA store! Otherwise two different annex
object tree structures (dirhashmixed vs dirhashlower) will be used
simultaneously, and annex keys using the respective other structure
will be inaccessible. [‘shared-<mode>’]: set up repository and annex
permission to enable multi-user access. This disables the standard
write protection of annex’ed files. <mode> can be any value support
by ‘git init –shared=’, such as ‘group’, or ‘all’. [Default: None]

	jobs (int or None or {'auto'}, optional) – how many parallel jobs (where possible) to use. “auto” corresponds
to the number defined by ‘datalad.runtime.max-annex-jobs’
configuration item. [Default: ‘auto’]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.install

	
datalad.api.install(path=None, *, source=None, dataset=None, get_data=False, description=None, recursive=False, recursion_limit=None, reckless=None, jobs='auto', branch=None)

	Install one or many datasets from remote URL(s) or local PATH source(s).

This command creates local sibling(s) of existing dataset(s) from
(remote) locations specified as URL(s) or path(s). Optional recursion into
potential subdatasets, and download of all referenced data is supported.
The new dataset(s) can be optionally registered in an existing
superdataset by identifying it via the dataset argument (the new
dataset’s path needs to be located within the superdataset for that).

If no explicit source option is specified, then all positional URL-
OR-PATH arguments are considered to be “sources” if they are URLs or
target locations if they are paths. If a target location path
corresponds to a submodule, the source location for it is figured out
from its record in the .gitmodules. If source is specified, then a
single optional positional PATH would be taken as the destination path
for that dataset.

It is possible to provide a brief description to label the dataset’s
nature and location, e.g. “Michael’s music on black laptop”. This helps
humans to identify data locations in distributed scenarios. By default an
identifier comprised of user and machine name, plus path will be generated.

When only partial dataset content shall be obtained, it is recommended to
use this command without the get-data flag, followed by a
~datalad.api.get operation to obtain the desired data.

Note

Power-user info: This command uses git clone, and
git annex init to prepare the dataset. Registering to a
superdataset is performed via a git submodule add operation
in the discovered superdataset.

Examples

Install a dataset from GitHub into the current directory:

> install(source='https://github.com/datalad-datasets/longnow-podcasts.git')

Install a dataset as a subdataset into the current dataset:

> install(dataset='.',
 source='https://github.com/datalad-datasets/longnow-podcasts.git')

Install a dataset into ‘podcasts’ (not ‘longnow-podcasts’) directory,
and get all content right away:

> install(path='podcasts',
 source='https://github.com/datalad-datasets/longnow-podcasts.git',
 get_data=True)

Install a dataset with all its subdatasets:

> install(source='https://github.com/datalad-datasets/longnow-podcasts.git',
 recursive=True)

	Parameters:

	
	path – path/name of the installation target. If no path is provided a
destination path will be derived from a source URL similar to git
clone. [Default: None]

	source (str or None, optional) – URL or local path of the installation source. [Default: None]

	dataset (Dataset or None, optional) – specify the dataset to perform the install operation on. If no
dataset is given, an attempt is made to identify the dataset in a
parent directory of the current working directory and/or the path
given. [Default: None]

	get_data (bool, optional) – if given, obtain all data content too. [Default: False]

	description (str or None, optional) – short description to use for a dataset location. Its primary purpose
is to help humans to identify a dataset copy (e.g., “mike’s dataset
on lab server”). Note that when a dataset is published, this
information becomes available on the remote side. [Default: None]

	recursive (bool, optional) – if set, recurse into potential subdatasets. [Default: False]

	recursion_limit (int or None, optional) – limit recursion into subdatasets to the given number of levels.
[Default: None]

	reckless ({None, True, False, 'auto', 'ephemeral'} or shared-..., optional) – Obtain a dataset or subdatset and set it up in a potentially unsafe
way for performance, or access reasons. Use with care, any dataset
is marked as ‘untrusted’. The reckless mode is stored in a dataset’s
local configuration under ‘datalad.clone.reckless’, and will be
inherited to any of its subdatasets. Supported modes are: [‘auto’]:
hard-link files between local clones. In-place modification in any
clone will alter original annex content. [‘ephemeral’]: symlink
annex to origin’s annex and discard local availability info via git-
annex-dead ‘here’ and declares this annex private. Shares an annex
between origin and clone w/o git-annex being aware of it. In case of
a change in origin you need to update the clone before you’re able
to save new content on your end. Alternative to ‘auto’ when
hardlinks are not an option, or number of consumed inodes needs to
be minimized. Note that this mode can only be used with clones from
non-bare repositories or a RIA store! Otherwise two different annex
object tree structures (dirhashmixed vs dirhashlower) will be used
simultaneously, and annex keys using the respective other structure
will be inaccessible. [‘shared-<mode>’]: set up repository and annex
permission to enable multi-user access. This disables the standard
write protection of annex’ed files. <mode> can be any value support
by ‘git init –shared=’, such as ‘group’, or ‘all’. [Default: None]

	jobs (int or None or {'auto'}, optional) – how many parallel jobs (where possible) to use. “auto” corresponds
to the number defined by ‘datalad.runtime.max-annex-jobs’
configuration item. [Default: ‘auto’]

	branch (str or None, optional) – Clone source at this branch or tag. This option applies only to the
top-level dataset not any subdatasets that may be cloned when
installing recursively. Note that if the source is a RIA URL with a
version, it takes precedence over this option. [Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: <function
is_result_matching_pathsource_argument at 0x7fa3d0306160>]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: ‘successdatasets-or-
none’]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘item-or-list’]

datalad.api.push

	
datalad.api.push(path=None, *, dataset=None, to=None, since=None, data='auto-if-wanted', force=None, recursive=False, recursion_limit=None, jobs=None)

	Push a dataset to a known sibling.

This makes a saved state of a dataset available to a sibling or special
remote data store of a dataset. Any target sibling must already exist and
be known to the dataset.

By default, all files tracked in the last saved state (of the current
branch) will be copied to the target location. Optionally, it is
possible to limit a push to changes relative to a particular point in
the version history of a dataset (e.g. a release tag) using the since
option in conjunction with the specification of a reference dataset.
In recursive mode subdatasets will also be evaluated, and only those
subdatasets are pushed where a change was recorded that is reflected
in the current state of the top-level reference dataset.

Note

Power-user info: This command uses git push, and git
annex copy to push a dataset. Publication targets are either configured
remote Git repositories, or git-annex special remotes (if they support
data upload).

	Parameters:

	
	path (sequence of str or None, optional) – path to constrain a push to. If given, only data or changes for
those paths are considered for a push. [Default: None]

	dataset (Dataset or None, optional) – specify the dataset to push. [Default: None]

	to (str or None, optional) – name of the target sibling. If no name is given an attempt is made
to identify the target based on the dataset’s configuration (i.e. a
configured tracking branch, or a single sibling that is configured
for push). [Default: None]

	since (str or None, optional) – specifies commit-ish (tag, shasum, etc.) from which to look for
changes to decide whether pushing is necessary. If ‘^’ is given, the
last state of the current branch at the sibling is taken as a
starting point. [Default: None]

	data ({'anything', 'nothing', 'auto', 'auto-if-wanted'}, optional) – what to do with (annex’ed) data. ‘anything’ would cause transfer of
all annexed content, ‘nothing’ would avoid call to git annex copy
altogether. ‘auto’ would use ‘git annex copy’ with ‘–auto’ thus
transferring only data which would satisfy “wanted” or “numcopies”
settings for the remote (thus “nothing” otherwise). ‘auto-if-wanted’
would enable ‘–auto’ mode only if there is a “wanted” setting for
the remote, and transfer ‘anything’ otherwise. [Default: ‘auto-if-
wanted’]

	force ({'all', 'gitpush', 'checkdatapresent', None}, optional) – force particular operations, possibly overruling safety protections
or optimizations: use –force with git-push (‘gitpush’); do not use
–fast with git-annex copy (‘checkdatapresent’); combine all force
modes (‘all’). [Default: None]

	recursive (bool, optional) – if set, recurse into potential subdatasets. [Default: False]

	recursion_limit (int or None, optional) – limit recursion into subdatasets to the given number of levels.
[Default: None]

	jobs (int or None or {'auto'}, optional) – how many parallel jobs (where possible) to use. “auto” corresponds
to the number defined by ‘datalad.runtime.max-annex-jobs’
configuration item. [Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.remove

	
datalad.api.remove(path=None, *, dataset=None, drop='datasets', reckless=None, message=None, jobs=None, recursive=None, check=None, save=None, if_dirty=None)

	Remove components from datasets

Removing “unlinks” a dataset component, such as a file or subdataset, from
a dataset. Such a removal advances the state of a dataset, just like adding
new content. A remove operation can be undone, by restoring a previous
dataset state, but might require re-obtaining file content and subdatasets
from remote locations.

This command relies on the ‘drop’ command for safe operation. By default,
only file content from datasets which will be uninstalled as part of
a removal will be dropped. Otherwise file content is retained, such that
restoring a previous version also immediately restores file content access,
just as it is the case for files directly committed to Git. This default
behavior can be changed to always drop content prior removal, for cases
where a minimal storage footprint for local datasets installations is
desirable.

Removing a dataset component is always a recursive operation. Removing a
directory, removes all content underneath the directory too. If
subdatasets are located under a to-be-removed path, they will be
uninstalled entirely, and all their content dropped. If any subdataset
can not be uninstalled safely, the remove operation will fail and halt.

Changed in version 0.16: More in-depth and comprehensive safety-checks are now performed by
default.
The if_dirty argument is ignored, will be removed in
a future release, and can be removed for a safe-by-default behavior. For
other cases consider the reckless argument.
The save argument is ignored and will be removed in a future
release, a dataset modification is now always saved. Consider save’s
amend argument for post-remove fix-ups.
The recursive argument is ignored, and will be removed
in a future release. Removal operations are always recursive, and the
parameter can be stripped from calls for a safe-by-default behavior.

Deprecated since version 0.16: The check argument will be removed in a future release.
It needs to be replaced with reckless.

Examples

Permanently remove a subdataset (and all further subdatasets contained
in it) from a dataset:

> remove(dataset='path/to/dataset', path='path/to/subds')

Permanently remove a superdataset (with all subdatasets) from the
filesystem:

> remove(dataset='path/to/dataset')

DANGER-ZONE: Fast wipe-out a dataset and all its subdataset, bypassing
all safety checks:

> remove(dataset='path/to/dataset', reckless='kill')

	Parameters:

	
	path (sequence of str or None, optional) – path of a dataset or dataset component to be removed. [Default:
None]

	dataset (Dataset or None, optional) – specify the dataset to perform remove from. If no dataset is given,
the current working directory is used as operation context.
[Default: None]

	drop ({'datasets', 'all'}, optional) – which dataset components to drop prior removal. This parameter is
passed on to the underlying drop operation as its ‘what’ argument.
[Default: ‘datasets’]

	reckless ({'modification', 'availability', 'undead', 'kill', None}, optional) – disable individual or all data safety measures that would normally
prevent potentially irreversible data-loss. With ‘modification’,
unsaved modifications in a dataset will not be detected. This
improves performance at the cost of permitting potential loss of
unsaved or untracked dataset components. With ‘availability’,
detection of dataset/branch-states that are only available in the
local dataset, and detection of an insufficient number of file-
content copies will be disabled. Especially the latter is a
potentially expensive check which might involve numerous network
transactions. With ‘undead’, detection of whether a to-be-removed
local annex is still known to exist in the network of dataset-clones
is disabled. This could cause zombie-records of invalid file
availability. With ‘kill’, all safety-checks are disabled. [Default:
None]

	message (str or None, optional) – a description of the state or the changes made to a dataset.
[Default: None]

	jobs (int or None or {'auto'}, optional) – how many parallel jobs (where possible) to use. “auto” corresponds
to the number defined by ‘datalad.runtime.max-annex-jobs’
configuration item NOTE: This option can only parallelize
input retrieval (get) and output recording (save). DataLad does NOT
parallelize your scripts for you. [Default: None]

	recursive – DEPRECATED and IGNORED: removal is always a recursive operation.
[Default: None]

	check (bool, optional) – DEPRECATED: use ‘–reckless availability’. [Default: None]

	save (bool, optional) – DEPRECATED and IGNORED; use save –amend instead. [Default: None]

	if_dirty – DEPRECATED and IGNORED: use –reckless instead. [Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.save

	
datalad.api.save(path=None, *, message=None, dataset=None, version_tag=None, recursive=False, recursion_limit=None, updated=False, message_file=None, to_git=None, jobs=None, amend=False)

	Save the current state of a dataset

Saving the state of a dataset records changes that have been made to it.
This change record is annotated with a user-provided description.
Optionally, an additional tag, such as a version, can be assigned to the
saved state. Such tag enables straightforward retrieval of past versions at
a later point in time.

Note

Before Git v2.22, any Git repository without an initial commit located
inside a Dataset is ignored, and content underneath it will be saved to
the respective superdataset. DataLad datasets always have an initial
commit, hence are not affected by this behavior.

Examples

Save any content underneath the current directory, without
altering any potential subdataset:

> save(path='.')

Save specific content in the dataset:

> save(path='myfile.txt')

Attach a commit message to save:

> save(path='myfile.txt', message='add file')

Save any content underneath the current directory, and
recurse into any potential subdatasets:

> save(path='.', recursive=True)

Save any modification of known dataset content in the current
directory, but leave untracked files (e.g. temporary files) untouched:

> save(path='.', updated=True)

Tag the most recent saved state of a dataset:

> save(version_tag='bestyet')

Save a specific change but integrate into last commit keeping the
already recorded commit message:

> save(path='myfile.txt', amend=True)

	Parameters:

	
	path (sequence of str or None, optional) – path/name of the dataset component to save. If given, only changes
made to those components are recorded in the new state. [Default:
None]

	message (str or None, optional) – a description of the state or the changes made to a dataset.
[Default: None]

	dataset (Dataset or None, optional) – “specify the dataset to save. [Default: None]

	version_tag (str or None, optional) – an additional marker for that state. Every dataset that is touched
will receive the tag. [Default: None]

	recursive (bool, optional) – if set, recurse into potential subdatasets. [Default: False]

	recursion_limit (int or None, optional) – limit recursion into subdatasets to the given number of levels.
[Default: None]

	updated (bool, optional) – if given, only saves previously tracked paths. [Default: False]

	message_file (str or None, optional) – take the commit message from this file. This flag is mutually
exclusive with -m. [Default: None]

	to_git (bool, optional) – flag whether to add data directly to Git, instead of tracking data
identity only. Use with caution, there is no guarantee that a file
put directly into Git like this will not be annexed in a subsequent
save operation. If not specified, it will be up to git-annex to
decide how a file is tracked, based on a dataset’s configuration to
track particular paths, file types, or file sizes with either Git or
git-annex. (see https://git-annex.branchable.com/tips/largefiles).
[Default: None]

	jobs (int or None or {'auto'}, optional) – how many parallel jobs (where possible) to use. “auto” corresponds
to the number defined by ‘datalad.runtime.max-annex-jobs’
configuration item. [Default: None]

	amend (bool, optional) – if set, changes are not recorded in a new, separate commit, but are
integrated with the changeset of the previous commit, and both
together are recorded by replacing that previous commit. This is
mutually exclusive with recursive operation. [Default: False]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.status

	
datalad.api.status(path=None, *, dataset=None, annex=None, untracked='normal', recursive=False, recursion_limit=None, eval_subdataset_state='full', report_filetype=None)

	Report on the state of dataset content.

This is an analog to git status that is simultaneously crippled and more
powerful. It is crippled, because it only supports a fraction of the
functionality of its counter part and only distinguishes a subset of the
states that Git knows about. But it is also more powerful as it can handle
status reports for a whole hierarchy of datasets, with the ability to
report on a subset of the content (selection of paths) across any number
of datasets in the hierarchy.

Path conventions

All reports are guaranteed to use absolute paths that are underneath the
given or detected reference dataset, regardless of whether query paths are
given as absolute or relative paths (with respect to the working directory,
or to the reference dataset, when such a dataset is given explicitly).
Moreover, so-called “explicit relative paths” (i.e. paths that start with
‘.’ or ‘..’) are also supported, and are interpreted as relative paths with
respect to the current working directory regardless of whether a reference
dataset with specified.

When it is necessary to address a subdataset record in a superdataset
without causing a status query for the state _within_ the subdataset
itself, this can be achieved by explicitly providing a reference dataset
and the path to the root of the subdataset like so:

datalad status --dataset . subdspath

In contrast, when the state of the subdataset within the superdataset is
not relevant, a status query for the content of the subdataset can be
obtained by adding a trailing path separator to the query path (rsync-like
syntax):

datalad status --dataset . subdspath/

When both aspects are relevant (the state of the subdataset content
and the state of the subdataset within the superdataset), both queries
can be combined:

datalad status --dataset . subdspath subdspath/

When performing a recursive status query, both status aspects of subdataset
are always included in the report.

Content types

The following content types are distinguished:

	‘dataset’ – any top-level dataset, or any subdataset that is properly
registered in superdataset

	‘directory’ – any directory that does not qualify for type ‘dataset’

	‘file’ – any file, or any symlink that is placeholder to an annexed
file when annex-status reporting is enabled

	‘symlink’ – any symlink that is not used as a placeholder for an annexed
file

Content states

The following content states are distinguished:

	‘clean’

	‘added’

	‘modified’

	‘deleted’

	‘untracked’

Examples

Report on the state of a dataset:

> status()

Report on the state of a dataset and all subdatasets:

> status(recursive=True)

Address a subdataset record in a superdataset without causing a status
query for the state _within_ the subdataset itself:

> status(dataset='.', path='mysubdataset')

Get a status query for the state within the subdataset without causing
a status query for the superdataset (using trailing path separator in
the query path)::

> status(dataset='.', path='mysubdataset/')

Report on the state of a subdataset in a superdataset and on the state
within the subdataset:

> status(dataset='.', path=['mysubdataset', 'mysubdataset/'])

Report the file size of annexed content in a dataset:

> status(annex=True)

	Parameters:

	
	path (sequence of str or None, optional) – path to be evaluated. [Default: None]

	dataset (Dataset or None, optional) – specify the dataset to query. If no dataset is given, an attempt is
made to identify the dataset based on the current working directory.
[Default: None]

	annex ({None, 'basic', 'availability', 'all'}, optional) – Switch whether to include information on the annex content of
individual files in the status report, such as recorded file size.
By default no annex information is reported (faster). Three report
modes are available: basic information like file size and key name
(‘basic’); additionally test whether file content is present in the
local annex (‘availability’; requires one or two additional file
system stat calls, but does not call git-annex), this will add the
result properties ‘has_content’ (boolean flag) and ‘objloc’
(absolute path to an existing annex object file); or ‘all’ which
will report all available information (presently identical to
‘availability’). [Default: None]

	untracked ({'no', 'normal', 'all'}, optional) – If and how untracked content is reported when comparing a revision
to the state of the working tree. ‘no’: no untracked content is
reported; ‘normal’: untracked files and entire untracked directories
are reported as such; ‘all’: report individual files even in fully
untracked directories. [Default: ‘normal’]

	recursive (bool, optional) – if set, recurse into potential subdatasets. [Default: False]

	recursion_limit (int or None, optional) – limit recursion into subdatasets to the given number of levels.
[Default: None]

	eval_subdataset_state ({'no', 'commit', 'full'}, optional) – Evaluation of subdataset state (clean vs. modified) can be expensive
for deep dataset hierarchies as subdataset have to be tested
recursively for uncommitted modifications. Setting this option to
‘no’ or ‘commit’ can substantially boost performance by limiting
what is being tested. With ‘no’ no state is evaluated and subdataset
result records typically do not contain a ‘state’ property. With
‘commit’ only a discrepancy of the HEAD commit shasum of a
subdataset and the shasum recorded in the superdataset’s record is
evaluated, and the ‘state’ result property only reflects this
aspect. With ‘full’ any other modification is considered too (see
the ‘untracked’ option for further tailoring modification testing).
[Default: ‘full’]

	report_filetype ({'raw', 'eval', None}, optional) – THIS OPTION IS IGNORED. It will be removed in a future release.
Dataset component types are always reported as-is (previous ‘raw’
mode), unless annex-reporting is enabled with the annex option, in
which case symlinks that represent annexed files will be reported as
type=’file’. [Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.update

	
datalad.api.update(path=None, *, sibling=None, merge=False, how=None, how_subds=None, follow='sibling', dataset=None, recursive=False, recursion_limit=None, fetch_all=None, reobtain_data=False)

	Update a dataset from a sibling.

Examples

Update from a particular sibling:

> update(sibling='siblingname')

Update from a particular sibling and merge the changes from a
configured or matching branch from the sibling (see follow for details):

> update(sibling='siblingname', how='merge')

Update from the sibling ‘origin’, traversing into subdatasets. For
subdatasets, merge the revision registered in the parent dataset into
the current branch:

> update(sibling='origin', how='merge', follow='parentds', recursive=True)

Fetch and merge the remote tracking branch into the current dataset.
Then update each subdataset by resetting its current branch to the
revision registered in the parent dataset, fetching only if the
revision isn’t already present:

> update(how='merge', how_subds='reset', follow='parentds-lazy', recursive=True)

	Parameters:

	
	path (sequence of str or None, optional) – constrain to-be-updated subdatasets to the given path for recursive
operation. [Default: None]

	sibling (str or None, optional) – name of the sibling to update from. When unspecified, updates from
all siblings are fetched. If there is more than one sibling and
changes will be brought into the working tree (as requested via
merge, how, or how_subds), a sibling will be chosen based on
the configured remote for the current branch. [Default: None]

	merge (bool or {'any', 'ff-only'}, optional) – merge obtained changes from the sibling. This is a subset of the
functionality that can be achieved via the newer how. merge=True
or merge=”any” is equivalent to how=”merge”. merge=”ff-only” is
equivalent to how=”ff-only”. [Default: False]

	how ({'fetch', 'merge', 'ff-only', 'reset', 'checkout', None}, optional) – how to update the dataset. The default (“fetch”) simply fetches the
changes from the sibling but doesn’t incorporate them into the
working tree. A value of “merge” or “ff-only” merges in changes,
with the latter restricting the allowed merges to fast-forwards.
“reset” incorporates the changes with ‘git reset –hard <target>’,
staying on the current branch but discarding any changes that aren’t
shared with the target. “checkout”, on the other hand, runs ‘git
checkout <target>’, switching from the current branch to a detached
state. When recursive=True is specified, this action will also apply
to subdatasets unless overridden by how_subds. [Default: None]

	how_subds ({'fetch', 'merge', 'ff-only', 'reset', 'checkout', None}, optional) – Override the behavior of how in subdatasets. [Default: None]

	follow ({'sibling', 'parentds', 'parentds-lazy'}, optional) – source of updates for subdatasets. For ‘sibling’, the update will be
done by merging in a branch from the (specified or inferred)
sibling. The branch brought in will either be the current branch’s
configured branch, if it points to a branch that belongs to the
sibling, or a sibling branch with a name that matches the current
branch. For ‘parentds’, the revision registered in the parent
dataset of the subdataset is merged in. ‘parentds-lazy’ is like
‘parentds’, but prevents fetching from a subdataset’s sibling if the
registered revision is present in the subdataset. Note that the
current dataset is always updated according to ‘sibling’. This
option has no effect unless a merge is requested and recursive=True
is specified. [Default: ‘sibling’]

	dataset (Dataset or None, optional) – specify the dataset to update. If no dataset is given, an attempt
is made to identify the dataset based on the current working
directory. [Default: None]

	recursive (bool, optional) – if set, recurse into potential subdatasets. [Default: False]

	recursion_limit (int or None, optional) – limit recursion into subdatasets to the given number of levels.
[Default: None]

	fetch_all (bool, optional) – this option has no effect and will be removed in a future version.
When no siblings are given, an all-sibling update will be performed.
[Default: None]

	reobtain_data (bool, optional) – if enabled, file content that was present before an update will be
re-obtained in case a file was changed by the update. [Default:
False]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.unlock

	
datalad.api.unlock(path=None, *, dataset=None, recursive=False, recursion_limit=None)

	Unlock file(s) of a dataset

Unlock files of a dataset in order to be able to edit the actual content

Examples

Unlock a single file:

> unlock(path='path/to/file')

Unlock all contents in the dataset:

> unlock('.')

	Parameters:

	
	path (sequence of str or None, optional) – file(s) to unlock. [Default: None]

	dataset (Dataset or None, optional) – “specify the dataset to unlock files in. If no dataset is given, an
attempt is made to identify the dataset based on the current working
directory. [Default: None]

	recursive (bool, optional) – if set, recurse into potential subdatasets. [Default: False]

	recursion_limit (int or None, optional) – limit recursion into subdatasets to the given number of levels.
[Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.run

	
datalad.api.run(cmd=None, *, dataset=None, inputs=None, outputs=None, expand=None, assume_ready=None, explicit=False, message=None, sidecar=None, dry_run=None, jobs=None)

	Run an arbitrary shell command and record its impact on a dataset.

It is recommended to craft the command such that it can run in the root
directory of the dataset that the command will be recorded in. However,
as long as the command is executed somewhere underneath the dataset root,
the exact location will be recorded relative to the dataset root.

If the executed command did not alter the dataset in any way, no record of
the command execution is made.

If the given command errors, a CommandError exception with the same exit
code will be raised, and no modifications will be saved. A command
execution will not be attempted, by default, when an error occurred during
input or output preparation. This default stop behavior can be
overridden via on_failure=….

In the presence of subdatasets, the full dataset hierarchy will be checked
for unsaved changes prior command execution, and changes in any dataset
will be saved after execution. Any modification of subdatasets is also
saved in their respective superdatasets to capture a comprehensive record
of the entire dataset hierarchy state. The associated provenance record is
duplicated in each modified (sub)dataset, although only being fully
interpretable and re-executable in the actual top-level superdataset. For
this reason the provenance record contains the dataset ID of that
superdataset.

Command format

A few placeholders are supported in the command via Python format
specification. “{pwd}” will be replaced with the full path of the
current working directory. “{dspath}” will be replaced with the full
path of the dataset that run is invoked on. “{tmpdir}” will be
replaced with the full path of a temporary directory. “{inputs}” and
“{outputs}” represent the values specified by inputs and outputs.
If multiple values are specified, the values will be joined by a
space. The order of the values will match that order from the command
line, with any globs expanded in alphabetical order (like bash).
Individual values can be accessed with an integer index (e.g.,
“{inputs[0]}”).

Note that the representation of the inputs or outputs in the formatted
command string depends on whether the command is given as a list of
arguments or as a string. The concatenated list of inputs or outputs
will be surrounded by quotes when the command is given as a list but
not when it is given as a string. This means that the string form is
required if you need to pass each input as a separate argument to a
preceding script (i.e., write the command as “./script {inputs}”,
quotes included). The string form should also be used if the input or
output paths contain spaces or other characters that need to be
escaped.

To escape a brace character, double it (i.e., “{{” or “}}”).

Custom placeholders can be added as configuration variables under
“datalad.run.substitutions”. As an example:

Add a placeholder “name” with the value “joe”:

% datalad configuration --scope branch set datalad.run.substitutions.name=joe
% datalad save -m "Configure name placeholder" .datalad/config

Access the new placeholder in a command:

% datalad run "echo my name is {name} >me"

Examples

Run an executable script and record the impact on a dataset:

> run(message='run my script', cmd='code/script.sh')

Run a command and specify a directory as a dependency for the run. The
contents of the dependency will be retrieved prior to running the
script:

> run(cmd='code/script.sh', message='run my script',
 inputs=['data/*'])

Run an executable script and specify output files of the script to be
unlocked prior to running the script:

> run(cmd='code/script.sh', message='run my script',
 inputs=['data/*'], outputs=['output_dir'])

Specify multiple inputs and outputs:

> run(cmd='code/script.sh',
 message='run my script',
 inputs=['data/*', 'datafile.txt'],
 outputs=['output_dir', 'outfile.txt'])

Use ** to match any file at any directory depth recursively. Single *
does not check files within matched directories.:

> run(cmd='code/script.sh',
 message='run my script',
 inputs=['data/**/*.dat'],
 outputs=['output_dir/**'])

	Parameters:

	
	cmd – command for execution. A leading ‘–’ can be used to disambiguate
this command from the preceding options to DataLad. [Default: None]

	dataset (Dataset or None, optional) – specify the dataset to record the command results in. An attempt is
made to identify the dataset based on the current working directory.
If a dataset is given, the command will be executed in the root
directory of this dataset. [Default: None]

	inputs – A dependency for the run. Before running the command, the content
for this relative path will be retrieved. A value of “.” means “run
datalad get .”. The value can also be a glob. [Default: None]

	outputs – Prepare this relative path to be an output file of the command. A
value of “.” means “run datalad unlock .” (and will fail if some
content isn’t present). For any other value, if the content of this
file is present, unlock the file. Otherwise, remove it. The value
can also be a glob. [Default: None]

	expand ({None, 'inputs', 'outputs', 'both'}, optional) – Expand globs when storing inputs and/or outputs in the commit
message. [Default: None]

	assume_ready ({None, 'inputs', 'outputs', 'both'}, optional) – Assume that inputs do not need to be retrieved and/or outputs do not
need to unlocked or removed before running the command. This option
allows you to avoid the expense of these preparation steps if you
know that they are unnecessary. [Default: None]

	explicit (bool, optional) – Consider the specification of inputs and outputs to be explicit.
Don’t warn if the repository is dirty, and only save modifications
to the listed outputs. [Default: False]

	message (str or None, optional) – a description of the state or the changes made to a dataset.
[Default: None]

	sidecar (None or bool, optional) – By default, the configuration variable ‘datalad.run.record-sidecar’
determines whether a record with information on a command’s
execution is placed into a separate record file instead of the
commit message (default: off). This option can be used to override
the configured behavior on a case-by-case basis. Sidecar files are
placed into the dataset’s ‘.datalad/runinfo’ directory (customizable
via the ‘datalad.run.record-directory’ configuration variable).
[Default: None]

	dry_run ({None, 'basic', 'command'}, optional) – Do not run the command; just display details about the command
execution. A value of “basic” reports a few important details about
the execution, including the expanded command and expanded inputs
and outputs. “command” displays the expanded command only. Note that
input and output globs underneath an uninstalled dataset will be
left unexpanded because no subdatasets will be installed for a dry
run. [Default: None]

	jobs (int or None or {'auto'}, optional) – how many parallel jobs (where possible) to use. “auto” corresponds
to the number defined by ‘datalad.runtime.max-annex-jobs’
configuration item NOTE: This option can only parallelize
input retrieval (get) and output recording (save). DataLad does NOT
parallelize your scripts for you. [Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘stop’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.rerun

	
datalad.api.rerun(revision=None, *, since=None, dataset=None, branch=None, message=None, onto=None, script=None, report=False, assume_ready=None, explicit=False, jobs=None)

	Re-execute previous datalad run commands.

This will unlock any dataset content that is on record to have
been modified by the command in the specified revision. It will
then re-execute the command in the recorded path (if it was inside
the dataset). Afterwards, all modifications will be saved.

Report mode

When called with report=True, this command reports information about
what would be re-executed as a series of records. There will be a
record for each revision in the specified revision range. Each of
these will have one of the following “rerun_action” values:

	run: the revision has a recorded command that would be re-executed

	skip-or-pick: the revision does not have a recorded command and would
be either skipped or cherry picked

	merge: the revision is a merge commit and a corresponding merge would
be made

The decision to skip rather than cherry pick a revision is based on whether
the revision would be reachable from HEAD at the time of execution.

In addition, when a starting point other than HEAD is specified, there is a
rerun_action value “checkout”, in which case the record includes
information about the revision the would be checked out before rerunning
any commands.

Note

Currently the “onto” feature only sets the working tree of the current
dataset to a previous state. The working trees of any subdatasets remain
unchanged.

Examples

Re-execute the command from the previous commit:

> rerun()

Re-execute any commands in the last five commits:

> rerun(since='HEAD~5')

Do the same as above, but re-execute the commands on top of HEAD~5 in
a detached state:

> rerun(onto='', since='HEAD~5')

	Parameters:

	
	revision (str or None, optional) – rerun command(s) in revision. By default, the command from this
commit will be executed, but since can be used to construct a
revision range. The default value is like “HEAD” but resolves to the
main branch when on an adjusted branch. [Default: None]

	since (str or None, optional) – If since is a commit-ish, the commands from all commits that are
reachable from revision but not since will be re-executed (in
other words, the commands in git log SINCE..REVISION). If SINCE is
an empty string, it is set to the parent of the first commit that
contains a recorded command (i.e., all commands in git log REVISION
will be re-executed). [Default: None]

	dataset (Dataset or None, optional) – specify the dataset from which to rerun a recorded command. If no
dataset is given, an attempt is made to identify the dataset based
on the current working directory. If a dataset is given, the command
will be executed in the root directory of this dataset. [Default:
None]

	branch (str or None, optional) – create and checkout this branch before rerunning the commands.
[Default: None]

	message (str or None, optional) – use MESSAGE for the reran commit rather than the recorded commit
message. In the case of a multi-commit rerun, all the reran commits
will have this message. [Default: None]

	onto (str or None, optional) – start point for rerunning the commands. If not specified, commands
are executed at HEAD. This option can be used to specify an
alternative start point, which will be checked out with the branch
name specified by branch or in a detached state otherwise. As a
special case, an empty value for this option means the parent of the
first run commit in the specified revision list. [Default: None]

	script (str or None, optional) – extract the commands into this file rather than rerunning. Use - to
write to stdout instead. [Default: None]

	report (bool, optional) – Don’t actually re-execute anything, just display what would be done.
[Default: False]

	assume_ready ({None, 'inputs', 'outputs', 'both'}, optional) – Assume that inputs do not need to be retrieved and/or outputs do not
need to unlocked or removed before running the command. This option
allows you to avoid the expense of these preparation steps if you
know that they are unnecessary. Note that this option also affects
any additional outputs that are automatically inferred based on
inspecting changed files in the run commit. [Default: None]

	explicit (bool, optional) – Consider the specification of inputs and outputs in the run record
to be explicit. Don’t warn if the repository is dirty, and only save
modifications to the outputs from the original record. Note that
when several run commits are specified, this applies to every one.
Care should also be taken when using onto because checking out a
new HEAD can easily fail when the working tree has modifications.
[Default: False]

	jobs (int or None or {'auto'}, optional) – how many parallel jobs (where possible) to use. “auto” corresponds
to the number defined by ‘datalad.runtime.max-annex-jobs’
configuration item NOTE: This option can only parallelize
input retrieval (get) and output recording (save). DataLad does NOT
parallelize your scripts for you. [Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.run_procedure

	
datalad.api.run_procedure(spec=None, *, dataset=None, discover=False, help_proc=False)

	Run prepared procedures (DataLad scripts) on a dataset

Concept

A “procedure” is an algorithm with the purpose to process a dataset in a
particular way. Procedures can be useful in a wide range of scenarios,
like adjusting dataset configuration in a uniform fashion, populating
a dataset with particular content, or automating other routine tasks,
such as synchronizing dataset content with certain siblings.

Implementations of some procedures are shipped together with DataLad,
but additional procedures can be provided by 1) any DataLad extension,
2) any (sub-)dataset, 3) a local user, or 4) a local system administrator.
DataLad will look for procedures in the following locations and order:

Directories identified by the configuration settings

	‘datalad.locations.user-procedures’ (determined by
platformdirs.user_config_dir; defaults to ‘$HOME/.config/datalad/procedures’
on GNU/Linux systems)

	‘datalad.locations.system-procedures’ (determined by
platformdirs.site_config_dir; defaults to ‘/etc/xdg/datalad/procedures’ on
GNU/Linux systems)

	‘datalad.locations.dataset-procedures’

and subsequently in the ‘resources/procedures/’ directories of any
installed extension, and, lastly, of the DataLad installation itself.

Please note that a dataset that defines
‘datalad.locations.dataset-procedures’ provides its procedures to
any dataset it is a subdataset of. That way you can have a collection of
such procedures in a dedicated dataset and install it as a subdataset into
any dataset you want to use those procedures with. In case of a naming
conflict with such a dataset hierarchy, the dataset you’re calling
run-procedures on will take precedence over its subdatasets and so on.

Each configuration setting can occur multiple times to indicate multiple
directories to be searched. If a procedure matching a given name is found
(filename without a possible extension), the search is aborted and this
implementation will be executed. This makes it possible for individual
datasets, users, or machines to override externally provided procedures
(enabling the implementation of customizable processing “hooks”).

Procedure implementation

A procedure can be any executable. Executables must have the appropriate
permissions and, in the case of a script, must contain an appropriate
“shebang” line. If a procedure is not executable, but its filename ends
with ‘.py’, it is automatically executed by the ‘python’ interpreter
(whichever version is available in the present environment). Likewise,
procedure implementations ending on ‘.sh’ are executed via ‘bash’.

Procedures can implement any argument handling, but must be capable
of taking at least one positional argument (the absolute path to the
dataset they shall operate on).

For further customization there are two configuration settings per procedure
available:

	‘datalad.procedures.<NAME>.call-format’
fully customizable format string to determine how to execute procedure
NAME (see also datalad-run).
It currently requires to include the following placeholders:

	‘{script}’: will be replaced by the path to the procedure

	‘{ds}’: will be replaced by the absolute path to the dataset the
procedure shall operate on

	‘{args}’: (not actually required) will be replaced by

all but the first element of spec if spec is a list or tuple
As an example the default format string for a call to a python script is:
“python {script} {ds} {args}”

	‘datalad.procedures.<NAME>.help’
will be shown on datalad run-procedure –help-proc NAME to provide a
description and/or usage info for procedure NAME

Examples

Find out which procedures are available on the current system:

> run_procedure(discover=True)

Run the ‘yoda’ procedure in the current dataset:

> run_procedure(spec='cfg_yoda', recursive=True)

	Parameters:

	
	spec – Name and possibly additional arguments of the to-be-executed
procedure. [PY: Can also be a dictionary coming from run-
procedure(discover=True).]. [Default: None]

	dataset (Dataset or None, optional) – specify the dataset to run the procedure on. An attempt is made to
identify the dataset based on the current working directory.
[Default: None]

	discover (bool, optional) – if given, all configured paths are searched for procedures and one
result record per discovered procedure is yielded, but no procedure
is executed. [Default: False]

	help_proc (bool, optional) – if given, get a help message for procedure NAME from config setting
datalad.procedures.NAME.help. [Default: False]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.clean

	
datalad.api.clean(*, dataset=None, what=None, dry_run=False, recursive=False, recursion_limit=None)

	Clean up after DataLad (possible temporary files etc.)

Removes temporary files and directories left behind by DataLad and
git-annex in a dataset.

Examples

Clean all known temporary locations of a dataset:

> clean()

Report on all existing temporary locations of a dataset:

> clean(dry_run=True)

Clean all known temporary locations of a dataset and all its
subdatasets:

> clean(recursive=True)

Clean only the archive extraction caches of a dataset and all its
subdatasets:

> clean(what='cached-archives', recursive=True)

Report on existing annex transfer files of a dataset and all its
subdatasets:

> clean(what='annex-transfer', recursive=True, dry_run=True)

	Parameters:

	
	dataset (Dataset or None, optional) – specify the dataset to perform the clean operation on. If no
dataset is given, an attempt is made to identify the dataset in
current working directory. [Default: None]

	what (sequence of {'cached-archives', 'annex-tmp', 'annex-transfer', 'search-index'} or None, optional) – What to clean. If none specified – all known targets are
considered. [Default: None]

	dry_run (bool, optional) – Report on cleanable locations - not actually cleaning up anything.
[Default: False]

	recursive (bool, optional) – if set, recurse into potential subdatasets. [Default: False]

	recursion_limit (int or None, optional) – limit recursion into subdatasets to the given number of levels.
[Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.clone

	
datalad.api.clone(source, path=None, git_clone_opts=None, *, dataset=None, description=None, reckless=None)

	Obtain a dataset (copy) from a URL or local directory

The purpose of this command is to obtain a new clone (copy) of a dataset
and place it into a not-yet-existing or empty directory. As such clone
provides a strict subset of the functionality offered by install. Only a
single dataset can be obtained, and immediate recursive installation of
subdatasets is not supported. However, once a (super)dataset is installed
via clone, any content, including subdatasets can be obtained by a
subsequent get command.

Primary differences over a direct git clone call are 1) the automatic
initialization of a dataset annex (pure Git repositories are equally
supported); 2) automatic registration of the newly obtained dataset as a
subdataset (submodule), if a parent dataset is specified; 3) support
for additional resource identifiers (DataLad resource identifiers as used
on datasets.datalad.org, and RIA store URLs as used for store.datalad.org
- optionally in specific versions as identified by a branch or a tag; see
examples); and 4) automatic configurable generation of alternative access
URL for common cases (such as appending ‘.git’ to the URL in case the
accessing the base URL failed).

In case the clone is registered as a subdataset, the original URL passed to
clone is recorded in .gitmodules of the parent dataset in addition
to the resolved URL used internally for git-clone. This allows to preserve
datalad specific URLs like ria+ssh://… for subsequent calls to get if
the subdataset was locally removed later on.

By default, the command returns a single Dataset instance for
an installed dataset, regardless of whether it was newly installed (‘ok’
result), or found already installed from the specified source (‘notneeded’
result).

URL mapping configuration

‘clone’ supports the transformation of URLs via (multi-part) substitution
specifications. A substitution specification is defined as a configuration
setting ‘datalad.clone.url-substition.<seriesID>’ with a string containing
a match and substitution expression, each following Python’s regular
expression syntax. Both expressions are concatenated to a single string
with an arbitrary delimiter character. The delimiter is defined by
prefixing the string with the delimiter. Prefix and delimiter are stripped
from the expressions (Example: “,^http://(.*)$,https://1”). This setting
can be defined multiple times, using the same ‘<seriesID>’. Substitutions
in a series will be applied incrementally, in order of their definition.
The first substitution in such a series must match, otherwise no further
substitutions in a series will be considered. However, following the first
match all further substitutions in a series are processed, regardless
whether intermediate expressions match or not. Substitution series themselves
have no particular order, each matching series will result in a candidate
clone URL. Consequently, the initial match specification in a series should
be as precise as possible to prevent inflation of candidate URLs.

See also

	handbook:3-001 (http://handbook.datalad.org/symbols)
	More information on Remote Indexed Archive (RIA) stores

Examples

Install a dataset from GitHub into the current directory:

> clone(source='https://github.com/datalad-datasets/longnow-podcasts.git')

Install a dataset into a specific directory:

> clone(source='https://github.com/datalad-datasets/longnow-podcasts.git',
 path='myfavpodcasts')

Install a dataset as a subdataset into the current dataset:

> clone(dataset='.',
 source='https://github.com/datalad-datasets/longnow-podcasts.git')

Install the main superdataset from datasets.datalad.org:

> clone(source='///')

Install a dataset identified by a literal alias from store.datalad.org:

> clone(source='ria+http://store.datalad.org#~hcp-openaccess')

Install a dataset in a specific version as identified by a branch or
tag name from store.datalad.org:

> clone(source='ria+http://store.datalad.org#76b6ca66-36b1-11ea-a2e6-f0d5bf7b5561@myidentifier')

Install a dataset with group-write access permissions:

> clone(source='http://example.com/dataset', reckless='shared-group')

	Parameters:

	
	source (str) – URL, DataLad resource identifier, local path or instance of dataset
to be cloned.

	path – path to clone into. If no path is provided a destination path
will be derived from a source URL similar to git clone. [Default:
None]

	git_clone_opts – A list of command line arguments to pass to git clone. Note that
not all options will lead to viable results. For example ‘–single-
branch’ will not result in a functional annex repository because
both a regular branch and the git-annex branch are required. Note
that a version in a RIA URL takes precedence over ‘–branch’.
[Default: None]

	dataset (Dataset or None, optional) – (parent) dataset to clone into. If given, the newly cloned dataset
is registered as a subdataset of the parent. Also, if given,
relative paths are interpreted as being relative to the parent
dataset, and not relative to the working directory. [Default: None]

	description (str or None, optional) – short description to use for a dataset location. Its primary purpose
is to help humans to identify a dataset copy (e.g., “mike’s dataset
on lab server”). Note that when a dataset is published, this
information becomes available on the remote side. [Default: None]

	reckless ({None, True, False, 'auto', 'ephemeral'} or shared-..., optional) – Obtain a dataset or subdatset and set it up in a potentially unsafe
way for performance, or access reasons. Use with care, any dataset
is marked as ‘untrusted’. The reckless mode is stored in a dataset’s
local configuration under ‘datalad.clone.reckless’, and will be
inherited to any of its subdatasets. Supported modes are: [‘auto’]:
hard-link files between local clones. In-place modification in any
clone will alter original annex content. [‘ephemeral’]: symlink
annex to origin’s annex and discard local availability info via git-
annex-dead ‘here’ and declares this annex private. Shares an annex
between origin and clone w/o git-annex being aware of it. In case of
a change in origin you need to update the clone before you’re able
to save new content on your end. Alternative to ‘auto’ when
hardlinks are not an option, or number of consumed inodes needs to
be minimized. Note that this mode can only be used with clones from
non-bare repositories or a RIA store! Otherwise two different annex
object tree structures (dirhashmixed vs dirhashlower) will be used
simultaneously, and annex keys using the respective other structure
will be inaccessible. [‘shared-<mode>’]: set up repository and annex
permission to enable multi-user access. This disables the standard
write protection of annex’ed files. <mode> can be any value support
by ‘git init –shared=’, such as ‘group’, or ‘all’. [Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default:
constraint:action:{install}]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: ‘successdatasets-or-
none’]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘item-or-list’]

datalad.api.copy_file

	
datalad.api.copy_file(path=None, *, dataset=None, recursive=False, target_dir=None, specs_from=None, message=None)

	Copy files and their availability metadata from one dataset to another.

The difference to a system copy command is that here additional content
availability information, such as registered URLs, is also copied to the
target dataset. Moreover, potentially required git-annex special remote
configurations are detected in a source dataset and are applied to a target
dataset in an analogous fashion. It is possible to copy a file for which no
content is available locally, by just copying the required metadata on
content identity and availability.

Note

At the moment, only URLs for the special remotes ‘web’ (git-annex built-in)
and ‘datalad’ are recognized and transferred.

The interface is modeled after the POSIX ‘cp’ command, but with one
additional way to specify what to copy where: specs_from allows the
caller to flexibly input source-destination path pairs.

This command can copy files out of and into a hierarchy of nested
datasets. Unlike with other DataLad command, the recursive switch
does not enable recursion into subdatasets, but is analogous to the
POSIX ‘cp’ command switch and enables subdirectory recursion,
regardless of dataset boundaries. It is not necessary to enable
recursion in order to save changes made to nested target subdatasets.

Examples

Copy a file into a dataset ‘myds’ using a path and a target directory
specification, and save its addition to ‘myds’:

> copy_file('path/to/myfile', dataset='path/to/myds')

Copy a file to a dataset ‘myds’ and save it under a new name by
providing two paths:

> copy_file(path=['path/to/myfile', 'path/to/myds/newname'],
 dataset='path/to/myds')

Copy a file into a dataset without saving it:

> copy_file('path/to/myfile', target_dir='path/to/myds/')

Copy a directory and its subdirectories into a dataset ‘myds’ and save
the addition in ‘myds’:

> copy_file('path/to/dir/', recursive=True, dataset='path/to/myds')

Copy files using a path and optionally target specification from a
file:

> copy_file(dataset='path/to/myds', specs_from='path/to/specfile')

	Parameters:

	
	path (sequence of str or None, optional) – paths to copy (and possibly a target path to copy to). [Default:
None]

	dataset (Dataset or None, optional) – root dataset to save after copy operations are completed. All
destination paths must be within this dataset, or its subdatasets.
If no dataset is given, dataset modifications will be left unsaved.
[Default: None]

	recursive (bool, optional) – copy directories recursively. [Default: False]

	target_dir (str or None, optional) – copy all source files into this DIRECTORY. This value is overridden
by any explicit destination path provided via ‘specs_from’. When not
given, this defaults to the path of the dataset specified via
‘dataset’. [Default: None]

	specs_from – read list of source (and destination) path names from a given file,
or stdin (with ‘-‘). Each line defines either a source path, or a
source/destination path pair (separated by a null byte character).
Alternatively, a list of 2-tuples with source/destination pairs can
be given. [Default: None]

	message (str or None, optional) – a description of the state or the changes made to a dataset.
[Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.create_test_dataset

	
datalad.api.create_test_dataset(path=None, *, spec=None, seed=None)

	Create test (meta-)dataset.

	Parameters:

	
	path (str or None, optional) – path/name where to create (if specified, must not exist). [Default:
None]

	spec (str or None, optional) – spec for hierarchy, defined as a min-max (min could be omitted to
assume 0) defining how many (random number from min to max) of sub-
datasets to generate at any given level of the hierarchy. Each
level separated from each other with /. Example: 1-3/-2 would
generate from 1 to 3 subdatasets at the top level, and up to two
within those at the 2nd level. [Default: None]

	seed (int or None, optional) – seed for rng. [Default: None]

datalad.api.diff

	
datalad.api.diff(path=None, *, fr='HEAD', to=None, dataset=None, annex=None, untracked='normal', recursive=False, recursion_limit=None)

	Report differences between two states of a dataset (hierarchy)

The two to-be-compared states are given via the –from and –to options.
These state identifiers are evaluated in the context of the (specified
or detected) dataset. In the case of a recursive report on a dataset
hierarchy, corresponding state pairs for any subdataset are determined
from the subdataset record in the respective superdataset. Only changes
recorded in a subdataset between these two states are reported, and so on.

Any paths given as additional arguments will be used to constrain the
difference report. As with Git’s diff, it will not result in an error when
a path is specified that does not exist on the filesystem.

Reports are very similar to those of the status command, with the
distinguished content types and states being identical.

Examples

Show unsaved changes in a dataset:

> diff()

Compare a previous dataset state identified by shasum against current
worktree:

> diff(fr='SHASUM')

Compare two branches against each other:

> diff(fr='branch1', to='branch2')

Show unsaved changes in the dataset and potential subdatasets:

> diff(recursive=True)

Show unsaved changes made to a particular file:

> diff(path='path/to/file')

	Parameters:

	
	path (sequence of str or None, optional) – path to constrain the report to. [Default: None]

	fr (str, optional) – original state to compare to, as given by any identifier that Git
understands. [Default: ‘HEAD’]

	to (str or None, optional) – state to compare against the original state, as given by any
identifier that Git understands. If none is specified, the state of
the working tree will be compared. [Default: None]

	dataset (Dataset or None, optional) – specify the dataset to query. If no dataset is given, an attempt is
made to identify the dataset based on the current working directory.
[Default: None]

	annex ({None, 'basic', 'availability', 'all'}, optional) – Switch whether to include information on the annex content of
individual files in the status report, such as recorded file size.
By default no annex information is reported (faster). Three report
modes are available: basic information like file size and key name
(‘basic’); additionally test whether file content is present in the
local annex (‘availability’; requires one or two additional file
system stat calls, but does not call git-annex), this will add the
result properties ‘has_content’ (boolean flag) and ‘objloc’
(absolute path to an existing annex object file); or ‘all’ which
will report all available information (presently identical to
‘availability’). [Default: None]

	untracked ({'no', 'normal', 'all'}, optional) – If and how untracked content is reported when comparing a revision
to the state of the working tree. ‘no’: no untracked content is
reported; ‘normal’: untracked files and entire untracked directories
are reported as such; ‘all’: report individual files even in fully
untracked directories. [Default: ‘normal’]

	recursive (bool, optional) – if set, recurse into potential subdatasets. [Default: False]

	recursion_limit (int or None, optional) – limit recursion into subdatasets to the given number of levels.
[Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.download_url

	
datalad.api.download_url(urls, *, dataset=None, path=None, overwrite=False, archive=False, save=True, message=None)

	Download content

It allows for a uniform download interface to various supported URL
schemes (see command help for details), re-using or asking for
authentication details maintained by datalad.

Examples

Download files from an http and S3 URL:

> download_url(urls=['http://example.com/file.dat', 's3://bucket/file2.dat'])

Download a file to a path and provide a commit message:

> download_url(urls='s3://bucket/file2.dat', message='added a file', path='myfile.dat')

Append a trailing slash to the target path to download into a
specified directory:

> download_url(['http://example.com/file.dat'], path='data/')

Leave off the trailing slash to download into a regular file:

> download_url(['http://example.com/file.dat'], path='data')

	Parameters:

	
	urls (non-empty sequence of str) – URL(s) to be downloaded. Supported protocols: ‘ftp’, ‘http’,
‘https’, ‘s3’, ‘shub’.

	dataset (Dataset or None, optional) – specify the dataset to add files to. If no dataset is given, an
attempt is made to identify the dataset based on the current working
directory. Use save=False to prevent adding files to the dataset.
[Default: None]

	path (str or None, optional) – target for download. If the path has a trailing separator, it is
treated as a directory, and each specified URL is downloaded under
that directory to a base name taken from the URL. Without a trailing
separator, the value specifies the name of the downloaded file (file
name extensions inferred from the URL may be added to it, if they
are not yet present) and only a single URL should be given. In both
cases, leading directories will be created if needed. This argument
defaults to the current directory. [Default: None]

	overwrite (bool, optional) – flag to overwrite it if target file exists. [Default: False]

	archive (bool, optional) – pass the downloaded files to add_archive_content(…, delete=True).
[Default: False]

	save (bool, optional) – by default all modifications to a dataset are immediately saved.
Giving this option will disable this behavior. [Default: True]

	message (str or None, optional) – a description of the state or the changes made to a dataset.
[Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.foreach_dataset

	
datalad.api.foreach_dataset(cmd, *, cmd_type='auto', dataset=None, state='present', recursive=False, recursion_limit=None, contains=None, bottomup=False, subdatasets_only=False, output_streams='pass-through', chpwd='ds', safe_to_consume='auto', jobs=None)

	Run a command or Python code on the dataset and/or each of its sub-datasets.

This command provides a convenience for the cases were no dedicated DataLad command
is provided to operate across the hierarchy of datasets. It is very similar to
git submodule foreach command with the following major differences

	by default (unless subdatasets_only=True) it would
include operation on the original dataset as well,

	subdatasets could be traversed in bottom-up order,

	can execute commands in parallel (see jobs option), but would account for the order,
e.g. in bottom-up order command is executed in super-dataset only after it is executed
in all subdatasets.

Additional notes:

	for execution of “external” commands we use the environment used to execute external
git and git-annex commands.

Command format

cmd_type=’external’: A few placeholders are supported in the command
via Python format specification:

	“{pwd}” will be replaced with the full path of the current working directory.

	“{ds}” and “{refds}” will provide instances of the dataset currently
operated on and the reference “context” dataset which was provided via dataset
argument.

	“{tmpdir}” will be replaced with the full path of a temporary directory.

Examples

Aggressively git clean all datasets, running 5 parallel jobs:

> foreach_dataset(['git', 'clean', '-dfx'], recursive=True, jobs=5)

	Parameters:

	
	cmd – command for execution. For cmd_type=’exec’ or cmd_type=’eval’
(Python code) should be either a string or a list with only a single
item. If ‘eval’, the actual function can be passed, which will be
provided all placeholders as keyword arguments.

	cmd_type ({'auto', 'external', 'exec', 'eval'}, optional) – type of the command. external: to be run in a child process using
dataset’s runner; ‘exec’: Python source code to execute using
‘exec(), no value returned; ‘eval’: Python source code to evaluate
using ‘eval()’, return value is placed into ‘result’ field. ‘auto’:
If used via Python API, and cmd is a Python function, it will use
‘eval’, and otherwise would assume ‘external’. [Default: ‘auto’]

	dataset (Dataset or None, optional) – specify the dataset to operate on. If no dataset is given, an
attempt is made to identify the dataset based on the input and/or
the current working directory. [Default: None]

	state ({'present', 'absent', 'any'}, optional) – indicate which (sub)datasets to consider: either only locally
present, absent, or any of those two kinds. [Default: ‘present’]

	recursive (bool, optional) – if set, recurse into potential subdatasets. [Default: False]

	recursion_limit (int or None, optional) – limit recursion into subdatasets to the given number of levels.
[Default: None]

	contains (list of str or None, optional) – limit to the subdatasets containing the given path. If a root path
of a subdataset is given, the last considered dataset will be the
subdataset itself. Can be a list with multiple paths, in which case
datasets that contain any of the given paths will be considered.
[Default: None]

	bottomup (bool, optional) – whether to report subdatasets in bottom-up order along each branch
in the dataset tree, and not top-down. [Default: False]

	subdatasets_only (bool, optional) – whether to exclude top level dataset. It is implied if a non-empty
contains is used. [Default: False]

	output_streams ({'capture', 'pass-through', 'relpath'}, optional) – ways to handle outputs. ‘capture’ and return outputs from ‘cmd’ in
the record (‘stdout’, ‘stderr’); ‘pass-through’ to the screen (and
thus absent from returned record); prefix with ‘relpath’ captured
output (similar to like grep does) and write to stdout and stderr.
In ‘relpath’, relative path is relative to the top of the dataset if
dataset is specified, and if not - relative to current directory.
[Default: ‘pass-through’]

	chpwd ({'ds', 'pwd'}, optional) – ‘ds’ will change working directory to the top of the corresponding
dataset. With ‘pwd’ no change of working directory will happen. Note
that for Python commands, due to use of threads, we do not allow
chdir=ds to be used with jobs > 1. Hint: use ‘ds’ and ‘refds’
objects’ methods to execute commands in the context of those
datasets. [Default: ‘ds’]

	safe_to_consume ({'auto', 'all-subds-done', 'superds-done', 'always'}, optional) – Important only in the case of parallel (jobs greater than 1)
execution. ‘all-subds-done’ instructs to not consider superdataset
until command finished execution in all subdatasets (it is the value
in case of ‘auto’ if traversal is bottomup). ‘superds-done’
instructs to not process subdatasets until command finished in the
super-dataset (it is the value in case of ‘auto’ in traversal is not
bottom up, which is the default). With ‘always’ there is no
constraint on either to execute in sub or super dataset. [Default:
‘auto’]

	jobs (int or None or {'auto'}, optional) – how many parallel jobs (where possible) to use. “auto” corresponds
to the number defined by ‘datalad.runtime.max-annex-jobs’
configuration item NOTE: This option can only parallelize
input retrieval (get) and output recording (save). DataLad does NOT
parallelize your scripts for you. [Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.siblings

	
datalad.api.siblings(action='query', *, dataset=None, name=None, url=None, pushurl=None, description=None, fetch=False, as_common_datasrc=None, publish_depends=None, publish_by_default=None, annex_wanted=None, annex_required=None, annex_group=None, annex_groupwanted=None, inherit=False, get_annex_info=True, recursive=False, recursion_limit=None)

	Manage sibling configuration

This command offers four different actions: ‘query’, ‘add’, ‘remove’,
‘configure’, ‘enable’. ‘query’ is the default action and can be used to obtain
information about (all) known siblings. ‘add’ and ‘configure’ are highly
similar actions, the only difference being that adding a sibling
with a name that is already registered will fail, whereas
re-configuring a (different) sibling under a known name will not
be considered an error. ‘enable’ can be used to complete access
configuration for non-Git sibling (aka git-annex special remotes).
Lastly, the ‘remove’ action allows for the
removal (or de-configuration) of a registered sibling.

For each sibling (added, configured, or queried) all known sibling
properties are reported. This includes:

	“name”
	Name of the sibling

	“path”
	Absolute path of the dataset

	“url”
	For regular siblings at minimum a “fetch” URL, possibly also a
“pushurl”

Additionally, any further configuration will also be reported using
a key that matches that in the Git configuration.

By default, sibling information is rendered as one line per sibling
following this scheme:

<dataset_path>: <sibling_name>(<+|->) [<access_specification]

where the + and - labels indicate the presence or absence of a
remote data annex at a particular remote, and access_specification
contains either a URL and/or a type label for the sibling.

	Parameters:

	
	action ({'query', 'add', 'remove', 'configure', 'enable'}, optional) – command action selection (see general documentation). [Default:
‘query’]

	dataset (Dataset or None, optional) – specify the dataset to configure. If no dataset is given, an
attempt is made to identify the dataset based on the input and/or
the current working directory. [Default: None]

	name (str or None, optional) – name of the sibling. For addition with path “URLs” and sibling
removal this option is mandatory, otherwise the hostname part of a
given URL is used as a default. This option can be used to limit
‘query’ to a specific sibling. [Default: None]

	url (str or None, optional) – the URL of or path to the dataset sibling named by name. For
recursive operation it is required that a template string for
building subdataset sibling URLs is given. List of currently
available placeholders: %%NAME the name of the dataset, where
slashes are replaced by dashes. [Default: None]

	pushurl (str or None, optional) – in case the url cannot be used to publish to the dataset sibling,
this option specifies a URL to be used instead. If no url is
given, pushurl serves as url as well. [Default: None]

	description (str or None, optional) – short description to use for a dataset location. Its primary purpose
is to help humans to identify a dataset copy (e.g., “mike’s dataset
on lab server”). Note that when a dataset is published, this
information becomes available on the remote side. [Default: None]

	fetch (bool, optional) – fetch the sibling after configuration. [Default: False]

	as_common_datasrc – configure a sibling as a common data source of the dataset that can
be automatically used by all consumers of the dataset. The sibling
must be a regular Git remote with a configured HTTP(S) URL.
[Default: None]

	publish_depends (list of str or None, optional) – add a dependency such that the given existing sibling is always
published prior to the new sibling. This equals setting a
configuration item ‘remote.SIBLINGNAME.datalad-publish-depends’.
Multiple dependencies can be given as a list of sibling names.
[Default: None]

	publish_by_default (list of str or None, optional) – add a refspec to be published to this sibling by default if nothing
specified. [Default: None]

	annex_wanted (str or None, optional) – expression to specify ‘wanted’ content for the repository/sibling.
See https://git-annex.branchable.com/git-annex-wanted/ for more
information. [Default: None]

	annex_required (str or None, optional) – expression to specify ‘required’ content for the repository/sibling.
See https://git-annex.branchable.com/git-annex-required/ for more
information. [Default: None]

	annex_group (str or None, optional) – expression to specify a group for the repository. See https://git-
annex.branchable.com/git-annex-group/ for more information.
[Default: None]

	annex_groupwanted (str or None, optional) – expression for the groupwanted. Makes sense only if
annex_wanted=”groupwanted” and annex-group is given too. See
https://git-annex.branchable.com/git-annex-groupwanted/ for more
information. [Default: None]

	inherit (bool, optional) – if sibling is missing, inherit settings (git config, git annex
wanted/group/groupwanted) from its super-dataset. [Default: False]

	get_annex_info (bool, optional) – Whether to query all information about the annex configurations of
siblings. Can be disabled if speed is a concern. [Default: True]

	recursive (bool, optional) – if set, recurse into potential subdatasets. [Default: False]

	recursion_limit (int or None, optional) – limit recursion into subdatasets to the given number of levels.
[Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.sshrun

	
datalad.api.sshrun(login, cmd, *, port=None, ipv4=False, ipv6=False, options=None, no_stdin=False)

	Run command on remote machines via SSH.

This is a replacement for a small part of the functionality of SSH.
In addition to SSH alone, this command can make use of datalad’s SSH
connection management. Its primary use case is to be used with Git
as ‘core.sshCommand’ or via “GIT_SSH_COMMAND”.

Configure datalad.ssh.identityfile to pass a file to the ssh’s -i option.

	Parameters:

	
	login – [user@]hostname.

	cmd – command for remote execution.

	port – port to connect to on the remote host. [Default: None]

	ipv4 (bool, optional) – use IPv4 addresses only. [Default: False]

	ipv6 (bool, optional) – use IPv6 addresses only. [Default: False]

	options – configuration option passed to SSH. [Default: None]

	no_stdin (bool, optional) – Do not connect stdin to the process. [Default: False]

datalad.api.subdatasets

	
datalad.api.subdatasets(path=None, *, dataset=None, state='any', fulfilled=None(DEPRECATED), recursive=False, recursion_limit=None, contains=None, bottomup=False, set_property=None, delete_property=None)

	Report subdatasets and their properties.

The following properties are reported (if possible) for each matching
subdataset record.

	“name”
	Name of the subdataset in the parent (often identical with the
relative path in the parent dataset)

	“path”
	Absolute path to the subdataset

	“parentds”
	Absolute path to the parent dataset

	“gitshasum”
	SHA1 of the subdataset commit recorded in the parent dataset

	“state”
	Condition of the subdataset: ‘absent’, ‘present’

	“gitmodule_url”
	URL of the subdataset recorded in the parent

	“gitmodule_name”
	Name of the subdataset recorded in the parent

	“gitmodule_<label>”
	Any additional configuration property on record.

Performance note: Property modification, requesting bottomup reporting
order, or a particular numerical recursion_limit implies an internal
switch to an alternative query implementation for recursive query that is
more flexible, but also notably slower (performs one call to Git per
dataset versus a single call for all combined).

The following properties for subdatasets are recognized by DataLad
(without the ‘gitmodule_’ prefix that is used in the query results):

	“datalad-recursiveinstall”
	If set to ‘skip’, the respective subdataset is skipped when DataLad
is recursively installing its superdataset. However, the subdataset
remains installable when explicitly requested, and no other features
are impaired.

	“datalad-url”
	If a subdataset was originally established by cloning, ‘datalad-url’
records the URL that was used to do so. This might be different from
‘url’ if the URL contains datalad specific pieces like any URL of the
form “ria+<some protocol>…”.

	Parameters:

	
	path (sequence of str or None, optional) – path/name to query for subdatasets. Defaults to the current
directory, or the entire dataset if called as a dataset method.
[Default: None]

	dataset (Dataset or None, optional) – specify the dataset to query. If no dataset is given, an attempt is
made to identify the dataset based on the input and/or the current
working directory. [Default: None]

	state ({'present', 'absent', 'any'}, optional) – indicate which (sub)datasets to consider: either only locally
present, absent, or any of those two kinds. [Default: ‘any’]

	fulfilled (bool or None, optional) – DEPRECATED: use state instead. If given, must be a boolean flag
indicating whether to consider either only locally present or absent
datasets. By default all subdatasets are considered regardless of
their status. [Default: None(DEPRECATED)]

	recursive (bool, optional) – if set, recurse into potential subdatasets. [Default: False]

	recursion_limit (int or None, optional) – limit recursion into subdatasets to the given number of levels.
[Default: None]

	contains (list of str or None, optional) – limit to the subdatasets containing the given path. If a root path
of a subdataset is given, the last considered dataset will be the
subdataset itself. Can be a list with multiple paths, in which case
datasets that contain any of the given paths will be considered.
[Default: None]

	bottomup (bool, optional) – whether to report subdatasets in bottom-up order along each branch
in the dataset tree, and not top-down. [Default: False]

	set_property (list of 2-item sequence of str or None, optional) – Name and value of one or more subdataset properties to be set in the
parent dataset’s .gitmodules file. The property name is case-
insensitive, must start with a letter, and consist only of
alphanumeric characters. The value can be a Python format() template
string wrapped in ‘<>’ (e.g. ‘<{gitmodule_name}>’). Supported
keywords are any item reported in the result properties of this
command, plus ‘refds_relpath’ and ‘refds_relname’: the relative path
of a subdataset with respect to the base dataset of the command
call, and, in the latter case, the same string with all directory
separators replaced by dashes. [Default: None]

	delete_property (list of str or None, optional) – Name of one or more subdataset properties to be removed from the
parent dataset’s .gitmodules file. [Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.add_archive_content

	
datalad.api.add_archive_content(archive, *, dataset=None, annex=None, add_archive_leading_dir=False, strip_leading_dirs=False, leading_dirs_depth=None, leading_dirs_consider=None, use_current_dir=False, delete=False, key=False, exclude=None, rename=None, existing='fail', annex_options=None, copy=False, commit=True, allow_dirty=False, stats=None, drop_after=False, delete_after=False)

	Add content of an archive under git annex control.

Given an already annex’ed archive, extract and add its files to the
dataset, and reference the original archive as a custom special remote.

Examples

Add files from the archive ‘big_tarball.tar.gz’, but
keep big_tarball.tar.gz in the index:

> add_archive_content(path='big_tarball.tar.gz')

Add files from the archive ‘tarball.tar.gz’, and
remove big_tarball.tar.gz from the index:

> add_archive_content(path='big_tarball.tar.gz', delete=True)

Add files from the archive ‘s3.zip’ but remove the leading
directory:

> add_archive_content(path='s3.zip', strip_leading_dirs=True)

	Parameters:

	
	archive (str) – archive file or a key (if key=True specified).

	dataset (Dataset or None, optional) – “specify the dataset to save. [Default: None]

	annex – DEPRECATED. Use the ‘dataset’ parameter instead. [Default: None]

	add_archive_leading_dir (bool, optional) – place extracted content under a directory which would correspond to
the archive name with all suffixes stripped. E.g. the content of
archive.tar.gz will be extracted under archive/. [Default:
False]

	strip_leading_dirs (bool, optional) – remove one or more leading directories from the archive layout on
extraction. [Default: False]

	leading_dirs_depth – maximum depth of leading directories to strip. If not specified
(None), no limit. [Default: None]

	leading_dirs_consider (list of str or None, optional) – regular expression(s) for directories to consider to strip away.
[Default: None]

	use_current_dir (bool, optional) – extract the archive under the current directory, not the directory
where the archive is located. This parameter is applied
automatically if key=True was used. [Default: False]

	delete (bool, optional) – delete original archive from the filesystem/Git in current tree.
Note that it will be of no effect if key=True is given. [Default:
False]

	key (bool, optional) – signal if provided archive is not actually a filename on its own but
an annex key. The archive will be extracted in the current
directory. [Default: False]

	exclude (list of str or None, optional) – regular expressions for filenames which to exclude from being added
to annex. Applied after –rename if that one is specified. For exact
matching, use anchoring. [Default: None]

	rename (list of str or None, optional) – regular expressions to rename files before added them under to Git.
The first defines how to split provided string into two parts:
Python regular expression (with groups), and replacement string.
[Default: None]

	existing – what operation to perform if a file from an archive tries to
overwrite an existing file with the same name. ‘fail’ (default)
leads to an error result, ‘overwrite’ silently replaces existing
file, ‘archive-suffix’ instructs to add a suffix (prefixed with a
‘-’) matching archive name from which file gets extracted, and if
that one is present as well, ‘numeric-suffix’ is in effect in
addition, when incremental numeric suffix (prefixed with a ‘.’) is
added until no name collision is longer detected. [Default: ‘fail’]

	annex_options (str or None, optional) – additional options to pass to git-annex. [Default: None]

	copy (bool, optional) – copy the content of the archive instead of moving. [Default: False]

	commit (bool, optional) – don’t commit upon completion. [Default: True]

	allow_dirty (bool, optional) – flag that operating on a dirty repository (uncommitted or untracked
content) is ok. [Default: False]

	stats – ActivityStats instance for global tracking. [Default: None]

	drop_after (bool, optional) – drop extracted files after adding to annex. [Default: False]

	delete_after (bool, optional) – extract under a temporary directory, git-annex add, and delete
afterwards. To be used to “index” files within annex without
actually creating corresponding files under git. Note that annex
dropunused would later remove that load. [Default: False]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.add_readme

	
datalad.api.add_readme(filename='README.md', *, dataset=None, existing='skip')

	Add basic information about DataLad datasets to a README file

The README file is added to the dataset and the addition is saved
in the dataset.
Note: Make sure that no unsaved modifications to your dataset’s
.gitattributes file exist.

	Parameters:

	
	filename (str, optional) – Path of the README file within the dataset. [Default: ‘README.md’]

	dataset (Dataset or None, optional) – Dataset to add information to. If no dataset is given, an attempt is
made to identify the dataset based on the current working directory.
[Default: None]

	existing ({'skip', 'append', 'replace'}, optional) – How to react if a file with the target name already exists: ‘skip’:
do nothing; ‘append’: append information to the existing file;
‘replace’: replace the existing file with new content. [Default:
‘skip’]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.addurls

	
datalad.api.addurls(urlfile, urlformat, filenameformat, *, dataset=None, input_type='ext', exclude_autometa=None, meta=None, key=None, message=None, dry_run=False, fast=False, ifexists=None, missing_value=None, save=True, version_urls=False, cfg_proc=None, jobs=None, drop_after=False, on_collision='error')

	Create and update a dataset from a list of URLs.

Format specification

Several arguments take format strings. These are similar to normal Python
format strings where the names from URL-FILE (column names for a comma-
or tab-separated file or properties for JSON) are available as
placeholders. If URL-FILE is a CSV or TSV file, a positional index can
also be used (i.e., “{0}” for the first column). Note that a placeholder
cannot contain a ‘:’ or ‘!’.

In addition, the FILENAME-FORMAT arguments has a few special
placeholders.

	_repindex

The constructed file names must be unique across all fields rows. To
avoid collisions, the special placeholder “_repindex” can be added to
the formatter. Its value will start at 0 and increment every time a
file name repeats.

	_url_hostname, _urlN, _url_basename*

Various parts of the formatted URL are available. Take
“http://datalad.org/asciicast/seamless_nested_repos.sh” as an example.

“datalad.org” is stored as “_url_hostname”. Components of the URL’s
path can be referenced as “_urlN”. “_url0” and “_url1” would map to
“asciicast” and “seamless_nested_repos.sh”, respectively. The final
part of the path is also available as “_url_basename”.

This name is broken down further. “_url_basename_root” and
“_url_basename_ext” provide access to the root name and extension.
These values are similar to the result of os.path.splitext, but, in the
case of multiple periods, the extension is identified using the same
length heuristic that git-annex uses. As a result, the extension of
“file.tar.gz” would be “.tar.gz”, not “.gz”. In addition, the fields
“_url_basename_root_py” and “_url_basename_ext_py” provide access to
the result of os.path.splitext.

	_url_filename*

These are similar to _url_basename* fields, but they are obtained with
a server request. This is useful if the file name is set in the
Content-Disposition header.

Examples

Consider a file “avatars.csv” that contains:

who,ext,link
neurodebian,png,https://avatars3.githubusercontent.com/u/260793
datalad,png,https://avatars1.githubusercontent.com/u/8927200

To download each link into a file name composed of the ‘who’ and ‘ext’
fields, we could run:

$ datalad addurls -d avatar_ds avatars.csv '{link}' '{who}.{ext}'

The -d avatar_ds is used to create a new dataset in “$PWD/avatar_ds”.

If we were already in a dataset and wanted to create a new subdataset in an
“avatars” subdirectory, we could use “//” in the FILENAME-FORMAT
argument:

$ datalad addurls avatars.csv '{link}' 'avatars//{who}.{ext}'

If the information is represented as JSON lines instead of comma separated
values or a JSON array, you can use a utility like jq to transform the JSON
lines into an array that addurls accepts:

$... | jq --slurp . | datalad addurls - '{link}' '{who}.{ext}'

Note

For users familiar with ‘git annex addurl’: A large part of this
plugin’s functionality can be viewed as transforming data from
URL-FILE into a “url filename” format that fed to ‘git annex addurl
–batch –with-files’.

	Parameters:

	
	urlfile – A file that contains URLs or information that can be used to
construct URLs. Depending on the value of –input-type, this should
be a comma- or tab-separated file (with a header as the first row)
or a JSON file (structured as a list of objects with string values).
If ‘-’, read from standard input, taking the content as JSON when
–input-type is at its default value of ‘ext’. Alternatively, an
iterable of dicts can be given.

	urlformat – A format string that specifies the URL for each entry. See the
‘Format Specification’ section above.

	filenameformat – Like URL-FORMAT, but this format string specifies the file to
which the URL’s content will be downloaded. The name should be a
relative path and will be taken as relative to the top-level
dataset, regardless of whether it is specified via dataset or
inferred. The file name may contain directories. The separator “//”
can be used to indicate that the left-side directory should be
created as a new subdataset. See the ‘Format Specification’ section
above.

	dataset (Dataset or None, optional) – Add the URLs to this dataset (or possibly subdatasets of this
dataset). An empty or non-existent directory is passed to create a
new dataset. New subdatasets can be specified with FILENAME-
FORMAT. [Default: None]

	input_type ({'ext', 'csv', 'tsv', 'json'}, optional) – Whether URL-FILE should be considered a CSV file, TSV file, or
JSON file. The default value, “ext”, means to consider URL-FILE as
a JSON file if it ends with “.json” or a TSV file if it ends with
“.tsv”. Otherwise, treat it as a CSV file. [Default: ‘ext’]

	exclude_autometa – By default, metadata field=value pairs are constructed with each
column in URL-FILE, excluding any single column that is specified
via URL-FORMAT. This argument can be used to exclude columns that
match a regular expression. If set to ‘*’ or an empty string,
automatic metadata extraction is disabled completely. This argument
does not affect metadata set explicitly with –meta. [Default: None]

	meta – A format string that specifies metadata. It should be structured as
“<field>=<value>”. As an example, “location={3}” would mean that
the value for the “location” metadata field should be set the value
of the fourth column. This option can be given multiple times.
[Default: None]

	key – A format string that specifies an annex key for the file content. In
this case, the file is not downloaded; instead the key is used to
create the file without content. The value should be structured as
“[et:]<input backend>[-s<bytes>]–<hash>”. The optional “et:”
prefix, which requires git-annex 8.20201116 or later, signals to
toggle extension state of the input backend (i.e., MD5 vs MD5E). As
an example, “et:MD5-s{size}–{md5sum}” would use the ‘md5sum’ and
‘size’ columns to construct the key, migrating the key from MD5 to
MD5E, with an extension based on the file name. Note: If the input
backend itself is an annex extension backend (i.e., a backend with a
trailing “E”), the key’s extension will not be updated to match the
extension of the corresponding file name. Thus, unless the input
keys and file names are generated from git-annex, it is recommended
to avoid using extension backends as input. If an extension is
desired, use the plain variant as input and prepend “et:” so that
git-annex will migrate from the plain backend to the extension
variant. [Default: None]

	message (None or str, optional) – Use this message when committing the URL additions. [Default: None]

	dry_run (bool, optional) – Report which URLs would be downloaded to which files and then exit.
[Default: False]

	fast (bool, optional) – If True, add the URLs, but don’t download their content. WARNING:
ONLY USE THIS OPTION IF YOU UNDERSTAND THE CONSEQUENCES. If the
content of the URLs is not downloaded, then datalad will refuse to
retrieve the contents with datalad get <file> by default because
the content of the URLs is not verified. Add
annex.security.allow-unverified-downloads = ACKTHPPT to your git
config to bypass the safety check. Underneath, this passes the
–fast flag to git annex addurl. [Default: False]

	ifexists ({None, 'overwrite', 'skip'}, optional) – What to do if a constructed file name already exists. The default
behavior is to proceed with the git annex addurl, which will fail
if the file size has changed. If set to ‘overwrite’, remove the old
file before adding the new one. If set to ‘skip’, do not add the
new file. [Default: None]

	missing_value (None or str, optional) – When an empty string is encountered, use this value instead.
[Default: None]

	save (bool, optional) – by default all modifications to a dataset are immediately saved.
Giving this option will disable this behavior. [Default: True]

	version_urls (bool, optional) – Try to add a version ID to the URL. This currently only has an
effect on HTTP URLs for AWS S3 buckets. s3:// URL versioning is not
yet supported, but any URL that already contains a “versionId=”
parameter will be used as is. [Default: False]

	cfg_proc – Pass this cfg_proc value when calling create to make datasets.
[Default: None]

	jobs (int or None or {'auto'}, optional) – how many parallel jobs (where possible) to use. “auto” corresponds
to the number defined by ‘datalad.runtime.max-annex-jobs’
configuration item NOTE: This option can only parallelize
input retrieval (get) and output recording (save). DataLad does NOT
parallelize your scripts for you. [Default: None]

	drop_after (bool, optional) – drop files after adding to annex. [Default: False]

	on_collision ({'error', 'error-if-different', 'take-first', 'take-last'}, optional) – What to do when more than one row produces the same file name. By
default an error is triggered. “error-if-different” suppresses that
error if rows for a given file name collision have the same URL and
metadata. “take-first” or “take-last” indicate to instead take the
first row or last row from each set of colliding rows. [Default:
‘error’]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.check_dates

	
datalad.api.check_dates(paths, *, reference_date='@1514764800', revs=None, annex='all', no_tags=False, older=False)

	Find repository dates that are more recent than a reference date.

The main purpose of this tool is to find “leaked” real dates in
repositories that are configured to use fake dates. It checks dates from
three sources: (1) commit timestamps (author and committer dates), (2)
timestamps within files of the “git-annex” branch, and (3) the timestamps
of annotated tags.

	Parameters:

	
	paths (sequence of str or None) – Root directory in which to search for Git repositories. The current
working directory will be used by default.

	reference_date (str, optional) – Compare dates to this date. If dateutil is installed, this value can
be any format that its parser recognizes. Otherwise, it should be a
unix timestamp that starts with a “@”. The default value corresponds
to 01 Jan, 2018 00:00:00 -0000. [Default: ‘@1514764800’]

	revs – Search timestamps from commits that are reachable from these
revisions. Any revision specification supported by git log,
including flags like –all and –tags, can be used. [Default: None]

	annex ({'all', 'tree', 'none'}, optional) – Mode for “git-annex” branch search. If ‘all’, all blobs within the
branch are searched. ‘tree’ limits the search to blobs that are
referenced by the tree at the tip of the branch. ‘none’ disables
search of “git-annex” blobs. [Default: ‘all’]

	no_tags (bool, optional) – Don’t check the dates of annotated tags. [Default: False]

	older (bool, optional) – Find dates which are older than the reference date rather than
newer. [Default: False]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.configuration

	
datalad.api.configuration(action='dump', spec=None, *, scope=None, dataset=None, recursive=False, recursion_limit=None)

	Get and set dataset, dataset-clone-local, or global configuration

This command works similar to git-config, but some features are not
supported (e.g., modifying system configuration), while other features
are not available in git-config (e.g., multi-configuration queries).

Query and modification of three distinct configuration scopes is
supported:

	‘branch’: the persistent configuration in .datalad/config of a dataset
branch

	‘local’: a dataset clone’s Git repository configuration in .git/config

	‘global’: non-dataset-specific configuration (usually in $USER/.gitconfig)

Modifications of the persistent ‘branch’ configuration will not be saved
by this command, but have to be committed with a subsequent save
call.

Rules of precedence regarding different configuration scopes are the same
as in Git, with two exceptions: 1) environment variables can be used to
override any datalad configuration, and have precedence over any other
configuration scope (see below). 2) the ‘branch’ scope is considered in
addition to the standard git configuration scopes. Its content has lower
precedence than Git configuration scopes, but it is committed to a branch,
hence can be used to ship (default and branch-specific) configuration with
a dataset.

Besides storing configuration settings statically via this command or git
config, DataLad also reads any DATALAD_* environment on process
startup or import, and maps it to a configuration item. Their values take
precedence over any other specification. In variable names _ encodes a
. in the configuration name, and __ encodes a -, such that
DATALAD_SOME__VAR is mapped to datalad.some-var. Additionally, a
DATALAD_CONFIG_OVERRIDES_JSON environment variable is
queried, which may contain configuration key-value mappings as a
JSON-formatted string of a JSON-object:

DATALAD_CONFIG_OVERRIDES_JSON='{"datalad.credential.example_com.user": "jane", ...}'

This is useful when characters are part of the configuration key that
cannot be encoded into an environment variable name. If both individual
configuration variables and JSON-overrides are used, the former take
precedent over the latter, overriding the respective individual settings
from configurations declared in the JSON-overrides.

This command supports recursive operation for querying and modifying
configuration across a hierarchy of datasets.

Examples

Dump the effective configuration, including an annotation for common
items:

> configuration()

Query two configuration items:

> configuration('get', ['user.name', 'user.email'])

Recursively set configuration in all (sub)dataset repositories:

> configuration('set', [('my.config.name', 'value')], recursive=True)

Modify the persistent branch configuration (changes are not committed):

> configuration('set', [('my.config.name', 'value')], scope='branch')

	Parameters:

	
	action ({'dump', 'get', 'set', 'unset'}, optional) – which action to perform. [Default: ‘dump’]

	spec – configuration name (for actions ‘get’ and ‘unset’), or name/value
pair (for action ‘set’). [Default: None]

	scope ({'global', 'local', 'branch', None}, optional) – scope for getting or setting configuration. If no scope is declared
for a query, all configuration sources (including overrides via
environment variables) are considered according to the normal rules
of precedence. For action ‘get’ only ‘branch’ and ‘local’ (which
include ‘global’ here) are supported. For action ‘dump’, a scope
selection is ignored and all available scopes are considered.
[Default: None]

	dataset (Dataset or None, optional) – specify the dataset to query or to configure. [Default: None]

	recursive (bool, optional) – if set, recurse into potential subdatasets. [Default: False]

	recursion_limit (int or None, optional) – limit recursion into subdatasets to the given number of levels.
[Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.export_archive

	
datalad.api.export_archive(filename=None, *, dataset=None, archivetype='tar', compression='gz', missing_content='error')

	Export the content of a dataset as a TAR/ZIP archive.

	Parameters:

	
	filename (str or None, optional) – File name of the generated TAR archive. If no file name is given the
archive will be generated in the current directory and will be
named: datalad_<dataset_uuid>.(tar.*|zip). To generate that file in
a different directory, provide an existing directory as the file
name. [Default: None]

	dataset (Dataset or None, optional) – “specify the dataset to export. If no dataset is given, an attempt
is made to identify the dataset based on the current working
directory. [Default: None]

	archivetype ({'tar', 'zip'}, optional) – Type of archive to generate. [Default: ‘tar’]

	compression ({'gz', 'bz2', ''}, optional) – Compression method to use. ‘bz2’ is not supported for ZIP archives.
No compression is used when an empty string is given. [Default:
‘gz’]

	missing_content ({'error', 'continue', 'ignore'}, optional) – By default, any discovered file with missing content will result in
an error and the export is aborted. Setting this to ‘continue’ will
issue warnings instead of failing on error. The value ‘ignore’ will
only inform about problem at the ‘debug’ log level. The latter two
can be helpful when generating a TAR archive from a dataset where
some file content is not available locally. [Default: ‘error’]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.export_archive_ora

	
datalad.api.export_archive_ora(target, opts=None, *, dataset=None, remote=None, annex_wanted=None, froms=None, missing_content='error')

	Export an archive of a local annex object store for the ORA remote.

Keys in the local annex object store are reorganized in a temporary
directory (using links to avoid storage duplication) to use the
‘hashdirlower’ setup used by git-annex for bare repositories and
the directory-type special remote. This alternative object store is
then moved into a 7zip archive that is suitable for use in a
ORA remote dataset store. Placing such an archive into:

<dataset location>/archives/archive.7z

Enables the ORA special remote to locate and retrieve all keys contained
in the archive.

	Parameters:

	
	target (str or None) – if an existing directory, an ‘archive.7z’ is placed into it,
otherwise this is the path to the target archive.

	opts – list of options for 7z to replace the default ‘-mx0’ to generate an
uncompressed archive. [Default: None]

	dataset (Dataset or None, optional) – specify the dataset to process. If no dataset is given, an attempt
is made to identify the dataset based on the current working
directory. [Default: None]

	remote (str or None, optional) – name of the target sibling, wanted/preferred settings will be used
to filter the files added to the archives. [Default: None]

	annex_wanted – git-annex-preferred-content expression for git-annex find to filter
files. Should start with ‘or’ or ‘and’ when used in combination with
–for. [Default: None]

	froms – one or multiple tree-ish from which to select files. [Default: None]

	missing_content ({'error', 'continue', 'ignore'}, optional) – By default, any discovered file with missing content will result in
an error and the export is aborted. Setting this to ‘continue’ will
issue warnings instead of failing on error. The value ‘ignore’ will
only inform about problem at the ‘debug’ log level. The latter two
can be helpful when generating a TAR archive from a dataset where
some file content is not available locally. [Default: ‘error’]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.export_to_figshare

	
datalad.api.export_to_figshare(filename=None, *, dataset=None, missing_content='error', no_annex=False, article_id=None)

	Export the content of a dataset as a ZIP archive to figshare

Very quick and dirty approach. Ideally figshare should be supported as
a proper git annex special remote. Unfortunately, figshare does not support
having directories, and can store only a flat list of files. That makes
it impossible for any sensible publishing of complete datasets.

The only workaround is to publish dataset as a zip-ball, where the entire
content is wrapped into a .zip archive for which figshare would provide a
navigator.

	Parameters:

	
	filename (str or None, optional) – File name of the generated ZIP archive. If no file name is given the
archive will be generated in the top directory of the dataset and
will be named: datalad_<dataset_uuid>.zip. [Default: None]

	dataset (Dataset or None, optional) – “specify the dataset to export. If no dataset is given, an attempt
is made to identify the dataset based on the current working
directory. [Default: None]

	missing_content ({'error', 'continue', 'ignore'}, optional) – By default, any discovered file with missing content will result in
an error and the plugin is aborted. Setting this to ‘continue’ will
issue warnings instead of failing on error. The value ‘ignore’ will
only inform about problem at the ‘debug’ log level. The latter two
can be helpful when generating a TAR archive from a dataset where
some file content is not available locally. [Default: ‘error’]

	no_annex (bool, optional) – By default the generated .zip file would be added to annex, and all
files would get registered in git-annex to be available from such a
tarball. Also upon upload we will register for that archive to be a
possible source for it in annex. Setting this flag disables this
behavior. [Default: False]

	article_id (int or None, optional) – Which article to publish to. [Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.no_annex

	
datalad.api.no_annex(dataset, pattern, ref_dir='.', makedirs=False)

	Configure a dataset to never put some content into the dataset’s annex

This can be useful in mixed datasets that also contain textual data, such
as source code, which can be efficiently and more conveniently managed
directly in Git.

Patterns generally look like this:

code/*

which would match all file in the code directory. In order to match all
files under code/, including all its subdirectories use such a
pattern:

code/**

Note that this command works incrementally, hence any existing configuration
(e.g. from a previous plugin run) is amended, not replaced.

	Parameters:

	
	dataset (Dataset or None) – “specify the dataset to configure. If no dataset is given, an
attempt is made to identify the dataset based on the current working
directory.

	pattern – list of path patterns. Any content whose path is matching any
pattern will not be annexed when added to a dataset, but instead
will be tracked directly in Git. Path pattern have to be relative to
the directory given by the ref_dir option. By default, patterns
should be relative to the root of the dataset.

	ref_dir – Relative path (within the dataset) to the directory that is to be
configured. All patterns are interpreted relative to this path, and
configuration is written to a .gitattributes file in this
directory. [Default: ‘.’]

	makedirs (bool, optional) – If set, any missing directories will be created in order to be able
to place a file into --ref-dir. [Default: False]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.shell_completion

	
datalad.api.shell_completion()

	Display shell script for enabling shell completion for DataLad.

Output of this command should be “sourced” by the bash or zsh to enable
shell completions provided by argcomplete.

Example

$ source <(datalad shell-completion)
$ datalad –<PRESS TAB to display available option>

	Parameters:

	
	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.api.wtf

	
datalad.api.wtf(*, dataset=None, sensitive=None, sections=None, flavor='full', decor=None, clipboard=None)

	Generate a report about the DataLad installation and configuration

IMPORTANT: Sharing this report with untrusted parties (e.g. on the web)
should be done with care, as it may include identifying information, and/or
credentials or access tokens.

	Parameters:

	
	dataset (Dataset or None, optional) – “specify the dataset to report on. no dataset is given, an attempt
is made to identify the dataset based on the current working
directory. [Default: None]

	sensitive ({None, 'some', 'all'}, optional) – if set to ‘some’ or ‘all’, it will display sections such as config
and metadata which could potentially contain sensitive information
(credentials, names, etc.). If ‘some’, the fields which are known
to be sensitive will still be masked out. [Default: None]

	sections (list of {None, 'configuration', 'credentials', 'datalad', 'dataset', 'dependencies', 'environment', 'extensions', 'git-annex', 'location', 'metadata', 'metadata.extractors', 'metadata.filters', 'metadata.indexers', 'python', 'system', '*'}, optional) – section to include. If not set - depends on flavor. ‘*’ could be
used to force all sections. If there are subsections like
section.subsection available, then specifying just ‘section’ would
select all subsections for that section. [Default: None]

	flavor ({'full', 'short'}, optional) – Flavor of WTF. ‘full’ would produce markdown with exhaustive list of
sections. ‘short’ will provide a condensed summary only of datalad
and dependencies by default. Use section to list other sections.
[Default: ‘full’]

	decor ({'html_details', None}, optional) – decoration around the rendering to facilitate embedding into issues
etc, e.g. use ‘html_details’ for posting collapsible entry to GitHub
issues. [Default: None]

	clipboard (bool, optional) – if set, do not print but copy to clipboard (requires pyperclip
module). [Default: None]

	on_failure ({'ignore', 'continue', 'stop'}, optional) – behavior to perform on failure: ‘ignore’ any failure is reported,
but does not cause an exception; ‘continue’ if any failure occurs an
exception will be raised at the end, but processing other actions
will continue for as long as possible; ‘stop’: processing will stop
on first failure and an exception is raised. A failure is any result
with status ‘impossible’ or ‘error’. Raised exception is an
IncompleteResultsError that carries the result dictionaries of the
failures in its failed attribute. [Default: ‘continue’]

	result_filter (callable or None, optional) – if given, each to-be-returned status dictionary is passed to this
callable, and is only returned if the callable’s return value does
not evaluate to False or a ValueError exception is raised. If the
given callable supports **kwargs it will additionally be passed
the keyword arguments of the original API call. [Default: None]

	result_renderer – select rendering mode command results. ‘tailored’ enables a command-
specific rendering style that is typically tailored to human
consumption, if there is one for a specific command, or otherwise
falls back on the the ‘generic’ result renderer; ‘generic’ renders
each result in one line with key info like action, status, path,
and an optional message); ‘json’ a complete JSON line serialization
of the full result record; ‘json_pp’ like ‘json’, but pretty-printed
spanning multiple lines; ‘disabled’ turns off result rendering
entirely; ‘<template>’ reports any value(s) of any result properties
in any format indicated by the template (e.g. ‘{path}’, compare with
JSON output for all key-value choices). The template syntax follows
the Python “format() language”. It is possible to report individual
dictionary values, e.g. ‘{metadata[name]}’. If a 2nd-level key
contains a colon, e.g. ‘music:Genre’, ‘:’ must be substituted by ‘#’
in the template, like so: ‘{metadata[music#Genre]}’. [Default:
‘tailored’]

	result_xfm ({'datasets', 'successdatasets-or-none', 'paths', 'relpaths', 'metadata'} or callable or None, optional) – if given, each to-be-returned result status dictionary is passed to
this callable, and its return value becomes the result instead. This
is different from result_filter, as it can perform arbitrary
transformation of the result value. This is mostly useful for top-
level command invocations that need to provide the results in a
particular format. Instead of a callable, a label for a pre-crafted
result transformation can be given. [Default: None]

	return_type ({'generator', 'list', 'item-or-list'}, optional) – return value behavior switch. If ‘item-or-list’ a single value is
returned instead of a one-item return value list, or a list in case
of multiple return values. None is return in case of an empty
list. [Default: ‘list’]

datalad.cmd

Class the starts a subprocess and keeps it around to communicate with it
via stdin. For each instruction send over stdin, a response is read and
returned. The response structure is determined by “output_proc”

	
class datalad.cmd.BatchedCommand(cmd, path=None, output_proc=None, timeout=None, exception_on_timeout=False)

	Bases: SafeDelCloseMixin

Container for a running subprocess. Supports communication with the
subprocess via stdin and stdout.

	Parameters:

	
	cmd (Union[str, Tuple, List])

	path (Optional[str])

	output_proc (Optional[Callable])

	timeout (Optional[float])

	exception_on_timeout (bool)

	
classmethod clean_inactive()

	

	
close(return_stderr=False)

	Close communication and wait for process to terminate. If the “timeout”
parameter to the constructor was not None, and if the configuration
setting “datalad.runtime.stalled-external” is set to “abandon”,
the method will return latest after “timeout” seconds. If the subprocess
did not exit within this time, the attribute “wait_timed_out” will
be set to “True”.

	Parameters:

	return_stderr (bool) – if set to “True”, the call will return all collected stderr content
as string. In addition, if return_stderr is True and the log level
is 5 or lower, and the configuration setting “datalad.log.outputs”
evaluates to “True”, the content of stderr will be logged.

	Returns:

	stderr output if return_stderr is True, None otherwise

	Return type:

	str, optional

	
get_one_line()

	Get a single stdout line from the generator.

If timeout was specified, and exception_on_timeout is False,
and if a timeout occurs, return None. Otherwise, return the
string that was read from the generator.

	Return type:

	Optional[str]

	
get_requested_error_output(return_stderr)

	
	Parameters:

	return_stderr (bool)

	
get_timeout_exception(fd)

	Get a process timeout exception if timeout exceptions should
be generated for a process that continues longer than timeout
seconds after self.close() was initiated.

	Parameters:

	fd (Optional[int])

	Return type:

	Optional[TimeoutExpired]

	
proc1(single_command)

	Simulate the old interface. This method is used only once in
AnnexRepo.get_metadata()

	Parameters:

	single_command (str)

	
process_request(request)

	
	Parameters:

	request (Union[Tuple, str])

	Return type:

	Any | None

	
process_running()

	
	Return type:

	bool

	
exception datalad.cmd.BatchedCommandError(cmd='', last_processed_request='', msg='', code=None, stdout='', stderr='', cwd=None, **kwargs)

	Bases: CommandError

	
class datalad.cmd.BatchedCommandProtocol(batched_command, done_future=None, encoding=None, output_proc=None)

	Bases: GeneratorMixIn, StdOutErrCapture

	Parameters:

	
	batched_command (BatchedCommand)

	done_future (Optional[Any])

	encoding (Optional[str])

	output_proc (Optional[Callable])

	
pipe_connection_lost(fd, exc)

	Called when a file descriptor associated with the child process is
closed.

fd is the int file descriptor that was closed.

	Parameters:

	
	fd (int)

	exc (Optional[BaseException])

	
pipe_data_received(fd, data)

	
	Parameters:

	
	fd (int)

	data (bytes)

	
timeout(fd)

	Called if the timeout parameter to WitlessRunner.run()
is not None and a process file descriptor could not
be read (stdout or stderr) or not be written (stdin)
within the specified time in seconds, or if waiting for
a subprocess to exit takes longer than the specified time.

stdin timeouts are only caught when the type of the stdin-
parameter to WitlessRunner.run() is either a Queue,
a str, or bytes. Stdout or stderr timeouts
are only caught of proc_out and proc_err are True in the
protocol class. Process wait timeouts are
always caught if timeout is not None. In this case the
fd-argument will be None.

	fd:
	The file descriptor that timed out or None if no
progress was made at all, i.e. no stdin element was
enqueued and no output was read from either stdout
or stderr.

	Return type:

	bool

	Returns:

	If the callback returns True, the file descriptor
(if any was given) will be closed and no longer monitored.
If the return values is anything else than True,
the file-descriptor will be monitored further
and additional timeouts might occur indefinitely.
If None was given, i.e. a process runtime-timeout
was detected, and True is returned, the process
will be terminated.

	Parameters:

	fd (Optional[int])

	
class datalad.cmd.ReadlineEmulator(batched_command)

	Bases: object

This class implements readline() on the basis of an instance of
BatchedCommand. Its purpose is to emulate stdout’s for output_procs,
This allows us to provide a BatchedCommand API that is identical
to the old version, but with an implementation that is based on the
threaded runner.

	Parameters:

	batched_command (BatchedCommand)

	
readline()

	Read from the stdout provider until we have a line or None (which
indicates some error).

	
class datalad.cmd.SafeDelCloseMixin

	Bases: object

A helper class to use where __del__ would call .close() which might
fail if “too late in GC game”

	
datalad.cmd.readline_rstripped(stdout)

	

datalad.consts

constants for datalad

datalad.log

Logging setup and utilities, including progress reporting

	
class datalad.log.ColorFormatter(use_color=None, log_name=False, log_pid=False)

	Bases: Formatter

	
format(record)

	Format the specified record as text.

The record’s attribute dictionary is used as the operand to a
string formatting operation which yields the returned string.
Before formatting the dictionary, a couple of preparatory steps
are carried out. The message attribute of the record is computed
using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is
called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message.

	
class datalad.log.LoggerHelper(name='datalad', logtarget=None)

	Bases: object

Helper to establish and control a Logger

	
get_initialized_logger(logtarget=None)

	Initialize and return the logger

	Parameters:

	logtarget ({'stderr', str }, optional) – Where to direct the logs. ‘stderr’ stands for the standard stream.
Any other string is considered a filename. Multiple entries could be
specified comma-separated

	Return type:

	logging.Logger

	
set_level(level=None, default='INFO')

	Helper to set loglevel for an arbitrary logger

By default operates for ‘datalad’.
TODO: deduce name from upper module name so it could be reused without changes

	
datalad.log.filter_noninteractive_progress(logger, record)

	Companion of log_progress() to suppress undesired progress logging

This filter is to be used with a log handler’s addFilter() method
for the case of a non-interactive session (e.g., pipe to log file).

It inspects the log record for dlm_progress_noninteractive_level
keys that can be injected via log_progress(noninteractive_level=).

If a log-level was declared in this fashion, it will be evaluated
against the logger’s effective level, and records are discarded
if their level is too low. If no log-level was declared, a log record
passes this filter unconditionally.

	Parameters:

	
	logger (logging.Logger) – The logger instance whose effective level to check against.

	record – The log record to inspect.

	Return type:

	bool

	
datalad.log.log_progress(lgrcall, pid, *args, **kwargs)

	Emit progress log messages

This helper can be used to handle progress reporting without having
to maintain display mode specific code.

Typical progress reporting via this function involves three types of
calls:

	Start reporting progress about a process

	Update progress information about a process

	Report completion of a process

In order to be able to associate all three steps with a particular process,
the pid identifier is used. This is an arbitrary string that must be
chosen to be unique across all different, but simultaneously running
progress reporting activities within a Python session. For many practical
purposes this can be achieved by, for example, including path information
in the identifier.

To initialize a progress report this function is called without an
update parameter. To report a progress update, this function is called
with an update parameter. To finish a reporting on a particular activity
a final call without an update parameter is required.

	Parameters:

	
	lgrcall (callable) – Something like lgr.debug or lgr.info

	pid (str) – Some kind of ID for the process the progress is reported on.

	*args (str) – Log message, and potential arguments

	total (int) – Max progress quantity of the process.

	label (str) – Process description. Should be very brief, goes in front of progress bar
on the same line.

	unit (str) – Progress report unit. Should be very brief, goes after the progress bar
on the same line.

	update (int) – To (or by) which quantity to advance the progress. Also see increment.

	increment (bool) – If set, update is interpreted as an incremental value, not absolute.

	initial (int) – If set, start value for progress bar

	noninteractive_level (int, optional) – In a non-interactive session where progress bars are not displayed,
only log a progress report, if a logger’s effective level includes the
specified level. This can be useful logging all progress is inappropriate
or too noisy for a log.

	maint ({'clear', 'refresh'}) – This is a special attribute that can be used by callers that are not
actually reporting progress, but need to ensure that their (console)
output does not interfere with any possibly ongoing progress reporting.
Setting this attribute to ‘clear’ will cause the central ProgressHandler
to temporarily stop the display of any active progress bars. With
‘refresh’, all active progress bars will be redisplayed. After a ‘clear’
individual progress bars would be reactivated upon the next update log
message, even without an explicit ‘refresh’.

	
datalad.log.with_progress(items, lgrcall=None, label='Total', unit=' Files')

	Wrap a progress bar, with status counts, around an iterable.

	Parameters:

	
	items (some iterable)

	lgrcall (callable) – Callable for logging. If not specified - lgr.info is used

	label (str) – Passed to log.log_progress.

	unit (str) – Passed to log.log_progress.

	Yields:

	Items of it while displaying the progress

	
datalad.log.with_result_progress(fn, label='Total', unit=' Files', log_filter=None)

	Wrap a progress bar, with status counts, around a function.

	Parameters:

	
	fn (generator function) – This function should accept a collection of items as a
positional argument and any number of keyword arguments. After
processing each item in the collection, it should yield a status
dict.

	log_filter (callable, optional) – If defined, only result records for which callable evaluates to True will be
passed to log_progress

	label (str) – Passed to log.log_progress.

	unit (str) – Passed to log.log_progress.

	Returns:

	
	A variant of fn that shows a progress bar. Note that the wrapped

	function is not a generator function; the status dicts will be

	returned as a list.

datalad.utils

	
class datalad.utils.ArgSpecFake(args, varargs, keywords, defaults)

	Bases: NamedTuple

	
args: list[str]

	Alias for field number 0

	
defaults: Optional[tuple[Any, ...]]

	Alias for field number 3

	
keywords: Optional[str]

	Alias for field number 2

	
varargs: Optional[str]

	Alias for field number 1

	
class datalad.utils.File(name, executable=False)

	Bases: object

Helper for a file entry in the create_tree/@with_tree

It allows to define additional settings for entries

	Parameters:

	
	name (str)

	executable (bool)

	
class datalad.utils.SequenceFormatter(separator=' ', element_formatter=<string.Formatter object>, *args, **kwargs)

	Bases: Formatter

string.Formatter subclass with special behavior for sequences.

This class delegates formatting of individual elements to another
formatter object. Non-list objects are formatted by calling the
delegate formatter’s “format_field” method. List-like objects
(list, tuple, set, frozenset) are formatted by formatting each
element of the list according to the specified format spec using
the delegate formatter and then joining the resulting strings with
a separator (space by default).

	Parameters:

	
	separator (str)

	element_formatter (Formatter)

	args (Any)

	kwargs (Any)

	
format_element(elem, format_spec)

	Format a single element

For sequences, this is called once for each element in a
sequence. For anything else, it is called on the entire
object. It is intended to be overridden in subclases.

	Parameters:

	
	elem (Any)

	format_spec (str)

	Return type:

	Any

	
format_field(value, format_spec)

	
	Parameters:

	
	value (Any)

	format_spec (str)

	Return type:

	Any

	
class datalad.utils.SwallowLogsAdapter(file_)

	Bases: object

Little adapter to help getting out values

And to stay consistent with how swallow_outputs behaves

	Parameters:

	file_ (str | Path | None)

	
assert_logged(msg=None, level=None, regex=True, **kwargs)

	Provide assertion on whether a msg was logged at a given level

If neither msg nor level provided, checks if anything was logged
at all.

	Parameters:

	
	msg (str, optional) – Message (as a regular expression, if regex) to be searched.
If no msg provided, checks if anything was logged at a given level.

	level (str, optional) – String representing the level to be logged

	regex (bool, optional) – If False, regular assert_in is used

	**kwargs (str, optional) – Passed to assert_re_in or assert_in

	Return type:

	None

	
cleanup()

	
	Return type:

	None

	
property handle: IO[str]

	

	
property lines: list[str]

	

	
property out: str

	

	
class datalad.utils.SwallowOutputsAdapter

	Bases: object

Little adapter to help getting out/err values

	
cleanup()

	
	Return type:

	None

	
property err: str

	

	
property handles: tuple[TextIO, TextIO]

	

	
property out: str

	

	
datalad.utils.any_re_search(regexes, value)

	Return if any of regexes (list or str) searches successfully for value

	Parameters:

	
	regexes (str | list[str])

	value (str)

	Return type:

	bool

	
datalad.utils.assert_no_open_files(path)

	
	Parameters:

	path (str | Path)

	Return type:

	None

	
datalad.utils.assure_bool(s)

	Note: This function is deprecated. Use ensure_bool instead.

	Parameters:

	s (Any)

	Return type:

	bool

	
datalad.utils.assure_bytes(s, encoding='utf-8')

	Note: This function is deprecated. Use ensure_bytes instead.

	Parameters:

	
	s (str | bytes)

	encoding (str)

	Return type:

	bytes

	
datalad.utils.assure_dict_from_str(s, sep='\\n')

	Note: This function is deprecated. Use ensure_dict_from_str instead.

	Parameters:

	
	s (str | dict[K, V])

	sep (str)

	Return type:

	Optional[dict[str, str]] | Optional[dict[K, V]]

	
datalad.utils.assure_dir(*args)

	Note: This function is deprecated. Use ensure_dir instead.

	Parameters:

	args (str)

	Return type:

	str

	
datalad.utils.assure_iter(s, cls, copy=False, iterate=True)

	Note: This function is deprecated. Use ensure_iter instead.

	Parameters:

	
	s (Any)

	cls (type[TypeVar(ListOrSet, list, set)])

	copy (bool)

	iterate (bool)

	Return type:

	TypeVar(ListOrSet, list, set)

	
datalad.utils.assure_list(s, copy=False, iterate=True)

	Note: This function is deprecated. Use ensure_list instead.

	Parameters:

	
	s (Any)

	copy (bool)

	iterate (bool)

	Return type:

	list

	
datalad.utils.assure_list_from_str(s, sep='\\n')

	Note: This function is deprecated. Use ensure_list_from_str instead.

	Parameters:

	
	s (str | list[T])

	sep (str)

	Return type:

	Optional[list[str]] | Optional[list[T]]

	
datalad.utils.assure_tuple_or_list(obj)

	Note: This function is deprecated. Use ensure_tuple_or_list instead.

	Parameters:

	obj (Any)

	Return type:

	list | tuple

	
datalad.utils.assure_unicode(s, encoding=None, confidence=None)

	Note: This function is deprecated. Use ensure_unicode instead.

	Parameters:

	
	s (str | bytes)

	encoding (Optional[str])

	confidence (Optional[float])

	Return type:

	str

	
datalad.utils.auto_repr(cls, short=True)

	Decorator for a class to assign it an automagic quick and dirty __repr__

It uses public class attributes to prepare repr of a class

Original idea: http://stackoverflow.com/a/27799004/1265472

	Parameters:

	
	cls (type[TypeVar(T)])

	short (bool)

	Return type:

	type[TypeVar(T)]

	
datalad.utils.bytes2human(n, format='%(value).1f %(symbol)sB')

	Convert n bytes into a human readable string based on format.
symbols can be either “customary”, “customary_ext”, “iec” or “iec_ext”,
see: http://goo.gl/kTQMs

>>> from datalad.utils import bytes2human
>>> bytes2human(1)
'1.0 B'
>>> bytes2human(1024)
'1.0 KB'
>>> bytes2human(1048576)
'1.0 MB'
>>> bytes2human(1099511627776127398123789121)
'909.5 YB'

>>> bytes2human(10000, "%(value).1f %(symbol)s/sec")
'9.8 K/sec'

>>> # precision can be adjusted by playing with %f operator
>>> bytes2human(10000, format="%(value).5f %(symbol)s")
'9.76562 K'

Taken from: http://goo.gl/kTQMs and subsequently simplified
Original Author: Giampaolo Rodola’ <g.rodola [AT] gmail [DOT] com>
License: MIT

	Parameters:

	
	n (int | float)

	format (str)

	Return type:

	str

	
datalad.utils.check_symlink_capability(path, target)

	helper similar to datalad.tests.utils_pytest.has_symlink_capability

However, for use in a datalad command context, we shouldn’t
assume to be able to write to tmpfile and also not import a whole lot from
datalad’s test machinery. Finally, we want to know, whether we can create a
symlink at a specific location, not just somewhere. Therefore use
arbitrary path to test-build a symlink and delete afterwards. Suitable
location can therefore be determined by high lever code.

	Parameters:

	
	path (Path)

	target (Path)

	Return type:

	bool

	
class datalad.utils.chpwd(path, mkdir=False, logsuffix='')

	Bases: object

Wrapper around os.chdir which also adjusts environ[‘PWD’]

The reason is that otherwise PWD is simply inherited from the shell
and we have no ability to assess directory path without dereferencing
symlinks.

If used as a context manager it allows to temporarily change directory
to the given path

	Parameters:

	
	path (str | Path | None)

	mkdir (bool)

	logsuffix (str)

	
datalad.utils.collect_method_callstats(func)

	Figure out methods which call the method repeatedly on the same instance

	Use case(s):
	
	.repo is expensive since does all kinds of checks.

	.config is expensive transitively since it calls .repo each time

Todo

	fancy one could look through the stack for the same id(self) to see if
that location is already in memo. That would hint to the cases where object
is not passed into underlying functions, causing them to redo the same work
over and over again

	ATM might flood with all “1 lines” calls which are not that informative.
The underlying possibly suboptimal use might be coming from their callers.
It might or not relate to the previous TODO

	Parameters:

	func (Callable[[ParamSpec(P)], TypeVar(T)])

	Return type:

	Callable[[ParamSpec(P)], TypeVar(T)]

	
datalad.utils.create_tree(path, tree, archives_leading_dir=True, remove_existing=False)

	Given a list of tuples (name, load) create such a tree

if load is a tuple itself – that would create either a subtree or an archive
with that content and place it into the tree if name ends with .tar.gz

	Parameters:

	
	path (str)

	tree (Union[Tuple[Tuple[Union[str, File], Union[str, bytes, TreeSpec]], ...], List[Tuple[Union[str, File], Union[str, bytes, TreeSpec]]], Dict[Union[str, File], Union[str, bytes, TreeSpec]]])

	archives_leading_dir (bool)

	remove_existing (bool)

	Return type:

	None

	
datalad.utils.create_tree_archive(path, name, load, overwrite=False, archives_leading_dir=True)

	Given an archive name, create under path with specified load tree

	Parameters:

	
	path (str)

	name (str)

	load (Union[Tuple[Tuple[Union[str, File], Union[str, bytes, TreeSpec]], ...], List[Tuple[Union[str, File], Union[str, bytes, TreeSpec]]], Dict[Union[str, File], Union[str, bytes, TreeSpec]]])

	overwrite (bool)

	archives_leading_dir (bool)

	Return type:

	None

	
datalad.utils.decode_input(s)

	Given input string/bytes, decode according to stdin codepage (or UTF-8)
if not defined

If fails – issue warning and decode allowing for errors
being replaced

	Parameters:

	s (str | bytes)

	Return type:

	str

	
datalad.utils.disable_logger(logger=None)

	context manager to temporarily disable logging

This is to provide one of swallow_logs’ purposes without unnecessarily
creating temp files (see gh-1865)

	Parameters:

	logger (Logger) – Logger whose handlers will be ordered to not log anything.
Default: datalad’s topmost Logger (‘datalad’)

	Return type:

	Iterator[Logger]

	
datalad.utils.dlabspath(path, norm=False)

	Symlinks-in-the-cwd aware abspath

os.path.abspath relies on os.getcwd() which would not know about symlinks
in the path

TODO: we might want to norm=True by default to match behavior of
os .path.abspath?

	Parameters:

	
	path (str | Path)

	norm (bool)

	Return type:

	str

	
datalad.utils.encode_filename(filename)

	Encode unicode filename

	Parameters:

	filename (str | bytes)

	Return type:

	bytes

	
datalad.utils.ensure_bool(s)

	Convert value into boolean following convention for strings

to recognize on,True,yes as True, off,False,no as False

	Parameters:

	s (Any)

	Return type:

	bool

	
datalad.utils.ensure_bytes(s, encoding='utf-8')

	Convert/encode unicode string to bytes.

If s isn’t a string, return it as is.

	Parameters:

	
	encoding (str, optional) – Encoding to use. “utf-8” is the default

	s (str | bytes)

	Return type:

	bytes

	
datalad.utils.ensure_dict_from_str(s, sep='\\n')

	Given a multiline string with key=value items convert it to a dictionary

	Parameters:

	
	s (str or dict)

	empty (Returns None if input s is)

	sep (str)

	Return type:

	Optional[dict[str, str]] | Optional[dict[K, V]]

	
datalad.utils.ensure_dir(*args)

	Make sure directory exists.

Joins the list of arguments to an os-specific path to the desired
directory and creates it, if it not exists yet.

	Parameters:

	args (str)

	Return type:

	str

	
datalad.utils.ensure_iter(s, cls, copy=False, iterate=True)

	Given not a list, would place it into a list. If None - empty list is returned

	Parameters:

	
	s (list or anything)

	cls (class) – Which iterable class to ensure

	copy (bool, optional) – If correct iterable is passed, it would generate its shallow copy

	iterate (bool, optional) – If it is not a list, but something iterable (but not a str)
iterate over it.

	Return type:

	TypeVar(ListOrSet, list, set)

	
datalad.utils.ensure_list(s, copy=False, iterate=True)

	Given not a list, would place it into a list. If None - empty list is returned

	Parameters:

	
	s (list or anything)

	copy (bool, optional) – If list is passed, it would generate a shallow copy of the list

	iterate (bool, optional) – If it is not a list, but something iterable (but not a str)
iterate over it.

	Return type:

	list

	
datalad.utils.ensure_list_from_str(s, sep='\\n')

	Given a multiline string convert it to a list of return None if empty

	Parameters:

	
	s (str or list)

	sep (str)

	Return type:

	Optional[list[str]] | Optional[list[T]]

	
datalad.utils.ensure_result_list(r)

	Return a list of result records

Largely same as ensure_list, but special casing a single dict being passed
in, which a plain ensure_list would iterate over. Hence, this deals with
the three ways datalad commands return results:
- single dict
- list of dicts
- generator

Used for result assertion helpers.

	Parameters:

	r (Any)

	Return type:

	list

	
datalad.utils.ensure_tuple_or_list(obj)

	Given an object, wrap into a tuple if not list or tuple

	Parameters:

	obj (Any)

	Return type:

	list | tuple

	
datalad.utils.ensure_unicode(s, encoding=None, confidence=None)

	Convert/decode bytestring to unicode.

If s isn’t a bytestring, return it as is.

	Parameters:

	
	encoding (str, optional) – Encoding to use. If None, “utf-8” is tried, and then if not a valid
UTF-8, encoding will be guessed

	confidence (float, optional) – A value between 0 and 1, so if guessing of encoding is of lower than
specified confidence, ValueError is raised

	s (str | bytes)

	Return type:

	str

	
datalad.utils.ensure_write_permission(path)

	Context manager to get write permission on path and
restore original mode afterwards.

	Parameters:

	path (Path) – path to the target file

	Raises:

	PermissionError – if write permission could not be obtained

	Return type:

	Iterator[None]

	
datalad.utils.escape_filename(filename)

	Surround filename in “” and escape “ in the filename

	Parameters:

	filename (str)

	Return type:

	str

	
datalad.utils.expandpath(path, force_absolute=True)

	Expand all variables and user handles in a path.

By default return an absolute path

	Parameters:

	
	path (str | Path)

	force_absolute (bool)

	Return type:

	str

	
datalad.utils.file_basename(name, return_ext=False)

	Strips up to 2 extensions of length up to 4 characters and starting with alpha
not a digit, so we could get rid of .tar.gz etc

	Parameters:

	
	name (str | Path)

	return_ext (bool)

	Return type:

	str | tuple[str, str]

	
datalad.utils.find_files(regex, topdir='.', exclude=None, exclude_vcs=True, exclude_datalad=False, dirs=False)

	Generator to find files matching regex

	Parameters:

	
	regex (string)

	exclude (string, optional) – Matches to exclude

	exclude_vcs (bool) – If True, excludes commonly known VCS subdirectories. If string, used
as regex to exclude those files (regex: ‘/\.(?:git|gitattributes|svn|bzr|hg)(?:/|$)’)

	exclude_datalad (bool) – If True, excludes files known to be datalad meta-data files (e.g. under
.datalad/ subdirectory) (regex: ‘/\.(?:datalad)(?:/|$)’)

	topdir (string, optional) – Directory where to search

	dirs (bool, optional) – Whether to match directories as well as files

	Return type:

	Iterator[str]

	
datalad.utils.generate_chunks(container, size)

	Given a container, generate chunks from it with size up to size

	Parameters:

	
	container (list[TypeVar(T)])

	size (int)

	Return type:

	Iterator[list[TypeVar(T)]]

	
datalad.utils.generate_file_chunks(files, cmd=None)

	Given a list of files, generate chunks of them to avoid exceeding cmdline length

	Parameters:

	
	files (list of str)

	cmd (str or list of str, optional) – Command to account for as well

	Return type:

	Iterator[list[str]]

	
datalad.utils.get_dataset_root(path)

	Return the root of an existent dataset containing a given path

The root path is returned in the same absolute or relative form
as the input argument. If no associated dataset exists, or the
input path doesn’t exist, None is returned.

If path is a symlink or something other than a directory, its
the root dataset containing its parent directory will be reported.
If none can be found, at a symlink at path is pointing to a
dataset, path itself will be reported as the root.

	Parameters:

	path (Path-like)

	Return type:

	str or None

	
datalad.utils.get_encoding_info()

	Return a dictionary with various encoding/locale information

	Return type:

	dict[str, str]

	
datalad.utils.get_envvars_info()

	
	Return type:

	dict[str, str]

	
datalad.utils.get_home_envvars(new_home)

	Return dict with env variables to be adjusted for a new HOME

Only variables found in current os.environ are adjusted.

	Parameters:

	new_home (str or Path) – New home path, in native to OS “schema”

	Return type:

	dict[str, str]

	
datalad.utils.get_ipython_shell()

	Detect if running within IPython and returns its ip (shell) object

Returns None if not under ipython (no get_ipython function)

	Return type:

	Optional[Any]

	
datalad.utils.get_linux_distribution()

	Compatibility wrapper for {platform,distro}.linux_distribution().

	Return type:

	tuple[str, str, str]

	
datalad.utils.get_logfilename(dspath, cmd='datalad')

	Return a filename to use for logging under a dataset/repository

directory would be created if doesn’t exist, but dspath must exist
and be a directory

	Parameters:

	
	dspath (str | Path)

	cmd (str)

	Return type:

	str

	
datalad.utils.get_open_files(path, log_open=False)

	Get open files under a path

Note: This function is very slow on Windows.

	Parameters:

	
	path (str) – File or directory to check for open files under

	log_open (bool or int) – If set - logger level to use

	Returns:

	path : pid

	Return type:

	dict

	
datalad.utils.get_path_prefix(path, pwd=None)

	Get path prefix (for current directory)

Returns relative path to the topdir, if we are under topdir, and if not
absolute path to topdir. If pwd is not specified - current directory
assumed

	Parameters:

	
	path (str | Path)

	pwd (Optional[str])

	Return type:

	str

	
datalad.utils.get_sig_param_names(f, kinds)

	A helper to selectively return parameters from inspect.signature.

inspect.signature is the ultimate way for introspecting callables. But
its interface is not so convenient for a quick selection of parameters
(AKA arguments) of desired type or combinations of such. This helper
should make it easier to retrieve desired collections of parameters.

Since often it is desired to get information about multiple specific types
of parameters, kinds is a list, so in a single invocation of signature
and looping through the results we can obtain all information.

	Parameters:

	
	f (callable)

	kinds (tuple with values from {'pos_any', 'pos_only', 'kw_any', 'kw_only', 'any'}) – Is a list of what kinds of args to return in result (tuple). Each element
should be one of: ‘any_pos’ - positional or keyword which could be used
positionally. ‘kw_only’ - keyword only (cannot be used positionally) arguments,
‘any_kw` - any keyword (could be a positional which could be used as a keyword),
any – any type from the above.

	Returns:

	Each element is a list of parameters (names only) of that “kind”.

	Return type:

	tuple

	
datalad.utils.get_suggestions_msg(values, known, sep='\\n ')

	Return a formatted string with suggestions for values given the known ones

	Parameters:

	
	values (Optional[str | Iterable[str]])

	known (str)

	sep (str)

	Return type:

	str

	
datalad.utils.get_tempfile_kwargs(tkwargs=None, prefix='', wrapped=None)

	Updates kwargs to be passed to tempfile. calls depending on env vars

	Parameters:

	
	tkwargs (Optional[dict[str, Any]])

	prefix (str)

	wrapped (Optional[Callable])

	Return type:

	dict[str, Any]

	
datalad.utils.get_timestamp_suffix(time_=None, prefix='-')

	Return a time stamp (full date and time up to second)

primarily to be used for generation of log files names

	Parameters:

	
	time_ (int | time.struct_time | None)

	prefix (str)

	Return type:

	str

	
datalad.utils.get_trace(edges, start, end, trace=None)

	Return the trace/path to reach a node in a tree.

	Parameters:

	
	edges (sequence(2-tuple)) – The tree given by a sequence of edges (parent, child) tuples. The
nodes can be identified by any value and data type that supports
the ‘==’ operation.

	start (TypeVar(T)) – Identifier of the start node. Must be present as a value in the parent
location of an edge tuple in order to be found.

	end (TypeVar(T)) – Identifier of the target/end node. Must be present as a value in the child
location of an edge tuple in order to be found.

	trace (list) – Mostly useful for recursive calls, and used internally.

	Returns:

	Returns a list with the trace to the target (the starts and the target
are not included in the trace, hence if start and end are directly connected
an empty list is returned), or None when no trace to the target can be found,
or start and end are identical.

	Return type:

	None or list

	
datalad.utils.get_wrapped_class(wrapped)

	Determine the command class a wrapped __call__ belongs to

	Parameters:

	wrapped (Callable)

	Return type:

	type

	
datalad.utils.getargspec(func, *, include_kwonlyargs=False)

	Compat shim for getargspec deprecated in python 3.

The main difference from inspect.getargspec (and inspect.getfullargspec
for that matter) is that by using inspect.signature we are providing
correct args/defaults for functools.wraps’ed functions.

include_kwonlyargs option was added to centralize getting all args,
even the ones which are kwonly (follow the *,).

For internal use and not advised for use in 3rd party code.
Please use inspect.signature directly.

	Parameters:

	
	func (Callable[..., Any])

	include_kwonlyargs (bool)

	Return type:

	ArgSpecFake

	
datalad.utils.getpwd()

	Try to return a CWD without dereferencing possible symlinks

This function will try to use PWD environment variable to provide a current
working directory, possibly with some directories along the path being
symlinks to other directories. Unfortunately, PWD is used/set only by the
shell and such functions as os.chdir and os.getcwd nohow use or modify
it, thus os.getcwd() returns path with links dereferenced.

While returning current working directory based on PWD env variable we
verify that the directory is the same as os.getcwd() after resolving all
symlinks. If that verification fails, we fall back to always use
os.getcwd().

Initial decision to either use PWD env variable or os.getcwd() is done upon
the first call of this function.

	Return type:

	str

	
datalad.utils.guard_for_format(arg)

	Replace { and } with {{ and }}

To be used in cases if arg is not expected to have provided
by user .format() placeholders, but ‘arg’ might become a part
of a composite passed to .format(), e.g. via ‘Run’

	Parameters:

	arg (str)

	Return type:

	str

	
datalad.utils.import_module_from_file(modpath, pkg=None, log=<bound method Logger.debug of <Logger datalad.utils (INFO)>>)

	Import provided module given a path

TODO:
- RF/make use of it in pipeline.py which has similar logic
- join with import_modules above?

	Parameters:

	
	pkg (module, optional) – If provided, and modpath is under pkg.__path__, relative import will be
used

	modpath (str)

	log (Callable[[str], Any])

	Return type:

	ModuleType

	
datalad.utils.import_modules(modnames, pkg, msg='Failed to import {module}', log=<bound method Logger.debug of <Logger datalad.utils (INFO)>>)

	Helper to import a list of modules without failing if N/A

	Parameters:

	
	modnames (list of str) – List of module names to import

	pkg (str) – Package under which to import

	msg (str, optional) – Message template for .format() to log at DEBUG level if import fails.
Keys {module} and {package} will be provided and ‘: {exception}’ appended

	log (callable, optional) – Logger call to use for logging messages

	Return type:

	list[ModuleType]

	
datalad.utils.is_explicit_path(path)

	Return whether a path explicitly points to a location

Any absolute path, or relative path starting with either ‘../’ or
‘./’ is assumed to indicate a location on the filesystem. Any other
path format is not considered explicit.

	Parameters:

	path (str | Path)

	Return type:

	bool

	
datalad.utils.is_interactive()

	Return True if all in/outs are open and tty.

Note that in a somewhat abnormal case where e.g. stdin is explicitly
closed, and any operation on it would raise a
ValueError(“I/O operation on closed file”) exception, this function
would just return False, since the session cannot be used interactively.

	Return type:

	bool

	
datalad.utils.join_cmdline(args)

	Join command line args into a string using quote_cmdlinearg

	Parameters:

	args (Iterable[str])

	Return type:

	str

	
datalad.utils.knows_annex(path)

	Returns whether at a given path there is information about an annex

It is just a thin wrapper around GitRepo.is_with_annex() classmethod
which also checks for path to exist first.

This includes actually present annexes, but also uninitialized ones, or
even the presence of a remote annex branch.

	Parameters:

	path (str | Path)

	Return type:

	bool

	
datalad.utils.line_profile(func)

	Q&D helper to line profile the function and spit out stats

	Parameters:

	func (Callable[[ParamSpec(P)], TypeVar(T)])

	Return type:

	Callable[[ParamSpec(P)], TypeVar(T)]

	
datalad.utils.lmtime(filepath, mtime)

	Set mtime for files, while not de-referencing symlinks.

To overcome absence of os.lutime

Works only on linux and OSX ATM

	Parameters:

	
	filepath (str | Path)

	mtime (int | float)

	Return type:

	None

	
datalad.utils.lock_if_required(lock_required, lock)

	Acquired and released the provided lock if indicated by a flag

	Parameters:

	
	lock_required (bool)

	lock (allocate_lock)

	Return type:

	Iterator[allocate_lock]

	
datalad.utils.make_tempfile(content=None, wrapped=None, **tkwargs)

	Helper class to provide a temporary file name and remove it at the end (context manager)

	Parameters:

	
	mkdir (bool, optional (default: False)) – If True, temporary directory created using tempfile.mkdtemp()

	content (str or bytes, optional) – Content to be stored in the file created

	wrapped (function, optional) – If set, function name used to prefix temporary file name

	**tkwargs – All other arguments are passed into the call to tempfile.mk{,d}temp(),
and resultant temporary filename is passed as the first argument into
the function t. If no ‘prefix’ argument is provided, it will be
constructed using module and function names (‘.’ replaced with
‘_’).

	set (To change the used directory without providing keyword argument 'dir')

	DATALAD_TESTS_TEMP_DIR.

	Return type:

	Iterator[str]

Examples

>>> from os.path import exists
>>> from datalad.utils import make_tempfile
>>> with make_tempfile() as fname:
... k = open(fname, 'w').write('silly test')
>>> assert not exists(fname) # was removed

>>> with make_tempfile(content="blah") as fname:
... assert open(fname).read() == "blah"

	Parameters:

	tkwargs (Any)

	
datalad.utils.map_items(func, v)

	A helper to apply func to all elements (keys and values) within dict

No type checking of values passed to func is done, so func
should be resilient to values which it should not handle

Initial usecase - apply_recursive(url_fragment, ensure_unicode)

	
datalad.utils.md5sum(filename)

	Compute an MD5 sum for the given file

	Parameters:

	filename (str | Path)

	Return type:

	str

	
datalad.utils.never_fail(f)

	Assure that function never fails – all exceptions are caught

Returns None if function fails internally.

	Parameters:

	f (Callable[[ParamSpec(P)], TypeVar(T)])

	Return type:

	Callable[[ParamSpec(P)], Optional[TypeVar(T)]]

	
datalad.utils.not_supported_on_windows(msg=None)

	A little helper to be invoked to consistently fail whenever functionality is
not supported (yet) on Windows

	Parameters:

	msg (Optional[str])

	Return type:

	None

	
datalad.utils.nothing_cm()

	Just a dummy cm to programmically switch context managers

	Return type:

	Iterator[None]

	
datalad.utils.obtain_write_permission(path)

	Obtains write permission for path and returns previous mode if a
change was actually made.

	Parameters:

	path (Path) – path to try to obtain write permission for

	Returns:

	previous mode of path as return by stat().st_mode if a change in
permission was actually necessary, None otherwise.

	Return type:

	int or None

	
datalad.utils.open_r_encdetect(fname, readahead=1000)

	Return a file object in read mode with auto-detected encoding

This is helpful when dealing with files of unknown encoding.

	Parameters:

	
	readahead (int, optional) – How many bytes to read for guessing the encoding type. If
negative - full file will be read

	fname (str | Path)

	Return type:

	IO[str]

	
datalad.utils.optional_args(decorator)

	allows a decorator to take optional positional and keyword arguments.
Assumes that taking a single, callable, positional argument means that
it is decorating a function, i.e. something like this:

@my_decorator
def function(): pass

Calls decorator with decorator(f, *args, **kwargs)

	
datalad.utils.partition(items, predicate=<class 'bool'>)

	Partition items by predicate.

	Parameters:

	
	items (iterable)

	predicate (callable) – A function that will be mapped over each element in items. The
elements will partitioned based on whether the return value is false or
true.

	Return type:

	tuple[Iterator[TypeVar(T)], Iterator[TypeVar(T)]]

	Returns:

	
	A tuple with two generators, the first for ‘false’ items and the second for

	’true’ ones.

Notes

Taken from Peter Otten’s snippet posted at
https://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html

	
datalad.utils.path_is_subpath(path, prefix)

	Return True if path is a subpath of prefix

It will return False if path == prefix.

	Parameters:

	
	path (str)

	prefix (str)

	Return type:

	bool

	
datalad.utils.path_startswith(path, prefix)

	Return True if path starts with prefix path

	Parameters:

	
	path (str)

	prefix (str)

	Return type:

	bool

	
datalad.utils.posix_relpath(path, start=None)

	Behave like os.path.relpath, but always return POSIX paths…

on any platform.

	Parameters:

	
	path (str | Path)

	start (Optional[str | Path])

	Return type:

	str

	
datalad.utils.quote_cmdlinearg(arg)

	Perform platform-appropriate argument quoting

	Parameters:

	arg (str)

	Return type:

	str

	
datalad.utils.read_csv_lines(fname, dialect=None, readahead=16384, **kwargs)

	A generator of dict records from a CSV/TSV

Automatically guesses the encoding for each record to convert to UTF-8

	Parameters:

	
	fname (str) – Filename

	dialect (str, optional) – Dialect to specify to csv.reader. If not specified – guessed from
the file, if fails to guess, “excel-tab” is assumed

	readahead (int, optional) – How many bytes to read from the file to guess the type

	**kwargs (Any) – Passed to csv.reader

	Return type:

	Iterator[dict[str, str]]

	
datalad.utils.read_file(fname, decode=True)

	A helper to read file passing content via ensure_unicode

	Parameters:

	
	decode (bool, optional) – if False, no ensure_unicode and file content returned as bytes

	fname (str | Path)

	Return type:

	str | bytes

	
datalad.utils.rmdir(path, *args, **kwargs)

	os.rmdir with our optional checking for open files

	Parameters:

	
	path (str | Path)

	args (Any)

	kwargs (Any)

	Return type:

	None

	
datalad.utils.rmtemp(f, *args, **kwargs)

	Wrapper to centralize removing of temp files so we could keep them around

It will not remove the temporary file/directory if DATALAD_TESTS_TEMP_KEEP
environment variable is defined

	Parameters:

	
	f (str | Path)

	args (Any)

	kwargs (Any)

	Return type:

	None

	
datalad.utils.rmtree(path, chmod_files='auto', children_only=False, *args, **kwargs)

	To remove git-annex .git it is needed to make all files and directories writable again first

	Parameters:

	
	path (Path or str) – Path to remove

	chmod_files (string or bool, optional) – Whether to make files writable also before removal. Usually it is just
a matter of directories to have write permissions.
If ‘auto’ it would chmod files on windows by default

	children_only (bool, optional) – If set, all files and subdirectories would be removed while the path
itself (must be a directory) would be preserved

	*args

	**kwargs – Passed into shutil.rmtree call

	args (Any)

	kwargs (Any)

	Return type:

	None

	
datalad.utils.rotree(path, ro=True, chmod_files=True)

	To make tree read-only or writable

	Parameters:

	
	path (string) – Path to the tree/directory to chmod

	ro (bool, optional) – Whether to make it R/O (default) or RW

	chmod_files (bool, optional) – Whether to operate also on files (not just directories)

	Return type:

	None

	
datalad.utils.saved_generator(gen)

	Given a generator returns two generators, where 2nd one just replays

So the first one would be going through the generated items and 2nd one
would be yielding saved items

	Parameters:

	gen (Iterable[TypeVar(T)])

	Return type:

	tuple[Iterator[TypeVar(T)], Iterator[TypeVar(T)]]

	
datalad.utils.shortened_repr(value, l=30)

	
	Parameters:

	
	value (Any)

	l (int)

	Return type:

	str

	
datalad.utils.slash_join(base, extension)

	Join two strings with a ‘/’, avoiding duplicate slashes

If any of the strings is None the other is returned as is.

	Parameters:

	
	base (Optional[str])

	extension (Optional[str])

	Return type:

	Optional[str]

	
datalad.utils.split_cmdline(s)

	Perform platform-appropriate command line splitting.

Identical to shlex.split() on non-windows platforms.

Modified from https://stackoverflow.com/a/35900070

	Parameters:

	s (str)

	Return type:

	list[str]

	
datalad.utils.swallow_logs(new_level=None, file_=None, name='datalad')

	Context manager to consume all logs.

	Parameters:

	
	new_level (str | int | None)

	file_ (str | Path | None)

	name (str)

	Return type:

	Iterator[SwallowLogsAdapter]

	
datalad.utils.swallow_outputs()

	Context manager to help consuming both stdout and stderr, and print()

stdout is available as cm.out and stderr as cm.err whenever cm is the
yielded context manager.
Internally uses temporary files to guarantee absent side-effects of swallowing
into StringIO which lacks .fileno.

print mocking is necessary for some uses where sys.stdout was already bound
to original sys.stdout, thus mocking it later had no effect. Overriding
print function had desired effect

	Return type:

	Iterator[SwallowOutputsAdapter]

	
datalad.utils.todo_interface_for_extensions(f)

	
	Parameters:

	f (TypeVar(T))

	Return type:

	TypeVar(T)

	
datalad.utils.try_multiple(ntrials, exception, base, f, *args, **kwargs)

	Call f multiple times making exponentially growing delay between the calls

	
datalad.utils.try_multiple_dec(f, ntrials=None, duration=0.1, exceptions=None, increment_type=None, exceptions_filter=None, logger=None)

	Decorator to try function multiple times.

Main purpose is to decorate functions dealing with removal of files/directories
and which might need a few seconds to work correctly on Windows which takes
its time to release files/directories.

	Parameters:

	
	ntrials (int, optional)

	duration (float, optional) – Seconds to sleep before retrying.

	increment_type ({None, 'exponential'}) – Note that if it is exponential, duration should typically be > 1.0
so it grows with higher power

	exceptions (Exception or tuple of Exceptions, optional) – Exception or a tuple of multiple exceptions, on which to retry

	exceptions_filter (callable, optional) – If provided, this function will be called with a caught exception
instance. If function returns True - we will re-try, if False - exception
will be re-raised without retrying.

	logger (callable, optional) – Logger to log upon failure. If not provided, will use stock logger
at the level of 5 (heavy debug).

	f (Callable[P, T])

	Return type:

	Callable[P, T]

	
datalad.utils.unique(seq, key=None, reverse=False)

	Given a sequence return a list only with unique elements while maintaining order

This is the fastest solution. See
https://www.peterbe.com/plog/uniqifiers-benchmark
and
http://stackoverflow.com/a/480227/1265472
for more information.
Enhancement – added ability to compare for uniqueness using a key function

	Parameters:

	
	seq (Sequence[TypeVar(T)]) – Sequence to analyze

	key (callable, optional) – Function to call on each element so we could decide not on a full
element, but on its member etc

	reverse (bool, optional) – If True, uniqueness checked in the reverse order, so that the later ones
will take the order

	Return type:

	list[TypeVar(T)]

	
datalad.utils.unlink(f)

	‘Robust’ unlink. Would try multiple times

On windows boxes there is evidence for a latency of more than a second
until a file is considered no longer “in-use”.
WindowsError is not known on Linux, and if IOError or any other
exception
is thrown then if except statement has WindowsError in it – NameError
also see gh-2533

	Parameters:

	f (str | Path)

	Return type:

	None

	
datalad.utils.updated(d, update)

	Return a copy of the input with the ‘update’

Primarily for updating dictionaries

	Parameters:

	
	d (dict[TypeVar(K), TypeVar(V)])

	update (dict[TypeVar(K), TypeVar(V)])

	Return type:

	dict[TypeVar(K), TypeVar(V)]

	
datalad.utils.with_pathsep(path)

	Little helper to guarantee that path ends with /

	Parameters:

	path (str)

	Return type:

	str

datalad.version

datalad.support.gitrepo

Internal low-level interface to Git repositories

	
class datalad.support.gitrepo.FetchInfo

	Bases: dict

dict that carries results of a fetch operation of a single head

Reduced variant of GitPython’s RemoteProgress class

	Original copyright:
	Copyright (C) 2008, 2009 Michael Trier and contributors

	Original license:
	BSD 3-Clause “New” or “Revised” License

	
ERROR = 128

	

	
FAST_FORWARD = 64

	

	
FORCED_UPDATE = 32

	

	
HEAD_UPTODATE = 4

	

	
NEW_HEAD = 2

	

	
NEW_TAG = 1

	

	
REJECTED = 16

	

	
TAG_UPDATE = 8

	

	
class datalad.support.gitrepo.GitAddOutput

	Bases: TypedDict

	
file: str

	

	
success: bool

	

	
class datalad.support.gitrepo.GitProgress(done_future=None, encoding=None)

	Bases: WitlessProtocol

Reduced variant of GitPython’s RemoteProgress class

	Original copyright:
	Copyright (C) 2008, 2009 Michael Trier and contributors

	Original license:
	BSD 3-Clause “New” or “Revised” License

	Parameters:

	
	done_future (Optional[Any])

	encoding (Optional[str])

	
BEGIN = 1

	

	
CHECKING_OUT = 256

	

	
COMPRESSING = 8

	

	
COUNTING = 4

	

	
DONE_TOKEN = 'done.'

	

	
END = 2

	

	
ENUMERATING = 512

	

	
FINDING_SOURCES = 128

	

	
OP_MASK = -4

	

	
RECEIVING = 32

	

	
RESOLVING = 64

	

	
STAGE_MASK = 3

	

	
TOKEN_SEPARATOR = ', '

	

	
WRITING = 16

	

	
connection_made(transport)

	
	Parameters:

	transport (Popen)

	Return type:

	None

	
pipe_data_received(fd, byts)

	
	Parameters:

	
	fd (int)

	byts (bytes)

	Return type:

	None

	
proc_err = True

	

	
process_exited()

	
	Return type:

	None

	
re_op_absolute = re.compile('(remote:)?([\\w\\s]+):\\s+()(\\d+)()(.*)')

	

	
re_op_relative = re.compile('(remote:)?([\\w\\s]+):\\s+(\\d+)% \\((\\d+)/(\\d+)\\)(.*)')

	

	
class datalad.support.gitrepo.GitRepo(path, runner=None, create=True, git_opts=None, repo=None, fake_dates=False, create_sanity_checks=True, **kwargs)

	Bases: GitRepo

Representation of a git repository

	Parameters:

	
	path (str)

	runner (Optional[Any])

	create (bool)

	git_opts (Optional[dict[str, Any]])

	repo (Optional[Any])

	fake_dates (bool)

	create_sanity_checks (bool)

	kwargs (Any)

	
GIT_MIN_VERSION = '2.25.0'

	

	
add(files, git=True, git_options=None, update=False)

	Adds file(s) to the repository.

	Parameters:

	
	files (list) – list of paths to add

	git (bool) – somewhat ugly construction to be compatible with AnnexRepo.add();
has to be always true.

	update (bool) –
	–update option for git-add. From git’s manpage:
	Update the index just where it already has an entry matching
<pathspec>. This removes as well as modifies index entries to match
the working tree, but adds no new files.

If no <pathspec> is given when –update option is used, all tracked
files in the entire working tree are updated (old versions of Git
used to limit the update to the current directory and its
subdirectories).

	git_options (Optional[list[str]])

	Returns:

	Of status dicts.

	Return type:

	list

	
add_(files, git=True, git_options=None, update=False)

	Like add, but returns a generator

	Parameters:

	
	files (list[str])

	git (bool)

	git_options (Optional[list[str]])

	update (bool)

	Return type:

	Iterator[GitAddOutput]

	
add_fake_dates(env)

	

	
add_remote(name, url, options=None)

	Register remote pointing to a url

	Parameters:

	
	name (str)

	url (str)

	options (Optional[list[str]])

	Return type:

	tuple[str, str]

	
property bare: bool

	Returns a bool indicating whether the repository is bare

Importantly, this is not reporting the configuration value
of ‘core.bare’, in order to be usable at a stage where a
Repo instance is not yet equipped with a ConfigManager.
Instead, it is testing whether the repository path and its
“dot_git” are identical. The value of ‘core.bare’ can be query
from the ConfigManager in a fully initialized instance.

	
checkout(name, options=None)

	
	Parameters:

	
	name (str)

	options (Optional[list[str]])

	Return type:

	None

	
cherry_pick(commit)

	Cherry pick commit to the current branch.

	Parameters:

	commit (str) – A single commit.

	Return type:

	None

	
classmethod clone(url, path, *args, clone_options=None, **kwargs)

	Clone url into path

Provides workarounds for known issues (e.g.
https://github.com/datalad/datalad/issues/785)

	Parameters:

	
	url (str)

	path (str)

	clone_options (dict or list) – Arbitrary options that will be passed on to the underlying call to
git-clone. This may be a list of plain options or key-value pairs
that will be converted to a list of plain options with to_options.

	expect_fail (bool) – Whether expect that command might fail, so error should be logged then
at DEBUG level instead of ERROR

	kwargs (Any) – Passed to the Repo class constructor.

	args (Any)

	Return type:

	Self

	
commit(msg=None, options=None, _datalad_msg=False, careless=True, files=None, date=None, index_file=None)

	Commit changes to git.

	Parameters:

	
	msg (str, optional) – commit-message

	options (list of str, optional) – cmdline options for git-commit

	_datalad_msg (bool, optional) – To signal that commit is automated commit by datalad, so
it would carry the [DATALAD] prefix

	careless (bool, optional) – if False, raise when there’s nothing actually committed;
if True, don’t care

	files (list of str, optional) – path(s) to commit

	date (str, optional) – Date in one of the formats git understands

	index_file (str, optional) – An alternative index to use

	Return type:

	None

	
commit_exists(commitish)

	Does commitish exist in the repo?

	Parameters:

	commitish (str) – A commit or an object that can be dereferenced to one.

	Return type:

	bool

	
property config

	

	
configure_fake_dates()

	Configure repository to use fake dates.

	Return type:

	None

	
property count_objects: dict[str, int]

	return dictionary with count, size(in KiB) information of git objects

	
describe(commitish=None, **kwargs)

	Quick and dirty implementation to call git-describe

	Parameters:

	
	kwargs (Union[str, bool, None, List[Union[str, bool, None]], Tuple[Union[str, bool, None], ...]]) – transformed to cmdline options for git-describe;
see __init__ for description of the transformation

	commitish (Optional[str])

	Return type:

	Optional[str]

	
diff(fr, to, paths=None, untracked='all', eval_submodule_state='full')

	Like status(), but reports changes between to arbitrary revisions

	Parameters:

	
	fr (str or None) – Revision specification (anything that Git understands). Passing
None considers anything in the target state as new.

	to (str or None) – Revision specification (anything that Git understands), or None
to compare to the state of the work tree.

	paths (list or None) – If given, limits the query to the specified paths. To query all
paths specify None, not an empty list.

	untracked ({'no', 'normal', 'all'}) – If and how untracked content is reported when to is None:
‘no’: no untracked files are reported; ‘normal’: untracked files
and entire untracked directories are reported as such; ‘all’: report
individual files even in fully untracked directories.

	eval_submodule_state ({'full', 'commit', 'no'}) – If ‘full’ (the default), the state of a submodule is evaluated by
considering all modifications, with the treatment of untracked files
determined by untracked. If ‘commit’, the modification check is
restricted to comparing the submodule’s HEAD commit to the one
recorded in the superdataset. If ‘no’, the state of the subdataset is
not evaluated.

	Returns:

	Each content item has an entry under a pathlib Path object instance
pointing to its absolute path inside the repository (this path is
guaranteed to be underneath Repo.path).
Each value is a dictionary with properties:

	type
	Can be ‘file’, ‘symlink’, ‘dataset’, ‘directory’

	state
	Can be ‘added’, ‘untracked’, ‘clean’, ‘deleted’, ‘modified’.

	Return type:

	dict

	
diffstatus(fr, to, paths=None, untracked='all', eval_submodule_state='full', _cache=None)

	Like diff(), but reports the status of ‘clean’ content too.

It supports an additional submodule evaluation state ‘global’.
If given, it will return a single ‘modified’
(vs. ‘clean’) state label for the entire repository, as soon as
it can.

	Parameters:

	
	fr (Optional[str])

	to (Optional[str])

	paths (Optional[Sequence[str | PathLike[str]]])

	untracked (str)

	eval_submodule_state (str)

	_cache (Optional[dict])

	Return type:

	dict[Path, dict[str, str]] | str

	
property dirty: bool

	Is the repository dirty?

Note: This provides a quick answer when you simply want to know if
there are any untracked changes or modifications in this repository or
its submodules. For finer-grained control and more detailed reporting,
use status() instead.

	
property fake_dates_enabled: bool

	Is the repository configured to use fake dates?

	
fetch(remote=None, refspec=None, all_=False, git_options=None, **kwargs)

	Fetches changes from a remote (or all remotes).

	Parameters:

	
	remote (str, optional) – name of the remote to fetch from. If no remote is given and
all_ is not set, the tracking branch is fetched.

	refspec (str or list, optional) – refspec(s) to fetch.

	all (bool, optional) – fetch all remotes (and all of their branches).
Fails if remote was given.

	git_options (list, optional) – Additional command line options for git-fetch.

	kwargs (Option) – Deprecated. GitPython-style keyword argument for git-fetch.
Will be appended to any git_options.

	all_ (bool)

	Return type:

	list[FetchInfo]

	
fetch_(remote=None, refspec=None, all_=False, git_options=None)

	Like fetch, but returns a generator

	Parameters:

	
	remote (Optional[str])

	refspec (str | list[str] | None)

	all_ (bool)

	git_options (Optional[list[str]])

	Return type:

	Iterator[FetchInfo]

	
format_commit(fmt, commitish=None)

	Return git show output for commitish.

	Parameters:

	
	fmt (str) – A format string accepted by git show.

	commitish (str, optional) – Any commit identifier (defaults to “HEAD”).

	Return type:

	str or, if there are not commits yet, None.

	
gc(allow_background=False, auto=False)

	Perform house keeping (garbage collection, repacking)

	Parameters:

	
	allow_background (bool)

	auto (bool)

	Return type:

	None

	
get_active_branch()

	Get the name of the active branch

	Returns:

	Returns None if there is no active branch, i.e. detached HEAD,
and the branch name otherwise.

	Return type:

	str or None

	
get_branch_commits_(branch=None, limit=None, stop=None)

	Return commit hexshas for a branch

	Parameters:

	
	branch (str, optional) – If not provided, assumes current branch

	limit (None | 'left-only', optional) – Limit which commits to report. If None – all commits (merged or not),
if ‘left-only’ – only the commits from the left side of the tree upon
merges

	stop (str, optional) – hexsha of the commit at which stop reporting (matched one is not
reported either)

	Yields:

	str

	Return type:

	Iterator[str]

	
get_branches()

	Get all branches of the repo.

	Returns:

	Names of all branches of this repository.

	Return type:

	[str]

	
get_commit_date(branch=None, date='authored')

	Get the date stamp of the last commit (in a branch or head otherwise)

	Parameters:

	
	date ({'authored', 'committed'}) – Which date to return. “authored” will be the date shown by “git show”
and the one possibly specified via –date to git commit

	branch (Optional[str])

	Returns:

	None if no commit

	Return type:

	int or None

	
get_content_info(paths=None, ref=None, untracked='all')

	Get identifier and type information from repository content.

This is simplified front-end for git ls-files/tree.

Both commands differ in their behavior when queried about subdataset
paths. ls-files will not report anything, ls-tree will report on the
subdataset record. This function uniformly follows the behavior of
ls-tree (report on the respective subdataset mount).

	Parameters:

	
	paths (list(pathlib.PurePath) or None) – Specific paths, relative to the resolved repository root, to query
info for. Paths must be normed to match the reporting done by Git,
i.e. no parent dir components (ala “some/../this”).
If None, info is reported for all content.

	ref (gitref or None) – If given, content information is retrieved for this Git reference
(via ls-tree), otherwise content information is produced for the
present work tree (via ls-files). With a given reference, the
reported content properties also contain a ‘bytesize’ record,
stating the size of a file in bytes.

	untracked ({'no', 'normal', 'all'}) – If and how untracked content is reported when no ref was given:
‘no’: no untracked files are reported; ‘normal’: untracked files
and entire untracked directories are reported as such; ‘all’: report
individual files even in fully untracked directories.

	Returns:

	Each content item has an entry under a pathlib Path object instance
pointing to its absolute path inside the repository (this path is
guaranteed to be underneath Repo.path).
Each value is a dictionary with properties:

	type
	Can be ‘file’, ‘symlink’, ‘dataset’, ‘directory’

	gitshasum
	SHASUM of the item as tracked by Git, or None, if not
tracked. This could be different from the SHASUM of the file
in the worktree, if it was modified.

	Return type:

	dict

	Raises:

	ValueError – In case of an invalid Git reference (e.g. ‘HEAD’ in an empty
 repository)

	
get_corresponding_branch(branch=None)

	Always returns None, a plain GitRepo has no managed branches

	Parameters:

	branch (Optional[Any])

	Return type:

	Optional[str]

	
get_files(branch=None)

	Get a list of files in git.

Lists the files in the (remote) branch.

	Parameters:

	branch (str) – Name of the branch to query. Default: active branch.

	Returns:

	list of files.

	Return type:

	[str]

	
get_git_attributes()

	Query gitattributes which apply to top level directory

It is a thin compatibility/shortcut wrapper around more versatile
get_gitattributes which operates on a list of paths and returns
a dictionary per each path

	Returns:

	a dictionary with attribute name and value items relevant for the
top (‘.’) directory of the repository, and thus most likely the
default ones (if not overwritten with more rules) for all files within
repo.

	Return type:

	dict

	
static get_git_dir(repo)

	figure out a repo’s gitdir

‘.git’ might be a directory, a symlink or a file

Note

This method is likely to get deprecated, please use GitRepo.dot_git instead!
That one’s not static, but it’s cheaper and you should avoid
not having an instance of a repo you’re working on anyway.
Note, that the property in opposition to this method returns an absolute path.

	Parameters:

	repo (path or Repo instance) – currently expected to be the repos base dir

	Returns:

	relative path to the repo’s git dir; So, default would be “.git”

	Return type:

	str

	
get_gitattributes(path, index_only=False)

	Query gitattributes for one or more paths

	Parameters:

	
	path (path or list) – Path(s) to query. Paths may be relative or absolute.

	index_only (bool) – Flag whether to consider only gitattribute setting that are reflected
in the repository index, not just in the work tree content.

	Returns:

	Each key is a queried path (always relative to the repository root),
each value is a dictionary with attribute
name and value items. Attribute values are either True or False,
for set and unset attributes, or are the literal attribute value.

	Return type:

	dict

	
get_hexsha(commitish=None, short=False)

	Return a hexsha for a given commitish.

	Parameters:

	
	commitish (str, optional) – Any identifier that refers to a commit (defaults to “HEAD”).

	short (bool, optional) – Return the abbreviated form of the hexsha.

	Return type:

	str or, if no commitish was given and there are no commits yet, None.

	Raises:

	ValueError – If a commitish was given, but no corresponding commit could be
 determined.

	
get_indexed_files()

	Get a list of files in git’s index

	Returns:

	list of paths rooting in git’s base dir

	Return type:

	list

	
get_last_commit_hexsha(files)

	Return the hash of the last commit the modified any of the given
paths

	Parameters:

	files (list[str])

	Return type:

	Optional[str]

	
get_merge_base(commitishes)

	Get a merge base hexsha

	Parameters:

	commitishes (str or list of str) – List of commitishes (branches, hexshas, etc) to determine the merge
base of. If a single value provided, returns merge_base with the
current branch.

	Returns:

	If no merge-base for given commits, or specified treeish doesn’t
exist, None returned

	Return type:

	str or None

	
get_remote_branches()

	Get all branches of all remotes of the repo.

	Returns:

	Names of all remote branches.

	Return type:

	[str]

	
get_remote_url(name, push=False)

	Get the url of a remote.

Reads the configuration of remote name and returns its url or None,
if there is no url configured.

	Parameters:

	
	name (str) – name of the remote

	push (bool) – if True, get the pushurl instead of the fetch url.

	Return type:

	Optional[str]

	
get_remotes(with_urls_only=False)

	Get known remotes of the repository

	Parameters:

	with_urls_only (bool, optional) – return only remotes which have urls

	Returns:

	remotes – List of names of the remotes

	Return type:

	list of str

	
get_revisions(revrange=None, fmt='%H', options=None)

	Return list of revisions in revrange.

	Parameters:

	
	revrange (str or list of str or None, optional) – Revisions or revision ranges to walk. If None, revision defaults to
HEAD unless a revision-modifying option like –all or
–branches is included in options.

	fmt (string, optional) – Format accepted by –format option of git log. This should not
contain new lines because the output is split on new lines.

	options (list of str, optional) – Options to pass to git log. This should not include –format.

	Return type:

	List of revisions (str), formatted according to fmt.

	
get_staged_paths()

	Returns a list of any stage repository path(s)

This is a rather fast call, as it will not depend on what is going on
in the worktree.

	Return type:

	list[str]

	
get_submodules(sorted_=True, paths=None)

	Return list of submodules.

	Parameters:

	
	sorted (bool, optional) – Sort submodules by path name.

	paths (list(pathlib.PurePath), optional) – Restrict submodules to those under paths.

	sorted_ (bool)

	Return type:

	list[dict]

	Returns:

	
	List of submodule namedtuples if compat is true or otherwise a list

	of dictionaries as returned by get_submodules_.

	
get_submodules_(paths=None)

	Yield submodules in this repository.

	Parameters:

	paths (list(pathlib.PurePath), optional) – Restrict submodules to those under paths. Paths must be relative
to the resolved repository root, and must be normed to match the
reporting done by Git, i.e. no parent dir components
(ala “some/../this”).

	Return type:

	Iterator[dict]

	Returns:

	
	A generator that yields a dictionary with information for each

	submodule.

	
get_tags(output=None)

	Get list of tags

	Parameters:

	output (str, optional) – If given, limit the return value to a list of values matching that
particular key of the tag properties.

	Returns:

	Each item is a dictionary with information on a tag. At present
this includes ‘hexsha’, and ‘name’, where the latter is the string
label of the tag, and the former the hexsha of the object the tag
is attached to. The list is sorted by the creator date (committer
date for lightweight tags and tagger date for annotated tags), with
the most recent commit being the last element.

	Return type:

	list

	
classmethod get_toppath(path, follow_up=True, git_options=None)

	Return top-level of a repository given the path.

	Parameters:

	
	follow_up (bool) – If path has symlinks – they get resolved by git. If follow_up is
True, we will follow original path up until we hit the same resolved
path. If no such path found, resolved one would be returned.

	git_options (list of str) – options to be passed to the git rev-parse call

	repository. (Return None if no parent directory contains a git)

	path (str)

	Return type:

	Optional[str]

	
get_tracking_branch(branch=None, remote_only=False)

	Get the tracking branch for branch if there is any.

	Parameters:

	
	branch (str) – local branch to look up. If none is given, active branch is used.

	remote_only (bool) – Don’t return a value if the upstream remote is set to “.” (meaning
this repository).

	Returns:

	(remote or None, refspec or None) of the tracking branch

	Return type:

	tuple

	
git_version = None

	

	
is_ancestor(reva, revb)

	Is reva an ancestor of revb?

	Parameters:

	
	reva (str) – Revisions.

	revb (str) – Revisions.

	Return type:

	bool

	
is_valid_git()

	Returns whether the underlying repository appears to be still valid

Note, that this almost identical to the classmethod is_valid_repo().
However, if we are testing an existing instance, we can save Path object
creations. Since this testing is done a lot, this is relevant. Creation
of the Path objects in is_valid_repo() takes nearly half the time of the
entire function.

Also note, that this method is bound to an instance but still
class-dependent, meaning that a subclass cannot simply overwrite it.
This is particularly important for the call from within __init__(),
which in turn is called by the subclasses’ __init__. Using an overwrite
would lead to the wrong thing being called.

	Return type:

	bool

	
classmethod is_valid_repo(path)

	Returns if a given path points to a git repository

	Parameters:

	path (str)

	Return type:

	bool

	
is_with_annex()

	Report if GitRepo (assumed) has (remotes with) a git-annex branch

	Return type:

	bool

	
merge(name, options=None, msg=None, allow_unrelated=False, **kwargs)

	
	Parameters:

	
	name (str)

	options (Optional[list[str]])

	msg (Optional[str])

	allow_unrelated (bool)

	kwargs (Any)

	Return type:

	None

	
precommit()

	Perform pre-commit maintenance tasks

	Return type:

	None

	
push(remote=None, refspec=None, all_remotes=False, all_=False, git_options=None, **kwargs)

	Push changes to a remote (or all remotes).

If remote and refspec are specified, and remote has
remote.{remote}.datalad-push-default-first configuration variable
set (e.g. by create-sibling-github), we will first push the first
refspec separately to possibly ensure that the first refspec is chosen
by remote as the “default branch”.
See https://github.com/datalad/datalad/issues/4997
Upon successful push if this variable was set in the local git config,
we unset it, so subsequent pushes would proceed normally.

	Parameters:

	
	remote (str, optional) – name of the remote to push to. If no remote is given and
all_ is not set, the tracking branch is pushed.

	refspec (str or list, optional) – refspec(s) to push.

	all (bool, optional) – push to all remotes. Fails if remote was given.

	git_options (list, optional) – Additional command line options for git-push.

	kwargs (Option) – Deprecated. GitPython-style keyword argument for git-push.
Will be appended to any git_options.

	all_remotes (bool)

	all_ (bool)

	Return type:

	list[PushInfo]

	
push_(remote=None, refspec=None, all_=False, git_options=None)

	Like push, but returns a generator

	Parameters:

	
	remote (Optional[str])

	refspec (str | list[str] | None)

	all_ (bool)

	git_options (Optional[list[str]])

	Return type:

	Iterator[PushInfo]

	
remove(files, recursive=False, **kwargs)

	Remove files.

Calls git-rm.

	Parameters:

	
	files (list of str) – list of paths to remove

	recursive (False) – whether to allow recursive removal from subdirectories

	kwargs (Union[str, bool, None, List[Union[str, bool, None]], Tuple[Union[str, bool, None], ...]]) – see __init__

	Returns:

	list of successfully removed files.

	Return type:

	[str]

	
remove_branch(branch)

	
	Parameters:

	branch (str)

	Return type:

	None

	
remove_remote(name)

	Remove existing remote

	Parameters:

	name (str)

	Return type:

	None

	
save(message=None, paths=None, _status=None, **kwargs)

	Save dataset content.

	Parameters:

	
	message (str or None) – A message to accompany the changeset in the log. If None,
a default message is used.

	paths (list or None) – Any content with path matching any of the paths given in this
list will be saved. Matching will be performed against the
dataset status (GitRepo.status()), or a custom status provided
via _status. If no paths are provided, ALL non-clean paths
present in the repo status or _status will be saved.

	_status (dict or None) – If None, Repo.status() will be queried for the given ds. If
a dict is given, its content will be used as a constraint.
For example, to save only modified content, but no untracked
content, set paths to None and provide a _status that has
no entries for untracked content.

	**kwargs (Any) – Additional arguments that are passed to underlying Repo methods.
Supported:

	git : bool (passed to Repo.add()

	eval_submodule_state : {‘full’, ‘commit’, ‘no’}
passed to Repo.status()

	untracked : {‘no’, ‘normal’, ‘all’} - passed to Repo.status()

	amend : bool (passed to GitRepo.commit)

	Return type:

	list[dict]

	
save_(message=None, paths=None, _status=None, **kwargs)

	Like save() but working as a generator.

	Parameters:

	
	message (Optional[str])

	paths (Optional[list[Path]])

	_status (Optional[dict[Path, dict[str, str]]])

	kwargs (Any)

	Return type:

	Iterator[dict]

	
set_gitattributes(attrs, attrfile='.gitattributes', mode='a')

	Set gitattributes

By default appends additional lines to attrfile. Note, that later
lines in attrfile overrule earlier ones, which may or may not be
what you want. Set mode to ‘w’ to replace the entire file by
what you provided in attrs.

	Parameters:

	
	attrs (list) – Each item is a 2-tuple, where the first element is a path pattern,
and the second element is a dictionary with attribute key/value
pairs. The attribute dictionary must use the same semantics as those
returned by get_gitattributes(). Path patterns can use absolute paths,
in which case they will be normalized relative to the directory
that contains the target .gitattributes file (see attrfile).

	attrfile (path) – Path relative to the repository root of the .gitattributes file the
attributes shall be set in.

	mode (str) – ‘a’ to append .gitattributes, ‘w’ to replace it

	Return type:

	None

	
set_remote_url(name, url, push=False)

	Set the URL a remote is pointing to

Sets the URL of the remote name. Requires the remote to already exist.

	Parameters:

	
	name (str) – name of the remote

	url (str)

	push (bool) – if True, set the push URL, otherwise the fetch URL

	Return type:

	None

	
status(paths=None, untracked='all', eval_submodule_state='full')

	Simplified git status equivalent.

	Parameters:

	
	paths (list or None) – If given, limits the query to the specified paths. To query all
paths specify None, not an empty list. If a query path points
into a subdataset, a report is made on the subdataset record
within the queried dataset only (no recursion).

	untracked ({'no', 'normal', 'all'}) – If and how untracked content is reported:
‘no’: no untracked files are reported; ‘normal’: untracked files
and entire untracked directories are reported as such; ‘all’: report
individual files even in fully untracked directories.

	eval_submodule_state ({'full', 'commit', 'no'}) – If ‘full’ (the default), the state of a submodule is evaluated by
considering all modifications, with the treatment of untracked files
determined by untracked. If ‘commit’, the modification check is
restricted to comparing the submodule’s HEAD commit to the one
recorded in the superdataset. If ‘no’, the state of the subdataset is
not evaluated.

	Returns:

	Each content item has an entry under a pathlib Path object instance
pointing to its absolute path inside the repository (this path is
guaranteed to be underneath Repo.path).
Each value is a dictionary with properties:

	type
	Can be ‘file’, ‘symlink’, ‘dataset’, ‘directory’

	state
	Can be ‘added’, ‘untracked’, ‘clean’, ‘deleted’, ‘modified’.

	Return type:

	dict

	
tag(tag, message=None, commit=None, options=None)

	Tag a commit

	Parameters:

	
	tag (str) – Custom tag label. Must be a valid tag name.

	message (str, optional) – If provided, adds [‘-m’, <message>] to the list of git tag
arguments.

	commit (str, optional) – If provided, will be appended as last argument to the git tag call,
and can be used to identify the commit that shall be tagged, if
not HEAD.

	options (list, optional) – Additional command options, inserted prior a potential commit
argument.

	Return type:

	None

	
property untracked_files: list[str]

	Legacy interface, do not use! Use the status() method instead.

Despite its name, it also reports on untracked datasets, and
yields their names with trailing path separators.

	
update_ref(ref, value, oldvalue=None, symbolic=False)

	Update the object name stored in a ref “safely”.

Just a shim for git update-ref call if not symbolic, and
git symbolic-ref if symbolic

	Parameters:

	
	ref (str) – Reference, such as ref/heads/BRANCHNAME or HEAD.

	value (str) – Value to update to, e.g. hexsha of a commit when updating for a
branch ref, or branch ref if updating HEAD

	oldvalue (str) – Value to update from. Safeguard to be verified by git. This is only
valid if symbolic is not True.

	symbolic (None) – To instruct if ref is symbolic, e.g. should be used in case of
ref=HEAD

	Return type:

	None

	
update_remote(name=None, verbose=False)

	
	Parameters:

	
	name (Optional[str])

	verbose (bool)

	Return type:

	None

	
class datalad.support.gitrepo.PushInfo

	Bases: dict

dict that carries results of a push operation of a single head

Reduced variant of GitPython’s RemoteProgress class

	Original copyright:
	Copyright (C) 2008, 2009 Michael Trier and contributors

	Original license:
	BSD 3-Clause “New” or “Revised” License

	
DELETED = 64

	

	
ERROR = 1024

	

	
FAST_FORWARD = 256

	

	
FORCED_UPDATE = 128

	

	
NEW_HEAD = 2

	

	
NEW_TAG = 1

	

	
NO_MATCH = 4

	

	
REJECTED = 8

	

	
REMOTE_FAILURE = 32

	

	
REMOTE_REJECTED = 16

	

	
UP_TO_DATE = 512

	

	
class datalad.support.gitrepo.StdOutCaptureWithGitProgress(done_future=None, encoding=None)

	Bases: GitProgress

	Parameters:

	
	done_future (Optional[Any])

	encoding (Optional[str])

	
proc_out = True

	

	
datalad.support.gitrepo.normalize_path(func)

	Decorator to provide unified path conversion for a single file

Unlike normalize_paths, intended to be used for functions dealing with a
single filename at a time

Note

This is intended to be used within the repository classes and therefore
returns a class method!

The decorated function is expected to take a path at
first positional argument (after ‘self’). Additionally the class func
is a member of, is expected to have an attribute ‘path’.

	Parameters:

	func (Callable[[_WithPath, str, ParamSpec(P)], TypeVar(T)])

	Return type:

	Callable[[_WithPath, str, ParamSpec(P)], TypeVar(T)]

	
datalad.support.gitrepo.normalize_paths(func, match_return_type=True, map_filenames_back=False, serialize=False)

	Decorator to provide unified path conversions.

Note

This is intended to be used within the repository classes and therefore
returns a class method!

The decorated function is expected to take a path or a list of paths at
first positional argument (after ‘self’). Additionally the class func
is a member of, is expected to have an attribute ‘path’.

Accepts either a list of paths or a single path in a str. Passes a list
to decorated function either way, but would return based on the value of
match_return_type and possibly input argument.

If a call to the wrapped function includes normalize_path and it is False
no normalization happens for that function call (used for calls to wrapped
functions within wrapped functions, while possible CWD is within a
repository)

	Parameters:

	
	match_return_type (bool, optional) – If True, and a single string was passed in, it would return the first
element of the output (after verifying that it is a list of length 1).
It makes easier to work with single files input.

	map_filenames_back (bool, optional) – If True and returned value is a dictionary, it assumes to carry entries
one per file, and then filenames are mapped back to as provided from the
normalized (from the root of the repo) paths

	serialize (bool, optional) – Loop through files giving only a single one to the function one at a time.
This allows to simplify implementation and interface to annex commands
which do not take multiple args in the same call (e.g. checkpresentkey)

	
datalad.support.gitrepo.to_options(split_single_char_options=True, **kwargs)

	Transform keyword arguments into a list of cmdline options

Imported from GitPython.

	Original copyright:
	Copyright (C) 2008, 2009 Michael Trier and contributors

	Original license:
	BSD 3-Clause “New” or “Revised” License

	Parameters:

	
	split_single_char_options (bool)

	kwargs (Union[str, bool, None, List[Union[str, bool, None]], Tuple[Union[str, bool, None], ...]])

	Return type:

	list

datalad.support.annexrepo

Interface to git-annex by Joey Hess.

For further information on git-annex see https://git-annex.branchable.com/.

	
class datalad.support.annexrepo.AnnexInitOutput(done_future=None, encoding=None)

	Bases: WitlessProtocol, AssemblingDecoderMixIn

	
pipe_data_received(fd, byts)

	

	
proc_err = True

	

	
proc_out = True

	

	
class datalad.support.annexrepo.AnnexJsonProtocol(done_future=None, total_nbytes=None)

	Bases: WitlessProtocol

Subprocess communication protocol for annex … –json commands

Importantly, parsed JSON content is returned as a result, not string output.

This protocol also handles git-annex’s JSON-style progress reporting.

	
add_to_output(json_object)

	

	
connection_made(transport)

	

	
pipe_data_received(fd, data)

	

	
proc_err = True

	

	
proc_out = True

	

	
process_exited()

	

	
class datalad.support.annexrepo.AnnexRepo(*args, **kwargs)

	Bases: GitRepo, RepoInterface

Representation of an git-annex repository.

Paths given to any of the class methods will be interpreted as relative
to PWD, in case this is currently beneath AnnexRepo’s base dir
(self.path). If PWD is outside of the repository, relative paths
will be interpreted as relative to self.path. Absolute paths will be
accepted either way.

	
GIT_ANNEX_MIN_VERSION = '8.20200309'

	

	
WEB_UUID = '00000000-0000-0000-0000-000000000001'

	

	
add(files, git=None, backend=None, options=None, jobs=None, git_options=None, annex_options=None, update=False)

	Add file(s) to the repository.

	Parameters:

	
	files (list of str) – list of paths to add to the annex

	git (bool) – if True, add to git instead of annex.

	backend

	options

	update (bool) –
	–update option for git-add. From git’s manpage:
	Update the index just where it already has an entry matching
<pathspec>. This removes as well as modifies index entries to match
the working tree, but adds no new files.

If no <pathspec> is given when –update option is used, all tracked
files in the entire working tree are updated (old versions of Git
used to limit the update to the current directory and its
subdirectories).

Note: Used only, if a call to git-add instead of git-annex-add is
performed

	Return type:

	list of dict or dict

	
add_(files, git=None, backend=None, options=None, jobs=None, git_options=None, annex_options=None, update=False)

	Like add, but returns a generator

	
add_url_to_file(file_, url, options=None, backend=None, batch=False, git_options=None, annex_options=None, unlink_existing=False)

	Add file from url to the annex.

Downloads file from url and add it to the annex.
If annex knows file already,
records that it can be downloaded from url.

Note: Consider using the higher-level download_url instead.

	Parameters:

	
	file (str)

	url (str)

	options (list) – options to the annex command

	batch (bool, optional) – initiate or continue with a batched run of annex addurl, instead of just
calling a single git annex addurl command

	unlink_existing (bool, optional) – by default crashes if file already exists and is under git.
With this flag set to True would first remove it.

	Returns:

	In batch mode only ATM returns dict representation of json output returned
by annex

	Return type:

	dict

	
add_urls(urls, options=None, backend=None, cwd=None, jobs=None, git_options=None, annex_options=None)

	Downloads each url to its own file, which is added to the annex.

Deprecated since version 0.17: Use add_url_to_file() or call_annex() instead.

	Parameters:

	
	urls (list of str)

	options (list, optional) – options to the annex command

	cwd (string, optional) – working directory from within which to invoke git-annex

	
adjust(options=None)

	enter an adjusted branch

This command is only available in a v6+ git-annex repository.

	Parameters:

	options (list of str) – currently requires ‘–unlock’ or ‘–fix’;
default: –unlock

	
annexstatus(paths=None, untracked='all')

	
Deprecated since version 0.16: Use get_content_annexinfo() or the test helper
datalad.tests.utils_pytest.get_annexstatus() instead.

	
call_annex(args, files=None)

	Call annex and return standard output.

	Parameters:

	
	args (list of str) – Arguments to pass to annex.

	files (list of str, optional) – File arguments to pass to annex. The advantage of passing these here
rather than as part of args is that the call will be split into
multiple calls to avoid exceeding the maximum command line length.

	Return type:

	standard output (str)

	Raises:

	See _call_annex() for information on Exceptions. –

	
call_annex_items_(args, files=None, sep=None)

	Call git-annex, splitting output on sep.

	Parameters:

	
	args (list of str) – Arguments to pass to git-annex.

	files (list of str, optional) – File arguments to pass to annex. The advantage of passing these here
rather than as part of args is that the call will be split into
multiple calls to avoid exceeding the maximum command line length.

	sep (str, optional) – Split the output by str.split(sep) rather than str.splitlines.

	Return type:

	Generator that yields output items.

	Raises:

	See _call_annex() for information on Exceptions. –

	
call_annex_oneline(args, files=None)

	Call annex for a single line of output.

This method filters prior output line selection to exclude git-annex
status output that is triggered by command execution, but is not
related to the particular command. This includes lines like:

(merging … into git-annex)
(recording state …)

	Parameters:

	
	args (list of str) – Arguments to pass to annex.

	files (list of str, optional) – File arguments to pass to annex. The advantage of passing these here
rather than as part of args is that the call will be split into
multiple calls to avoid exceeding the maximum command line length.

	Returns:

	Either a single output line, or an empty string if there was no
output.

	Return type:

	str

	Raises:

	
	AssertionError if there is more than one line of output. –

	See _call_annex() for information on Exceptions. –

	
call_annex_records(args, files=None)

	Call annex with –json* to request structured result records

This method behaves like call_annex(), but returns parsed result
records.

	Parameters:

	
	args (list of str) – Arguments to pass to annex.

	files (list of str, optional) – File arguments to pass to annex. The advantage of passing these here
rather than as part of args is that the call will be split into
multiple calls to avoid exceeding the maximum command line length.

	Returns:

	List of parsed result records.

	Return type:

	list(dict)

	Raises:

	
	CommandError if the call exits with a non-zero status. All result –

	records captured until the non-zero exit are available in the –

	exception's kwargs-dict attribute under key 'stdout_json'. –

	See _call_annex() for more information on Exceptions. –

	
call_annex_success(args, files=None)

	Call git-annex and return true if the call exit code of 0.

All parameters match those described for call_annex.

	Return type:

	bool

	
classmethod check_direct_mode_support()

	Does git-annex version support direct mode?

The result is cached at cls.supports_direct_mode.

	Return type:

	bool

	
classmethod check_repository_versions()

	Get information on supported and upgradable repository versions.

The result is cached at cls.repository_versions.

	Returns:

	supported -> list of supported versions (int)
upgradable -> list of upgradable versions (int)

	Return type:

	dict

	
copy_to(files, remote, options=None, jobs=None)

	Copy the actual content of files to remote

	Parameters:

	
	files (str or list of str) – path(s) to copy

	remote (str) – name of remote to copy files to

	Returns:

	files successfully copied

	Return type:

	list of str

	
property default_backends

	

	
drop(files, options=None, key=False, jobs=None)

	Drops the content of annexed files from this repository.

Drops only if possible with respect to required minimal number of
available copies.

	Parameters:

	
	files (list of str) – paths to drop

	options (list of str, optional) – commandline options for the git annex drop command

	jobs (int, optional) – how many jobs to run in parallel (passed to git-annex call)

	Returns:

	‘success’ item in each object indicates failure/success per file
path.

	Return type:

	list(JSON objects)

	
drop_key(keys, options=None, batch=False)

	Drops the content of annexed files from this repository referenced by keys

Dangerous: it drops without checking for required minimal number of
available copies.

	Parameters:

	
	keys (list of str, str)

	batch (bool, optional) – initiate or continue with a batched run of annex dropkey, instead of just
calling a single git annex dropkey command

	
enable_remote(name, options=None, env=None)

	Enables use of an existing special remote

	Parameters:

	
	name (str) – name, the special remote was created with

	options (list, optional)

	
file_has_content(files, allow_quick=False, batch=False)

	Check whether files have their content present under annex.

	Parameters:

	
	files (list of str) – file(s) to check for being actually present.

	allow_quick (bool, optional) – This is no longer supported.

	Returns:

	For each input file states whether file has content locally

	Return type:

	list of bool

	
find(files, batch=False)

	Run git annex find on file(s).

	Parameters:

	
	files (list of str) – files to find under annex

	batch (bool, optional) – initiate or continue with a batched run of annex find, instead of just
calling a single git annex find command. If any items in files
are directories, this value is treated as False.

	Returns:

	
	A dictionary the maps each item in files to its git annex find

	result. Items without a successful result will be an empty string, and

	multi-item results (which can occur for if files includes a

	directory) will be returned as a list.

	
fsck(paths=None, remote=None, fast=False, annex_options=None, git_options=None)

	Front-end for git-annex fsck

	Parameters:

	
	paths (list) – Limit operation to specific paths.

	remote (str) – If given, the identified remote will be fsck’ed instead of the
local repository.

	fast (bool) – If True, typically means that no actual content is being verified,
but tests are limited to the presence of files.

	
get(files, remote=None, options=None, jobs=None, key=False)

	Get the actual content of files

	Parameters:

	
	files (list of str) – paths to get

	remote (str, optional) – from which remote to fetch content

	options (list of str, optional) – commandline options for the git annex get command

	jobs (int or None, optional) – how many jobs to run in parallel (passed to git-annex call).
If not specified (None), then

	key (bool, optional) – If provided file value is actually a key

	Returns:

	files

	Return type:

	list of dict

	
get_annexed_files(with_content_only=False, patterns=None)

	Get a list of files in annex

	Parameters:

	
	with_content_only (bool, optional) – Only list files whose content is present.

	patterns (list, optional) – Globs to pass to annex’s –include=. Files that match any of
these will be returned (i.e., they’ll be separated by –or).

	Return type:

	A list of POSIX file names

	
get_content_annexinfo(paths=None, init='git', ref=None, eval_availability=False, key_prefix='', **kwargs)

	
	Parameters:

	
	paths (list or None) – Specific paths to query info for. In None, info is reported for all
content.

	init ('git' or dict-like or None) – If set to ‘git’ annex content info will amend the output of
GitRepo.get_content_info(), otherwise the dict-like object
supplied will receive this information and the present keys will
limit the report of annex properties. Alternatively, if None
is given, no initialization is done, and no limit is in effect.

	ref (gitref or None) – If not None, annex content info for this Git reference will be
produced, otherwise for the content of the present worktree.

	eval_availability (bool) – If this flag is given, evaluate whether the content of any annex’ed
file is present in the local annex.

	**kwargs – Additional arguments for GitRepo.get_content_info(), if init is
set to ‘git’.

	Returns:

	The keys/values match those reported by GitRepo.get_content_info().
In addition, the following properties are added to each value
dictionary:

	type
	Can be ‘file’, ‘symlink’, ‘dataset’, ‘directory’, where ‘file’
is also used for annex’ed files (corrects a ‘symlink’ report
made by get_content_info().

	key
	Annex key of a file (if an annex’ed file)

	bytesize
	Size of an annexed file in bytes.

	has_content
	Bool whether a content object for this key exists in the local
annex (with eval_availability)

	objloc
	pathlib.Path of the content object in the local annex, if one
is available (with eval_availability)

	Return type:

	dict

	
get_contentlocation(key, batch=False)

	Get location of the key content

Normally under .git/annex objects in indirect mode and within file
tree in direct mode.

Unfortunately there is no (easy) way to discriminate situations
when given key is simply incorrect (not known to annex) or its content
not currently present – in both cases annex just silently exits with -1

	Parameters:

	
	key (str) – key

	batch (bool, optional) – initiate or continue with a batched run of annex contentlocation

	Returns:

	path relative to the top directory of the repository. If no content
is present, empty string is returned

	Return type:

	str

	
get_corresponding_branch(branch=None)

	Get the name of a potential corresponding branch.

	Parameters:

	branch (str, optional) – Name of the branch to report a corresponding branch for;
defaults to active branch

	Returns:

	Name of the corresponding branch, or None if there is no
corresponding branch.

	Return type:

	str or None

	
get_description(uuid=None)

	Get annex repository description

	Parameters:

	uuid (str, optional) – For which remote (based on uuid) to report description for

	Returns:

	None returned if not found

	Return type:

	str or None

	
get_file_annexinfo(path, ref=None, eval_availability=False, key_prefix='')

	Query annex properties for a single file

This is the companion to get_content_annexinfo() and offers
simplified usage for single-file queries (the result lookup
based on a path is not necessary.

All keyword arguments have identical names and semantics as
their get_content_annexinfo() counterparts. See their
documentation for more information.

	Parameters:

	path (Path or str) – A single path to a file in the repository.

	Returns:

	Keys and values match the values returned by get_content_annexinfo().
If a file has no annex properties (i.e., a file that is directly
checked into Git and is not annexed), the returned dictionary is
empty.

	Return type:

	dict

	Raises:

	
	ValueError – When a given path is not matching a single file, but resolves to
 multiple files (e.g. a directory path)

	NoSuchPathError – When the given path does not match any file in a repository

	
get_file_backend(files)

	Get the backend currently used for file(s).

	Parameters:

	files (list of str)

	Returns:

	For each file in input list indicates the used backend by a str
like “SHA256E” or “MD5”.

	Return type:

	list of str

	
get_file_key(files, batch=None)

	DEPRECATED. Use get_content_annexinfo()

See the method body for how to use get_content_annexinfo() to
replace get_file_key().

For single-file queries it is recommended to consider
get_file_annexinfo()

	
get_file_size(path)

	

	
get_groupwanted(name)

	Get groupwanted expression for a group name

	Parameters:

	name (str) – Name of the groupwanted group

	
classmethod get_key_backend(key)

	Get the backend from a given key

	
get_metadata(files, timestamps=False, batch=False)

	Query git-annex file metadata

	Parameters:

	
	files (str or iterable(str)) – One or more paths for which metadata is to be queried. If one
or more paths could be directories, batch=False must be given
to prevent git-annex given an error. Due to technical limitations,
such error will lead to a hanging process.

	timestamps (bool, optional) – If True, the output contains a ‘<metadatakey>-lastchanged’
key for every metadata item, reflecting the modification
time, as well as a ‘lastchanged’ key with the most recent
modification time of any metadata item.

	batch (bool, optional) – If True, a metadata –batch process will be used, and only
confirmed annex’ed files can be queried (else query will hang
indefinitely). If False, invokes without –batch, and gives all files
as arguments (this can be problematic with a large number of files).

	Returns:

	One tuple per file (could be more items than input arguments
when directories are given). First tuple item is the filename,
second item is a dictionary with metadata key/value pairs. Note that annex
metadata tags are stored under the key ‘tag’, which is a
regular metadata item that can be manipulated like any other.

	Return type:

	generator

	
get_preferred_content(property, remote=None)

	Get preferred content configuration of a repository or remote

	Parameters:

	
	property ({'wanted', 'required', 'group'}) – Type of property to query

	remote (str, optional) – If not specified (None), returns the property for the local
repository.

	Returns:

	Whether the setting is returned, or None if there is none.

	Return type:

	str

	Raises:

	
	ValueError – If an unknown property label is given.

	CommandError – If the annex call errors.

	
get_remotes(with_urls_only=False, exclude_special_remotes=False)

	Get known (special-) remotes of the repository

	Parameters:

	
	exclude_special_remotes (bool, optional) – if True, don’t return annex special remotes

	with_urls_only (bool, optional) – return only remotes which have urls

	Returns:

	remotes – List of names of the remotes

	Return type:

	list of str

	
static get_size_from_key(key)

	A little helper to obtain size encoded in a key

	Returns:

	size of the file or None if either no size is encoded in the key or
key was None itself

	Return type:

	int or None

	Raises:

	ValueError – if key is considered invalid (at least its size-related part)

	
get_special_remotes(include_dead=False)

	Get info about all known (not just enabled) special remotes.

The present implementation is not able to report on special remotes
that have only been configured in a private annex repo
(annex.private=true).

	Parameters:

	include_dead (bool, optional) – Whether to include remotes announced dead.

	Returns:

	Keys are special remote UUIDs. Each value is a dictionary with
configuration information git-annex has for the remote. This should
include the ‘type’ and ‘name’ as well as any initremote parameters
that git-annex stores.

Note: This is a faithful translation of git-annex:remote.log with one
exception. For a special remote initialized with the –sameas flag,
git-annex stores the special remote name under the “sameas-name” key,
we copy this value under the “name” key so that callers don’t have to
check two places for the name. If you need to detect whether you’re
working with a sameas remote, the presence of either “sameas-name” or
“sameas-uuid” is a reliable indicator.

	Return type:

	dict

	
get_tracking_branch(branch=None, remote_only=False, corresponding=True)

	Get the tracking branch for branch if there is any.

By default returns the tracking branch of the corresponding branch if
branch is a managed branch.

	Parameters:

	
	branch (str) – local branch to look up. If none is given, active branch is used.

	remote_only (bool) – Don’t return a value if the upstream remote is set to “.” (meaning
this repository).

	corresponding (bool) – If True actually look up the corresponding branch of branch (also if
branch isn’t explicitly given)

	Returns:

	(remote or None, refspec or None) of the tracking branch

	Return type:

	tuple

	
get_urls(file_, key=False, batch=False)

	Get URLs for a file/key

	Parameters:

	
	file (str)

	key (bool, optional) – Whether provided files are actually annex keys

	Return type:

	A list of URLs

	
git_annex_version = None

	

	
info(files, batch=False, fast=False)

	Provide annex info for file(s).

	Parameters:

	files (list of str) – files to look for

	Returns:

	Info for each file

	Return type:

	dict

	
init_remote(name, options)

	Creates a new special remote

	Parameters:

	name (str) – name of the special remote

	
is_available(file_, remote=None, key=False, batch=False)

	Check if file or key is available (from a remote)

In case if key or remote is misspecified, it wouldn’t fail but just keep
returning False, although possibly also complaining out loud ;)

	Parameters:

	
	file (str) – Filename or a key

	remote (str, optional) – Remote which to check. If None, possibly multiple remotes are checked
before positive result is reported

	key (bool, optional) – Whether provided files are actually annex keys

	batch (bool, optional) – Initiate or continue with a batched run of annex checkpresentkey

	Returns:

	with True indicating that file/key is available from (the) remote

	Return type:

	bool

	
is_crippled_fs()

	Return True if git-annex considers current filesystem ‘crippled’.

	Return type:

	True if on crippled filesystem, False otherwise

	
is_direct_mode()

	Return True if annex is in direct mode

	Return type:

	True if in direct mode, False otherwise.

	
is_initialized()

	quick check whether this appears to be an annex-init’ed repo

	
is_managed_branch(branch=None)

	Whether branch is managed by git-annex.

ATM this returns True if on an adjusted branch of annex v6+ repository:
either ‘adjusted/my_branch(unlocked)’ or ‘adjusted/my_branch(fixed)’

Note: The term ‘managed branch’ is used to make clear it’s meant to be
more general than the v6+ ‘adjusted branch’.

	Parameters:

	branch (str) – name of the branch; default: active branch

	Returns:

	True if on a managed branch, False otherwise

	Return type:

	bool

	
is_remote_annex_ignored(remote)

	Return True if remote is explicitly ignored

	
is_special_annex_remote(remote, check_if_known=True)

	Return whether remote is a special annex remote

Decides based on the presence of an annex- option and lack of a
configured URL for the remote.

	
is_under_annex(files, allow_quick=False, batch=False)

	Check whether files are under annex control

	Parameters:

	
	files (list of str) – file(s) to check for being under annex

	allow_quick (bool, optional) – This is no longer supported.

	Returns:

	For each input file states whether file is under annex

	Return type:

	list of bool

	
is_valid_annex(allow_noninitialized=False, check_git=True)

	Returns whether the underlying repository appears to be still valid

Note, that this almost identical to the classmethod is_valid_repo().
However, if we are testing an existing instance, we can save Path object
creations. Since this testing is done a lot, this is relevant. Creation
of the Path objects in is_valid_repo() takes nearly half the time of the
entire function.

Also note, that this method is bound to an instance but still
class-dependent, meaning that a subclass cannot simply overwrite it.
This is particularly important for the call from within __init__(),
which in turn is called by the subclasses’ __init__. Using an overwrite
would lead to the wrong thing being called.

	
classmethod is_valid_repo(path, allow_noninitialized=False)

	Return True if given path points to an annex repository

	
localsync(remote=None, managed_only=False)

	Consolidate the local git-annex branch and/or managed branches.

This method calls git annex sync to perform purely local operations
that:

	Update the corresponding branch of any managed branch.

	Synchronize the local ‘git-annex’ branch with respect to particular
or all remotes (as currently reflected in the local state of their
remote ‘git-annex’ branches).

If a repository has git-annex’s ‘synced/…’ branches these will be
updated. Otherwise, such branches that are created by git annex sync
are removed again after the sync is complete.

	Parameters:

	
	remote (str or list, optional) – If given, specifies the name of one or more remotes to sync against.
If not given, all remotes are considered.

	managed_only (bool, optional) – Only perform a sync if a managed branch with a corresponding branch
is detected. By default, a sync is always performed.

	
merge_annex(remote=None)

	

	
migrate_backend(files, backend=None)

	Changes the backend used for file.

The backend used for the key-value of files. Only files currently
present are migrated.
Note: There will be no notification if migrating fails due to the
absence of a file’s content!

	Parameters:

	
	files (list) – files to migrate.

	backend (str) – specify the backend to migrate to. If none is given, the
default backend of this instance will be used.

	
precommit()

	Perform pre-commit maintenance tasks, such as closing all batched annexes
since they might still need to flush their changes into index

	
repo_info(fast=False, merge_annex_branches=True)

	Provide annex info for the entire repository.

	Parameters:

	
	fast (bool, optional) – Pass –fast to git annex info.

	merge_annex_branches (bool, optional) – Whether to allow git-annex if needed to merge annex branches, e.g. to
make sure up to date descriptions for git annex remotes

	Returns:

	Info for the repository, with keys matching the ones returned by annex

	Return type:

	dict

	
repository_versions = None

	

	
rm_url(file_, url)

	Record that the file is no longer available at the url.

	Parameters:

	
	file (str)

	url (str)

	
set_default_backend(backend, persistent=True, commit=True)

	Set default backend

	Parameters:

	
	backend (str)

	persistent (bool, optional) – If persistent, would add/commit to .gitattributes. If not – would
set within .git/config

	
set_groupwanted(name, expr)

	Set expr for the name groupwanted

	
set_metadata(files, reset=None, add=None, init=None, remove=None, purge=None, recursive=False)

	Manipulate git-annex file-metadata

	Parameters:

	
	files (str or list(str)) – One or more paths for which metadata is to be manipulated.
The changes applied to each file item are uniform. However,
the result may not be uniform across files, depending on the
actual operation.

	reset (dict, optional) – Metadata items matching keys in the given dict are (re)set
to the respective values.

	add (dict, optional) – The values of matching keys in the given dict appended to
any possibly existing values. The metadata keys need not
necessarily exist before.

	init (dict, optional) – Metadata items for the keys in the given dict are set
to the respective values, if the key is not yet present
in a file’s metadata.

	remove (dict, optional) – Values in the given dict are removed from the metadata items
matching the respective key, if they exist in a file’s metadata.
Non-existing values, or keys do not lead to failure.

	purge (list, optional) – Any metadata item with a key matching an entry in the given
list is removed from the metadata.

	recursive (bool, optional) – If False, fail (with CommandError) when directory paths
are given as files.

	Returns:

	JSON obj per modified file

	Return type:

	list

	
set_metadata_(files, reset=None, add=None, init=None, remove=None, purge=None, recursive=False)

	Like set_metadata() but returns a generator

	
set_preferred_content(property, expr, remote=None)

	Set preferred content configuration of a repository or remote

	Parameters:

	
	property ({'wanted', 'required', 'group'}) – Type of property to query

	expr (str) – Any expression or label supported by git-annex for the
given property.

	remote (str, optional) – If not specified (None), sets the property for the local
repository.

	Returns:

	Raw git-annex output in response to the set command.

	Return type:

	str

	Raises:

	
	ValueError – If an unknown property label is given.

	CommandError – If the annex call errors.

	
set_remote_dead(name)

	Announce to annex that remote is “dead”

	
set_remote_url(name, url, push=False)

	Set the URL a remote is pointing to

Sets the URL of the remote name. Requires the remote to already exist.

	Parameters:

	
	name (str) – name of the remote

	url (str)

	push (bool) – if True, set the push URL, otherwise the fetch URL;
if True, additionally set annexurl to url, to make sure annex uses
it to talk to the remote, since access via fetch URL might be
restricted.

	
supports_direct_mode = None

	

	
property supports_unlocked_pointers

	Return True if repository version supports unlocked pointers.

	
sync(remotes=None, push=True, pull=True, commit=True, content=False, all=False, fast=False)

	This method is deprecated, use call_annex([‘sync’, …]) instead.

Synchronize local repository with remotes

Use this command when you want to synchronize the local repository
with one or more of its remotes. You can specify the remotes (or
remote groups) to sync with by name; the default if none are specified
is to sync with all remotes.

	Parameters:

	
	remotes (str, list(str), optional) – Name of one or more remotes to be sync’ed.

	push (bool) – By default, git pushes to remotes.

	pull (bool) – By default, git pulls from remotes

	commit (bool) – A commit is done by default. Disable to avoid committing local
changes.

	content (bool) – Normally, syncing does not transfer the contents of annexed
files. This option causes the content of files in the work tree
to also be uploaded and downloaded as necessary.

	all (bool) – This option, when combined with content, makes all available
versions of all files be synced, when preferred content settings
allow

	fast (bool) – Only sync with the remotes with the lowest annex-cost value
configured

	
unannex(files, options=None)

	undo accidental add command

Use this to undo an accidental git annex add command. Note that for
safety, the content of the file remains in the annex, until you use git
annex unused and git annex dropunused.

	Parameters:

	
	files (list of str)

	options (list of str)

	Returns:

	successfully unannexed files

	Return type:

	list of str

	
unlock(files)

	unlock files for modification

Note: This method is silent about errors in unlocking a file (e.g, the
file has not content). Use the higher-level interface.unlock to get
more informative reporting.

	Parameters:

	files (list of str)

	Returns:

	successfully unlocked files

	Return type:

	list of str

	
property uuid

	Annex UUID

	Returns:

	Returns a the annex UUID, if there is any, or None otherwise.

	Return type:

	str

	
whereis(files, output='uuids', key=False, options=None, batch=False)

	Lists repositories that have actual content of file(s).

	Parameters:

	
	files (list of str) – files to look for

	output ({'descriptions', 'uuids', 'full'}, optional) – If ‘descriptions’, a list of remotes descriptions returned is per
each file. If ‘full’, for each file a dictionary of all fields
is returned as returned by annex

	key (bool, optional) – Whether provided files are actually annex keys

	options (list, optional) – Options to pass into git-annex call

	Returns:

	if output == ‘descriptions’, contains a list of descriptions of remotes
for each input file, describing the remote for each remote, which
was found by git-annex whereis, like:

u'me@mycomputer:~/where/my/repo/is [origin]' or
u'web' or
u'me@mycomputer:~/some/other/clone'

if output == ‘uuids’, returns a list of uuids.
if output == ‘full’, returns a dictionary with filenames as keys
and values a detailed record, e.g.:

{'00000000-0000-0000-0000-000000000001': {
 'description': 'web',
 'here': False,
 'urls': ['http://127.0.0.1:43442/about.txt', 'http://example.com/someurl']
}}

	Return type:

	list of list of unicode or dict

	
class datalad.support.annexrepo.BatchedAnnex(annex_cmd, git_options=None, annex_options=None, path=None, json=False, output_proc=None, batch_opt='--batch')

	Bases: BatchedCommand

Container for an annex process which would allow for persistent communication

	
class datalad.support.annexrepo.BatchedAnnexes(batch_size=0, git_options=None)

	Bases: SafeDelCloseMixin, dict

Class to contain the registry of active batch’ed instances of annex for
a repository

	
clear()

	Override just to make sure we don’t rely on __del__ to close all
the pipes

	
close()

	Close communication to all the batched annexes

It does not remove them from the dictionary though

	
get(codename, annex_cmd=None, **kwargs)

	Return the value for key if key is in the dictionary, else default.

	Return type:

	BatchedAnnex

	
class datalad.support.annexrepo.GeneratorAnnexJsonNoStderrProtocol(done_future=None, total_nbytes=None)

	Bases: GeneratorAnnexJsonProtocol

	
pipe_data_received(fd, data)

	

	
process_exited()

	

	
class datalad.support.annexrepo.GeneratorAnnexJsonProtocol(done_future=None, total_nbytes=None)

	Bases: GeneratorMixIn, AnnexJsonProtocol

	
add_to_output(json_object)

	

	
datalad.support.annexrepo.readline_json(stdout)

	

	
datalad.support.annexrepo.readlines_until_ok_or_failed(stdout, maxlines=100)

	Read stdout until line ends with ok or failed

datalad.support.archives

Various handlers/functionality for different types of files (e.g. for archives)

	
class datalad.support.archives.ArchivesCache(toppath=None, persistent=False)

	Bases: object

Cache to maintain extracted archives

	Parameters:

	
	toppath (str) – Top directory under .git/ of which temp directory would be created.
If not provided – random tempdir is used

	persistent (bool, optional) – Passed over into generated ExtractedArchives

	
clean(force=False)

	

	
get_archive(archive)

	

	
property path

	

	
class datalad.support.archives.ExtractedArchive(archive, path=None, persistent=False)

	Bases: object

Container for the extracted archive

	
STAMP_SUFFIX = '.stamp'

	

	
assure_extracted()

	Return path to the extracted archive. Extract archive if necessary

	
clean(force=False)

	

	
get_extracted_file(afile)

	

	
get_extracted_filename(afile)

	Return full path to the afile within extracted archive

It does not actually extract any archive

	
get_extracted_files()

	Generator to provide filenames which are available under extracted archive

	
get_leading_directory(depth=None, consider=None, exclude=None)

	Return leading directory of the content within archive

	Parameters:

	
	depth (int or None, optional) – Maximal depth of leading directories to consider. If None - no upper
limit

	consider (list of str, optional) – Regular expressions for file/directory names to be considered (before
exclude). Applied to the entire relative path to the file as in the archive

	exclude (list of str, optional) – Regular expressions for file/directory names to be excluded from consideration.
Applied to the entire relative path to the file as in the archive

	Returns:

	If there is no single leading directory – None returned

	Return type:

	str or None

	
property is_extracted

	

	
property path

	Given an archive – return full path to it within cache (extracted)

	
property stamp_path

	

	
datalad.support.archives.decompress_file(archive, dir_, leading_directories='strip')

	Decompress archive into a directory dir_

	Parameters:

	
	archive (str)

	dir (str)

	leading_directories ({'strip', None}) – If strip, and archive contains a single leading directory under which
all content is stored, all the content will be moved one directory up
and that leading directory will be removed.

datalad.support.extensions

Support functionality for extension development

	
datalad.support.extensions.has_config(name)

	Returns whether a configuration item is registered under the given name

	Parameters:

	name (str) – Configuration item name

	Return type:

	bool

	
datalad.support.extensions.register_config(name, title, *, default=<class 'datalad.interface.common_cfg._NotGiven'>, default_fn=<class 'datalad.interface.common_cfg._NotGiven'>, description=None, type=<class 'datalad.interface.common_cfg._NotGiven'>, dialog=None, scope=<class 'datalad.interface.common_cfg._NotGiven'>)

	Register a configuration item

This function can be used by DataLad extensions and other client
code to register configurations items and their documentation with
DataLad’s configuration management. Specifically, these definitions
will be interpreted by and acted on by the configuration command,
and ConfigManager.obtain().

At minimum, each item must be given a name, and a title. Optionally, any
configuration item can be given a default (or a callable to compute a
default lazily on access), a type-defining/validating callable (i.e.
Constraint), a (longer) description, a dialog type to enable manual
entry, and a configuration scope to store entered values in.

	Parameters:

	
	name (str) – Configuration item name, in most cases starting with the prefix
‘datalad.’ followed by at least a section name, and a variable
name, e.g. ‘datalad.section.variable’, following Git’s syntax for
configuration items.

	title (str) – The briefest summary of the configuration item’s purpose, typically
written in the style of a headline for a dialog UI, or that of an
explanatory inline comment just prior the item definitions.

	default (optional) – A default value that is already known at the time of registering the
configuration items. Can be of any type.

	default_fn (callable, optional) – A callable to compute a default value lazily on access. The can be
used, if the actual value is not yet known at the time of registering
the configuration item, or if the default is expensive to compute
and its evaluation needs to be deferred to prevent slow startup
(configuration items are typically defined as one of the first things
on import).

	description (str, optional) – A longer description to accompany the title, possibly with instructions
on how a sensible value can be determined, or with details on the
impact of a configuration switch.

	type (callable, optional) – A callable to perform arbitrary type conversion and validation of value
(or default values). If validation/conversion fails, the callable
must raise an arbitrary exception. The str(callable) is used as
a type description.

	dialog ({'yesno', 'question'}) – A type of UI dialog to use when manual value entry is attempted
(only in interactive sessions, and only when no default is defined.
title and description will be displayed in this dialog.

	scope ({'override', 'global', 'local', 'branch'}, optional) – If particular code requests the storage of (manually entered) values,
but defines no configuration scope, this default scope will be used.

	Raises:

	ValueError – For missing required, or invalid configuration properties.

datalad.customremotes.base

Base classes to custom git-annex remotes (e.g. extraction from archives)

	
class datalad.customremotes.base.AnnexCustomRemote(annex)

	Bases: SpecialRemote

	
AVAILABILITY = 'local'

	

	
COST = 100

	

	
gen_URLS(key)

	Yield URL(s) associated with a key, and keep stats on protocols.

	
getavailability()

	Asks the remote if it is locally or globally available. (Ie stored in the cloud vs on a local disk.)

	Returns:

	Allowed values are “global” or “local”.

	Return type:

	str

	
getcost()

	Requests the remote to return a use cost. Higher costs are more expensive.

cheapRemoteCost = 100
nearlyCheapRemoteCost = 110
semiExpensiveRemoteCost = 175
expensiveRemoteCost = 200
veryExpensiveRemoteCost = 1000
(taken from Config/Cost.hs)

	Returns:

	Indicates the cost of the remote.

	Return type:

	int

	
initremote()

	Gets called when git annex initremote or git annex enableremote are run.
This is where any one-time setup tasks can be done, for example creating the remote folder.
Note: This may be run repeatedly over time, as a remote is initialized in different repositories,
or as the configuration of a remote is changed. So any one-time setup tasks should be done idempotently.

	Raises:

	RemoteError – If the remote could not be initialized.

	
prepare()

	Tells the remote that it’s time to prepare itself to be used.
Gets called whenever git annex is about to access any of the below
methods, so it shouldn’t be too expensive. Otherwise it will
slow down operations like git annex whereis or git annex info.

Internet connection can be established here, though it’s
recommended to defer this until it’s actually needed.

	Raises:

	RemoteError – If the remote could not be prepared.

	
remove(key)

	Requests the remote to remove a key’s contents.

	Parameters:

	key (str)

	Raises:

	RemoteError – If the key couldn’t be deleted from the remote.

	
transfer_store(key, local_file)

	Store the file in local_file to a unique location derived from key.

It’s important that, while a Key is being stored, checkpresent(key)
not indicate it’s present until all the data has been transferred.
While the transfer is running, the remote can repeatedly call
annex.progress(size) to indicate the number of bytes already stored.
This will influence the progress shown to the user.

	Parameters:

	
	key (str) – The Key to be stored in the remote. In most cases, this is going to be the
remote file name. It should be at least be unambiguously derived from it.

	local_file (str) – Path to the file to upload.
Note that in some cases, local_file may contain whitespace.
Note that local_file should not influence the filename used on the remote.

	Raises:

	RemoteError – If the file could not be stored to the remote.

	
datalad.customremotes.base.ensure_datalad_remote(repo, remote=None, encryption=None, autoenable=False)

	Initialize and enable datalad special remote if it isn’t already.

	Parameters:

	
	repo (AnnexRepo)

	remote (str, optional) – Special remote name. This should be one of the values in
datalad.consts.DATALAD_SPECIAL_REMOTES_UUIDS and defaults to
datalad.consts.DATALAD_SPECIAL_REMOTE.

	encryption (optional) – Passed to init_datalad_remote.

	autoenable (optional) – Passed to init_datalad_remote.

	
datalad.customremotes.base.generate_uuids()

	Generate UUIDs for our remotes. Even though quick, for
consistency pre-generated and recorded in consts.py

	
datalad.customremotes.base.init_datalad_remote(repo, remote, encryption=None, autoenable=False, opts=[])

	Initialize datalad special remote

datalad.customremotes.archives

Custom remote to get the load from archives present under annex

	
class datalad.customremotes.archives.ArchiveAnnexCustomRemote(annex, path=None, persistent_cache=True, **kwargs)

	Bases: AnnexCustomRemote

Special custom remote allowing to obtain files from archives

Archives must be under annex’ed themselves.

	
COST = 500

	

	
CUSTOM_REMOTE_NAME = 'archive'

	

	
SUPPORTED_SCHEMES = ('dl+archive',)

	

	
URL_PREFIX = 'dl+archive:'

	

	
URL_SCHEME = 'dl+archive'

	

	
property cache

	

	
checkpresent(key)

	Requests the remote to check if a key is present in it.

	Parameters:

	key (str)

	Returns:

	True if the key is present in the remote.
False if the key is not present.

	Return type:

	bool

	Raises:

	RemoteError – If the presence of the key couldn’t be determined, eg. in case of connection error.

	
checkurl(url)

	Asks the remote to check if the url’s content can currently be downloaded (without downloading it).
The remote can optionally provide additional information about the file.

	Parameters:

	url (str)

	Returns:

	True if the url’s content can currently be downloaded and no additional information can be provided.
False if it can’t currently be downloaded.

In order to provide additional information, a list of dictionaries can be returned.
The dictionaries can have 3 keys: {‘url’: str, ‘size’: int, ‘filename’: str}. All of them are optional.

If there is only one file to be downloaded, we could return:
[{‘size’: 512, ‘filename’:’example_file.txt’}]

Other examples:
{‘url’:”https://example.com”, ‘size’:512, ‘filename’:”example_file.txt”}
[{‘url’:”Url1”, ‘size’:512, ‘filename’:”Filename1”}, {‘url’:”Url2”, ‘filename’:”Filename2”}]

	Return type:

	Union(bool, List(Dict))

	
claimurl(url)

	Asks the remote if it wishes to claim responsibility for downloading an url.

	Parameters:

	url (str)

	Returns:

	True if it wants to claim this url.
False if it doesn’t.

	Return type:

	bool

	
get_contentlocation(key, absolute=False, verify_exists=True)

	Return (relative to top or absolute) path to the file containing the key

This is a wrapper around AnnexRepo.get_contentlocation which provides
caching of the result (we are asking the location for the same archive
key often)

	
get_file_url(archive_file=None, archive_key=None, file=None, size=None)

	Given archive (file or a key) and a file – compose URL for access

Examples

	dl+archive:SHA256E-s176–69…3e.tar.gz#path=1/d2/2d&size=123
	when size of file within archive was known to be 123

	dl+archive:SHA256E-s176–69…3e.tar.gz#path=1/d2/2d
	when size of file within archive was not provided

	Parameters:

	size (int, optional) – Size of the file. If not provided, will simply be empty

	
remove(key)

	Requests the remote to remove a key’s contents.

	Parameters:

	key (str)

	Raises:

	RemoteError – If the key couldn’t be deleted from the remote.

	
stop(*args)

	Stop communication with annex

	
transfer_retrieve(key, file)

	Get the file identified by key from the remote and store it in local_file.

While the transfer is running, the remote can repeatedly call
annex.progress(size) to indicate the number of bytes already stored.
This will influence the progress shown to the user.

	Parameters:

	
	key (str) – The Key to get from the remote.

	local_file (str) – Path where to store the file.
Note that in some cases, local_file may contain whitespace.

	Raises:

	RemoteError – If the file could not be received from the remote.

	
whereis(key)

	Asks the remote to provide additional information about ways to access the
content of a key stored in it, such as eg, public urls. This will be displayed
to the user by eg, git annex whereis.
Note that users expect git annex whereis to run fast, without eg, network access.

	Parameters:

	key (str)

	Returns:

	Information about the location of the key, eg. public urls.

	Return type:

	str

	
datalad.customremotes.archives.link_file_load(src, dst, dry_run=False)

	Just a little helper to hardlink files’s load

	
datalad.customremotes.archives.main()

	cmdline entry point

datalad.runner.nonasyncrunner

Thread based subprocess execution with stdout and stderr passed to protocol objects

	
class datalad.runner.nonasyncrunner.ThreadedRunner(cmd, protocol_class, stdin, protocol_kwargs=None, timeout=None, exception_on_error=True, **popen_kwargs)

	Bases: object

A class the contains a naive implementation for concurrent sub-process
execution. It uses subprocess.Popen and threads to read from stdout and
stderr of the subprocess, and to write to stdin of the subprocess.

All read data and timeouts are passed to a protocol instance, which can
create the final result.

	Parameters:

	
	cmd (str | list)

	protocol_class (type[WitlessProtocol])

	stdin (int | IO | bytes | Queue[Optional[bytes]] | None)

	protocol_kwargs (Optional[dict])

	timeout (Optional[float])

	exception_on_error (bool)

	
check_for_stall()

	
	Return type:

	bool

	
close_stdin()

	

	
ensure_stdin_stdout_stderr_closed()

	

	
ensure_stdout_stderr_closed()

	

	
is_stalled()

	
	Return type:

	bool

	
process_loop()

	
	Return type:

	dict

	
process_queue()

	Get a single event from the queue or handle a timeout. This method
might modify the set of active file numbers if a file-closed event
is read from the output queue, or if a timeout-callback return True.

	
process_timeouts()

	Check for timeouts

This method checks whether a timeout occurred since
it was called last. If a timeout occurred, the timeout
handler is called.

	Return type:

	bool

	Returns: bool
	Return True if at least one timeout occurred,
False if no timeout occurred.

	
remove_file_number(file_number)

	Remove a file number from the active set and from
the timeout set.

	Parameters:

	file_number (int)

	
remove_process()

	

	
run()

	Run the command as specified in __init__.

This method is not re-entrant. Furthermore, if the protocol is a
subclass of GeneratorMixIn, and the generator has not been
exhausted, i.e. it has not raised StopIteration, this method should
not be called again. If it is called again before the generator is
exhausted, a RuntimeError is raised. In the non-generator case, a
second caller will be suspended until the first caller has returned.

	Return type:

	dict | _ResultGenerator

	Returns:

	
	Any – If the protocol is not a subclass of GeneratorMixIn, the
result of protocol._prepare_result will be returned.

	Generator – If the protocol is a subclass of GeneratorMixIn, a Generator
will be returned. This allows to use this method in constructs
like:

for protocol_output in runner.run():
 ...

Where the iterator yields whatever protocol.pipe_data_received
sends into the generator.
If all output was yielded and the process has terminated, the
generator will raise StopIteration(return_code), where
return_code is the return code of the process. The return code
of the process will also be stored in the “return_code”-attribute
of the runner. So you could write:

gen = runner.run()
for file_descriptor, data in gen:
 ...

get the return code of the process
result = gen.return_code

	
should_continue()

	
	Return type:

	bool

	
timeout_resolution = 0.2

	

	
wait_for_threads()

	

	
datalad.runner.nonasyncrunner.run_command(cmd, protocol, stdin, protocol_kwargs=None, timeout=None, exception_on_error=True, **popen_kwargs)

	Run a command in a subprocess

this function delegates the execution to an instance of
ThreadedRunner, please see ThreadedRunner.__init__() for a
documentation of the parameters, and ThreadedRunner.run() for a
documentation of the return values.

	Parameters:

	
	cmd (str | list)

	protocol (type[WitlessProtocol])

	stdin (int | IO | bytes | Queue[Optional[bytes]] | None)

	protocol_kwargs (Optional[dict])

	timeout (Optional[float])

	exception_on_error (bool)

	Return type:

	dict | _ResultGenerator

datalad.runner.protocol

Base class of a protocol to be used with the DataLad runner

	
class datalad.runner.protocol.GeneratorMixIn

	Bases: object

Protocol mix in that will instruct runner.run to return a generator

When this class is in the parent of a protocol given to runner.run (and
some other functions/methods) the run-method will return a Generator,
which yields whatever the protocol callbacks send to the Generator,
via the send_result-method of this class.

This allows to use runner.run() in constructs like:

	for result in runner.run(…):
	# do something, for example write to stdin of the subprocess

	
send_result(result)

	

	
class datalad.runner.protocol.WitlessProtocol(done_future=None, encoding=None)

	Bases: object

Subprocess communication protocol base class for run_async_cmd

This class implements basic subprocess output handling. Derived classes
like StdOutCapture should be used for subprocess communication that need
to capture and return output. In particular, the pipe_data_received()
method can be overwritten to implement “online” processing of process
output.

This class defines a default return value setup that causes
run_async_cmd() to return a 2-tuple with the subprocess’s exit code
and a list with bytestrings of all captured output streams.

	Parameters:

	
	done_future (Optional[Any])

	encoding (Optional[str])

	
connection_lost(exc)

	Called when the connection is lost or closed.

The argument is an exception object or None (the latter
meaning a regular EOF is received or the connection was
aborted or closed).

	Parameters:

	exc (Optional[BaseException])

	Return type:

	None

	
connection_made(process)

	
	Parameters:

	process (Popen)

	Return type:

	None

	
pipe_connection_lost(fd, exc)

	Called when a file descriptor associated with the child process is
closed.

fd is the int file descriptor that was closed.

	Parameters:

	
	fd (int)

	exc (Optional[BaseException])

	Return type:

	None

	
pipe_data_received(fd, data)

	
	Parameters:

	
	fd (int)

	data (bytes)

	Return type:

	None

	
proc_err = False

	

	
proc_out = False

	

	
process_exited()

	
	Return type:

	None

	
timeout(fd)

	Called if the timeout parameter to WitlessRunner.run()
is not None and a process file descriptor could not
be read (stdout or stderr) or not be written (stdin)
within the specified time in seconds, or if waiting for
a subprocess to exit takes longer than the specified time.

stdin timeouts are only caught when the type of the stdin-
parameter to WitlessRunner.run() is either a Queue,
a str, or bytes. Stdout or stderr timeouts
are only caught of proc_out and proc_err are True in the
protocol class. Process wait timeouts are
always caught if timeout is not None. In this case the
fd-argument will be None.

	fd:
	The file descriptor that timed out or None if no
progress was made at all, i.e. no stdin element was
enqueued and no output was read from either stdout
or stderr.

	Return type:

	bool

	Returns:

	If the callback returns True, the file descriptor
(if any was given) will be closed and no longer monitored.
If the return values is anything else than True,
the file-descriptor will be monitored further
and additional timeouts might occur indefinitely.
If None was given, i.e. a process runtime-timeout
was detected, and True is returned, the process
will be terminated.

	Parameters:

	fd (Optional[int])

datalad.config

	
class datalad.config.ConfigManager(dataset=None, overrides=None, source='any')

	Bases: object

Thin wrapper around git-config with support for a dataset configuration.

The general idea is to have an object that is primarily used to read/query
configuration option. Upon creation, current configuration is read via one
(or max two, in the case of the presence of dataset-specific configuration)
calls to git config. If this class is initialized with a Dataset
instance, it supports reading and writing configuration from
.datalad/config inside a dataset too. This file is committed to Git and
hence useful to ship certain configuration items with a dataset.

The API aims to provide the most significant read-access API of a
dictionary, the Python ConfigParser, and GitPython’s config parser
implementations.

This class is presently not capable of efficiently writing multiple
configurations items at once. Instead, each modification results in a
dedicated call to git config. This author thinks this is OK, as he
cannot think of a situation where a large number of items need to be
written during normal operation.

Each instance carries a public overrides attribute. This dictionary
contains variables that override any setting read from a file. The overrides
are persistent across reloads.

Any DATALAD_* environment variable is also presented as a configuration
item. Settings read from environment variables are not stored in any of the
configuration files, but are read dynamically from the environment at each
reload() call. Their values take precedence over any specification in
configuration files, and even overrides.

	Parameters:

	
	dataset (Dataset, optional) – If provided, all git config calls are executed in this dataset’s
directory. Moreover, any modifications are, by default, directed to
this dataset’s configuration file (which will be created on demand)

	overrides (dict, optional) – Variable overrides, see general class documentation for details.

	source ({'any', 'local', 'branch', 'branch-local'}, optional) – Which sources of configuration setting to consider. If ‘branch’,
configuration items are only read from a dataset’s persistent
configuration file in current branch, if any is present
(the one in .datalad/config, not
.git/config); if ‘local’, any non-committed source is considered
(local and global configuration in Git config’s terminology);
if ‘branch-local’, persistent configuration in current dataset branch
and local, but not global or system configuration are considered; if ‘any’
all possible sources of configuration are considered.
Note: ‘dataset’ and ‘dataset-local’ are deprecated in favor of ‘branch’
and ‘branch-local’.

	
add(var, value, scope='branch', reload=True)

	Add a configuration variable and value

	Parameters:

	
	var (str) – Variable name including any section like git config expects them, e.g.
‘core.editor’

	value (str) – Variable value

	scope ({'branch', 'local', 'global', 'override'}, optional) – Indicator which configuration file to modify. ‘branch’ indicates the
persistent configuration in .datalad/config of a dataset; ‘local’
the configuration of a dataset’s Git repository in .git/config;
‘global’ refers to the general configuration that is not specific to
a single repository (usually in $USER/.gitconfig); ‘override’
limits the modification to the ConfigManager instance, and the
assigned value overrides any setting from any other source.
Note: ‘dataset’ is being DEPRECATED in favor of ‘branch’.

	where ({'branch', 'local', 'global', 'override'}, optional) – DEPRECATED, use ‘scope’.

	reload (bool) – Flag whether to reload the configuration from file(s) after
modification. This can be disable to make multiple sequential
modifications slightly more efficient.

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	
	Parameters:

	
	default (optional) – Value to return when key is not present. None by default.

	get_all (bool, optional) – If True, return all values of multiple identical configuration keys.
By default only the last specified value is returned.

	
get_from_source(source, key, default=None)

	Like get(), but a source can be specific.

If source is ‘branch’, only the committed configuration is queried,
overrides are applied. In the case of ‘local’, the committed
configuration is ignored, but overrides and configuration from
environment variables are applied as usual.

	
get_value(section, option, default=None)

	Like get(), but with an optional default value

If the default is not None, the given default value will be returned in
case the option did not exist. This behavior imitates GitPython’s
config parser.

	
getbool(section, option, default=None)

	A convenience method which coerces the option value to a bool

Values “on”, “yes”, “true” and any int!=0 are considered True
Values which evaluate to bool False, “off”, “no”, “false” are considered
False
TypeError is raised for other values.

	
getfloat(section, option)

	A convenience method which coerces the option value to a float

	
getint(section, option)

	A convenience method which coerces the option value to an integer

	
has_option(section, option)

	If the given section exists, and contains the given option

	
has_section(section)

	Indicates whether a section is present in the configuration

	
items(section=None)

	Return a list of (name, value) pairs for each option

Optionally limited to a given section.

	
keys()

	Returns list of configuration item names

	
obtain(var, default=None, dialog_type=None, valtype=None, store=False, scope=None, reload=True, **kwargs)

	Convenience method to obtain settings interactively, if needed

A UI will be used to ask for user input in interactive sessions.
Questions to ask, and additional explanations can be passed directly
as arguments, or retrieved from a list of pre-configured items.

Additionally, this method allows for type conversion and storage
of obtained settings. Both aspects can also be pre-configured.

	Parameters:

	
	var (str) – Variable name including any section like git config expects them,
e.g. ‘core.editor’

	default (any type) – In interactive sessions and if store is True, this default value
will be presented to the user for confirmation (or modification).
In all other cases, this value will be silently assigned unless
there is an existing configuration setting.

	dialog_type ({'question', 'yesno', None}) – Which dialog type to use in interactive sessions. If None,
pre-configured UI options are used.

	store (bool) – Whether to store the obtained value (or default)

	scope ({'branch', 'local', 'global', 'override'}, optional) – Indicator which configuration file to modify. ‘branch’ indicates the
persistent configuration in .datalad/config of a dataset; ‘local’
the configuration of a dataset’s Git repository in .git/config;
‘global’ refers to the general configuration that is not specific to
a single repository (usually in $USER/.gitconfig); ‘override’
limits the modification to the ConfigManager instance, and the
assigned value overrides any setting from any other source.
Note: ‘dataset’ is being DEPRECATED in favor of ‘branch’.

	where ({'branch', 'local', 'global', 'override'}, optional) – DEPRECATED, use ‘scope’.

	reload (bool) – Flag whether to reload the configuration from file(s) after
modification. This can be disable to make multiple sequential
modifications slightly more efficient.

	**kwargs – Additional arguments for the UI function call, such as a question
text.

	
options(section)

	Returns a list of options available in the specified section.

	
reload(force=False)

	Reload all configuration items from the configured sources

If force is False, all files configuration was previously read from
are checked for differences in the modification times. If no difference
is found for any file no reload is performed. This mechanism will not
detect newly created global configuration files, use force in this case.

	
remove_section(sec, scope='branch', reload=True)

	Rename a configuration section

	Parameters:

	
	sec (str) – Name of the section to remove.

	scope ({'branch', 'local', 'global', 'override'}, optional) – Indicator which configuration file to modify. ‘branch’ indicates the
persistent configuration in .datalad/config of a dataset; ‘local’
the configuration of a dataset’s Git repository in .git/config;
‘global’ refers to the general configuration that is not specific to
a single repository (usually in $USER/.gitconfig); ‘override’
limits the modification to the ConfigManager instance, and the
assigned value overrides any setting from any other source.
Note: ‘dataset’ is being DEPRECATED in favor of ‘branch’.

	where ({'branch', 'local', 'global', 'override'}, optional) – DEPRECATED, use ‘scope’.

	reload (bool) – Flag whether to reload the configuration from file(s) after
modification. This can be disable to make multiple sequential
modifications slightly more efficient.

	
rename_section(old, new, scope='branch', reload=True)

	Rename a configuration section

	Parameters:

	
	old (str) – Name of the section to rename.

	new (str) – Name of the section to rename to.

	scope ({'branch', 'local', 'global', 'override'}, optional) – Indicator which configuration file to modify. ‘branch’ indicates the
persistent configuration in .datalad/config of a dataset; ‘local’
the configuration of a dataset’s Git repository in .git/config;
‘global’ refers to the general configuration that is not specific to
a single repository (usually in $USER/.gitconfig); ‘override’
limits the modification to the ConfigManager instance, and the
assigned value overrides any setting from any other source.
Note: ‘dataset’ is being DEPRECATED in favor of ‘branch’.

	where ({'branch', 'local', 'global', 'override'}, optional) – DEPRECATED, use ‘scope’.

	reload (bool) – Flag whether to reload the configuration from file(s) after
modification. This can be disable to make multiple sequential
modifications slightly more efficient.

	
rewrite_url(url)

	Any matching ‘url.<base>.insteadOf’ configuration is applied

Any URL that starts with such a configuration will be rewritten
to start, instead, with <base>. When more than one insteadOf
strings match a given URL, the longest match is used.

	Parameters:

	
	cfg (ConfigManager or dict) – dict-like with configuration variable name/value-pairs.

	url (str) – URL to be rewritten, if matching configuration is found.

	Returns:

	Rewritten or unmodified URL.

	Return type:

	str

	
sections()

	Returns a list of the sections available

	
set(var, value, scope='branch', reload=True, force=False)

	Set a variable to a value.

In opposition to add, this replaces the value of var if there is
one already.

	Parameters:

	
	var (str) – Variable name including any section like git config expects them, e.g.
‘core.editor’

	value (str) – Variable value

	force (bool) – if set, replaces all occurrences of var by a single one with the
given value. Otherwise raise if multiple entries for var exist
already

	scope ({'branch', 'local', 'global', 'override'}, optional) – Indicator which configuration file to modify. ‘branch’ indicates the
persistent configuration in .datalad/config of a dataset; ‘local’
the configuration of a dataset’s Git repository in .git/config;
‘global’ refers to the general configuration that is not specific to
a single repository (usually in $USER/.gitconfig); ‘override’
limits the modification to the ConfigManager instance, and the
assigned value overrides any setting from any other source.
Note: ‘dataset’ is being DEPRECATED in favor of ‘branch’.

	where ({'branch', 'local', 'global', 'override'}, optional) – DEPRECATED, use ‘scope’.

	reload (bool) – Flag whether to reload the configuration from file(s) after
modification. This can be disable to make multiple sequential
modifications slightly more efficient.

	
unset(var, scope='branch', reload=True)

	Remove all occurrences of a variable

	Parameters:

	
	var (str) – Name of the variable to remove

	scope ({'branch', 'local', 'global', 'override'}, optional) – Indicator which configuration file to modify. ‘branch’ indicates the
persistent configuration in .datalad/config of a dataset; ‘local’
the configuration of a dataset’s Git repository in .git/config;
‘global’ refers to the general configuration that is not specific to
a single repository (usually in $USER/.gitconfig); ‘override’
limits the modification to the ConfigManager instance, and the
assigned value overrides any setting from any other source.
Note: ‘dataset’ is being DEPRECATED in favor of ‘branch’.

	where ({'branch', 'local', 'global', 'override'}, optional) – DEPRECATED, use ‘scope’.

	reload (bool) – Flag whether to reload the configuration from file(s) after
modification. This can be disable to make multiple sequential
modifications slightly more efficient.

	
datalad.config.anything2bool(val)

	

	
datalad.config.get_git_version(runner=None)

	Return version of available git

	
datalad.config.parse_gitconfig_dump(dump, cwd=None, multi_value=True)

	Parse a dump-string from git config -z –list

This parser has limited support for discarding unrelated output
that may contaminate the given dump. It does so performing a
relatively strict matching of configuration key syntax, and discarding
lines in the output that are not valid git-config keys.

There is also built-in support for parsing outputs generated
with –show-origin (see return value).

	Parameters:

	
	dump (str) – Null-byte separated output

	cwd (path-like, optional) – Use this absolute path to convert relative paths for origin reports
into absolute paths. By default, the process working directory
PWD is used.

	multi_value (bool, optional) – If True, report values from multiple specifications of the
same key as a tuple of values assigned to this key. Otherwise,
the last configuration is reported.

	Returns

	dict – Configuration items are returned as key/value pairs in a dictionary.
The second tuple-item will be a set of identifiers comprising all
source files/blobs, if origin information was included
in the dump (–show-origin). An empty set is returned otherwise.
For actual files a Path object is included in the set, for a git-blob
a Git blob ID prefixed with ‘blob:’ is reported.

	set – Configuration items are returned as key/value pairs in a dictionary.
The second tuple-item will be a set of identifiers comprising all
source files/blobs, if origin information was included
in the dump (–show-origin). An empty set is returned otherwise.
For actual files a Path object is included in the set, for a git-blob
a Git blob ID prefixed with ‘blob:’ is reported.

	
datalad.config.quote_config(v)

	Helper to perform minimal quoting of config keys/value parts

	Parameters:

	v (str) – To-be-quoted string

	
datalad.config.rewrite_url(cfg, url)

	Any matching ‘url.<base>.insteadOf’ configuration is applied

Any URL that starts with such a configuration will be rewritten
to start, instead, with <base>. When more than one insteadOf
strings match a given URL, the longest match is used.

	Parameters:

	
	cfg (ConfigManager or dict) – dict-like with configuration variable name/value-pairs.

	url (str) – URL to be rewritten, if matching configuration is found.

	Returns:

	Rewritten or unmodified URL.

	Return type:

	str

	
datalad.config.warn_on_undefined_git_identity(cfg)

	Check whether a Git identity is defined, and warn if not

	Parameters:

	cfg (ConfigManager)

	
datalad.config.write_config_section(fobj, suite, name, props)

	Write a config section with (multiple) settings.

	Parameters:

	
	fobj (File) – Opened target file

	suite (str) – First item of the section name, e.g. ‘submodule’, or
‘datalad’

	name (str) – Remainder of the section name

	props (dict) – Keys are configuration setting names within the section
context (i.e. not duplicating suite and/or name, values
are configuration setting values.

datalad.tests.utils_pytest

Miscellaneous utilities to assist with testing

	
class datalad.tests.utils_pytest.HTTPPath(path, use_ssl=False, auth=None)

	Bases: object

Serve the content of a path via an HTTP URL.

This class can be used as a context manager, in which case it returns the
URL.

Alternatively, the start and stop methods can be called directly.

	Parameters:

	
	path (str) – Directory with content to serve.

	use_ssl (bool)

	auth (tuple) – Username, password

	
start()

	Start serving path via HTTP.

	
stop()

	Stop serving path.

	
class datalad.tests.utils_pytest.SilentHTTPHandler(*args, **kwargs)

	Bases: SimpleHTTPRequestHandler

A little adapter to silence the handler

	
log_message(format, *args)

	Log an arbitrary message.

This is used by all other logging functions. Override
it if you have specific logging wishes.

The first argument, FORMAT, is a format string for the
message to be logged. If the format string contains
any % escapes requiring parameters, they should be
specified as subsequent arguments (it’s just like
printf!).

The client ip and current date/time are prefixed to
every message.

Unicode control characters are replaced with escaped hex
before writing the output to stderr.

	
datalad.tests.utils_pytest.assert_cwd_unchanged(func, ok_to_chdir=False)

	Decorator to test whether the current working directory remains unchanged

	Parameters:

	ok_to_chdir (bool, optional) – If True, allow to chdir, so this decorator would not then raise exception
if chdir’ed but only return to original directory

	
datalad.tests.utils_pytest.assert_dict_equal(d1, d2)

	

	
datalad.tests.utils_pytest.assert_equal(first, second, msg=None)

	

	
datalad.tests.utils_pytest.assert_false(expr, msg=None)

	

	
datalad.tests.utils_pytest.assert_greater(first, second, msg=None)

	

	
datalad.tests.utils_pytest.assert_greater_equal(first, second, msg=None)

	

	
datalad.tests.utils_pytest.assert_in(first, second, msg=None)

	

	
datalad.tests.utils_pytest.assert_in_results(results, **kwargs)

	Verify that the particular combination of keys and values is found in
one of the results

	
datalad.tests.utils_pytest.assert_is(first, second, msg=None)

	

	
datalad.tests.utils_pytest.assert_is_generator(gen)

	

	
datalad.tests.utils_pytest.assert_is_instance(first, second, msg=None)

	

	
datalad.tests.utils_pytest.assert_is_none(expr, msg=None)

	

	
datalad.tests.utils_pytest.assert_is_not(first, second, msg=None)

	

	
datalad.tests.utils_pytest.assert_is_not_none(expr, msg=None)

	

	
datalad.tests.utils_pytest.assert_message(message, results)

	Verify that each status dict in the results has a message

This only tests the message template string, and not a formatted message
with args expanded.

	
datalad.tests.utils_pytest.assert_no_errors_logged(func, skip_re=None)

	Decorator around function to assert that no errors logged during its execution

	
datalad.tests.utils_pytest.assert_not_equal(first, second, msg=None)

	

	
datalad.tests.utils_pytest.assert_not_in(first, second, msg=None)

	

	
datalad.tests.utils_pytest.assert_not_in_results(results, **kwargs)

	Verify that the particular combination of keys and values is not in any
of the results

	
datalad.tests.utils_pytest.assert_not_is_instance(first, second, msg=None)

	

	
datalad.tests.utils_pytest.assert_re_in(regex, c, flags=0, match=True, msg=None)

	Assert that container (list, str, etc) contains entry matching the regex

	
datalad.tests.utils_pytest.assert_repo_status(path, annex=None, untracked_mode='normal', **kwargs)

	Compare a repo status against (optional) exceptions.

Anything file/directory that is not explicitly indicated must have
state ‘clean’, i.e. no modifications and recorded in Git.

	Parameters:

	
	path (str or Repo) – in case of a str: path to the repository’s base dir;
Note, that passing a Repo instance prevents detecting annex. This might
be useful in case of a non-initialized annex, a GitRepo is pointing to.

	annex (bool or None) – explicitly set to True or False to indicate, that an annex is (not)
expected; set to None to autodetect, whether there is an annex.
Default: None.

	untracked_mode ({'no', 'normal', 'all'}) – If and how untracked content is reported. The specification of untracked
files that are OK to be found must match this mode. See Repo.status()

	**kwargs – Files/directories that are OK to not be in ‘clean’ state. Each argument
must be one of ‘added’, ‘untracked’, ‘deleted’, ‘modified’ and each
value must be a list of filenames (relative to the root of the
repository, in POSIX convention).

	
datalad.tests.utils_pytest.assert_result_count(results, n, **kwargs)

	Verify specific number of results (matching criteria, if any)

	
datalad.tests.utils_pytest.assert_result_values_cond(results, prop, cond)

	Verify that the values of all results for a given key in the status dicts
fulfill condition cond.

	Parameters:

	
	results

	prop (str)

	cond (callable)

	
datalad.tests.utils_pytest.assert_result_values_equal(results, prop, values)

	Verify that the values of all results for a given key in the status dicts
match the given sequence

	
datalad.tests.utils_pytest.assert_set_equal(first, second, msg=None)

	

	
datalad.tests.utils_pytest.assert_status(label, results)

	Verify that each status dict in the results has a given status label

label can be a sequence, in which case status must be one of the items
in this sequence.

	
datalad.tests.utils_pytest.assert_str_equal(s1, s2)

	Helper to compare two lines

	
datalad.tests.utils_pytest.assert_true(expr, msg=None)

	

	
datalad.tests.utils_pytest.attr(name)

	

	
datalad.tests.utils_pytest.check_not_generatorfunction(func)

	Internal helper to verify that we are not decorating generator tests

	
datalad.tests.utils_pytest.eq_(first, second, msg=None)

	

	
datalad.tests.utils_pytest.get_annexstatus(ds, paths=None)

	Report a status for annexed contents.
Assembles states for git content info, amended with annex info on ‘HEAD’
(to get the last committed stage and with it possibly vanished content),
and lastly annex info wrt to the present worktree, to also get info on
added/staged content this fuses the info reported from
- git ls-files
- git annex findref HEAD
- git annex find –include ‘*’

	
datalad.tests.utils_pytest.get_convoluted_situation(path, repocls=<class 'datalad.support.annexrepo.AnnexRepo'>)

	

	
datalad.tests.utils_pytest.get_datasets_topdir()

	Delayed parsing so it could be monkey patched etc

	
datalad.tests.utils_pytest.get_deeply_nested_structure(path)

	Here is what this does (assuming UNIX, locked):
| .
| ├── directory_untracked
| │ └── link2dir -> ../subdir
| ├── OBSCURE_FILENAME_file_modified
| ├── link2dir -> subdir
| ├── link2subdsdir -> subds_modified/subdir
| ├── link2subdsroot -> subds_modified
| ├── subdir
| │ ├── annexed_file.txt -> ../.git/annex/objects/…
| │ ├── file_modified
| │ ├── git_file.txt
| │ └── link2annex_files.txt -> annexed_file.txt
| └── subds_modified
| ├── link2superdsdir -> ../subdir
| ├── subdir
| │ └── annexed_file.txt -> ../.git/annex/objects/…
| └── subds_lvl1_modified
| └── OBSCURE_FILENAME_directory_untracked
| └── untracked_file

When a system has no symlink support, the link2… components are not
included.

	
datalad.tests.utils_pytest.get_most_obscure_supported_name(tdir, return_candidates=False)

	Return the most obscure filename that the filesystem would support under TEMPDIR

	Parameters:

	
	return_candidates (bool, optional) – if True, return a tuple of (good, candidates) where candidates are “partially”
sorted from trickiest considered

	TODO (we might want to use it as a function where we would provide tdir)

	
datalad.tests.utils_pytest.get_mtimes_and_digests(target_path)

	Return digests (md5) and mtimes for all the files under target_path

	
datalad.tests.utils_pytest.get_ssh_port(host)

	Get port of host in ssh_config.

Our tests depend on the host being defined in ssh_config, including its
port. This method can be used by tests that want to check handling of an
explicitly specified

Note that if host does not match a host in ssh_config, the default value
of 22 is returned.

Skips test if port cannot be found.

	Parameters:

	host (str)

	Return type:

	port (int)

	
datalad.tests.utils_pytest.has_symlink_capability(p1, p2)

	

	
datalad.tests.utils_pytest.ignore_nose_capturing_stdout(func)

	DEPRECATED and will be removed soon. Does nothing!

Originally was intended as a decorator workaround for nose’s behaviour
with redirecting sys.stdout, but now we monkey patch nose now so no test
should no longer be skipped.

See issue reported here:
https://code.google.com/p/python-nose/issues/detail?id=243&can=1&sort=-id&colspec=ID%20Type%20Status%20Priority%20Stars%20Milestone%20Owner%20Summary

	
datalad.tests.utils_pytest.in_(first, second, msg=None)

	

	
datalad.tests.utils_pytest.integration(f)

	Mark test as an “integration” test which generally is not needed to be run

Generally tend to be slower.
Should be used in combination with @slow and @turtle if that is the case.

	
datalad.tests.utils_pytest.known_failure(func)

	Test decorator marking a test as known to fail

This combines probe_known_failure and skip_known_failure giving the
skipping precedence over the probing.

	
datalad.tests.utils_pytest.known_failure_direct_mode(func)

	DEPRECATED. Stop using. Does nothing

Test decorator marking a test as known to fail in a direct mode test run

If datalad.repo.direct is set to True behaves like known_failure.
Otherwise the original (undecorated) function is returned.

	
datalad.tests.utils_pytest.known_failure_githubci_osx(func)

	Test decorator for a known test failure on Github’s macOS CI

	
datalad.tests.utils_pytest.known_failure_githubci_win(func)

	Test decorator for a known test failure on Github’s Windows CI

	
datalad.tests.utils_pytest.known_failure_osx(func)

	Test decorator for a known test failure on macOS

	
datalad.tests.utils_pytest.known_failure_windows(func)

	Test decorator marking a test as known to fail on windows

On Windows behaves like known_failure.
Otherwise the original (undecorated) function is returned.

	
datalad.tests.utils_pytest.maybe_adjust_repo(repo)

	Put repo into an adjusted branch if it is not already.

	
datalad.tests.utils_pytest.neq_(first, second, msg=None)

	

	
datalad.tests.utils_pytest.nok_(expr, msg=None)

	

	
datalad.tests.utils_pytest.nok_startswith(s, prefix)

	

	
datalad.tests.utils_pytest.ok_(expr, msg=None)

	

	
datalad.tests.utils_pytest.ok_annex_get(ar, files, network=True)

	Helper to run .get decorated checking for correct operation

get passes through stderr from the ar to the user, which pollutes
screen while running tests

Note: Currently not true anymore, since usage of –json disables
progressbars

	
datalad.tests.utils_pytest.ok_archives_caches(repopath, n=1, persistent=None)

	Given a path to repository verify number of archives

	Parameters:

	
	repopath (str) – Path to the repository

	n (int, optional) – Number of archives directories to expect

	persistent (bool or None, optional) – If None – both persistent and not count.

	
datalad.tests.utils_pytest.ok_broken_symlink(path)

	

	
datalad.tests.utils_pytest.ok_clean_git(path, annex=None, index_modified=[], untracked=[])

	Obsolete test helper. Use assert_repo_status() instead.

Still maps a few common cases to the new helper, to ease transition
in extensions.

	
datalad.tests.utils_pytest.ok_endswith(s, suffix)

	

	
datalad.tests.utils_pytest.ok_exists(path)

	

	
datalad.tests.utils_pytest.ok_file_has_content(path, content, strip=False, re_=False, decompress=False, **kwargs)

	Verify that file exists and has expected content

	
datalad.tests.utils_pytest.ok_file_under_git(path, filename=None, annexed=False)

	Test if file is present and under git/annex control

If relative path provided, then test from current directory

	
datalad.tests.utils_pytest.ok_generator(gen)

	

	
datalad.tests.utils_pytest.ok_git_config_not_empty(ar)

	Helper to verify that nothing rewritten the config file

	
datalad.tests.utils_pytest.ok_good_symlink(path)

	

	
datalad.tests.utils_pytest.ok_startswith(s, prefix)

	

	
datalad.tests.utils_pytest.ok_symlink(path)

	Checks whether path is either a working or broken symlink

	
datalad.tests.utils_pytest.patch_config(vars)

	Patch our config with custom settings. Returns mock.patch cm

Only the merged configuration from all sources (global, local, dataset)
will be patched. Source-constrained patches (e.g. only committed dataset
configuration) are not supported.

	
datalad.tests.utils_pytest.probe_known_failure(func)

	Test decorator allowing the test to pass when it fails and vice versa

Setting config datalad.tests.knownfailures.probe to True tests, whether or
not the test is still failing. If it’s not, an AssertionError is raised in
order to indicate that the reason for failure seems to be gone.

	
datalad.tests.utils_pytest.put_file_under_git(path, filename=None, content=None, annexed=False)

	Place file under git/annex and return used Repo

	
datalad.tests.utils_pytest.run_under_dir(func, newdir='.')

	Decorator to run tests under another directory

It is somewhat ugly since we can’t really chdir
back to a directory which had a symlink in its path.
So using this decorator has potential to move entire
testing run under the dereferenced directory name – sideeffect.

The only way would be to instruct testing framework (i.e. nose
in our case ATM) to run a test by creating a new process with
a new cwd

	
datalad.tests.utils_pytest.serve_path_via_http(tfunc, *targs, use_ssl=False, auth=None)

	Decorator which serves content of a directory via http url

	Parameters:

	
	path (str) – Directory with content to serve.

	use_ssl (bool) – Flag whether to set up SSL encryption and return a HTTPS
URL. This require a valid certificate setup (which is tested
for proper function) or it will cause a SkipTest to be raised.

	auth (tuple or None) – If a (username, password) tuple is given, the server access will
be protected via HTTP basic auth.

	
datalad.tests.utils_pytest.set_annex_version(version)

	Override the git-annex version.

This temporarily masks the git-annex version present in external_versions
and make AnnexRepo forget its cached version information.

	
datalad.tests.utils_pytest.set_date(timestamp)

	Temporarily override environment variables for git/git-annex dates.

	Parameters:

	timestamp (int) – Unix timestamp.

	
datalad.tests.utils_pytest.skip_if(func, cond=True, msg=None, method='raise')

	Skip test for specific condition

	Parameters:

	
	cond (bool) – condition on which to skip

	msg (str) – message to print if skipping

	method (str) – either ‘raise’ or ‘pass’. Whether to skip by raising SkipTest or by
just proceeding and simply not calling the decorated function.
This is particularly meant to be used, when decorating single assertions
in a test with method=’pass’ in order to not skip the entire test, but
just that assertion.

	
datalad.tests.utils_pytest.skip_if_adjusted_branch(func)

	Skip test if adjusted branch is used by default on TMPDIR file system.

	
datalad.tests.utils_pytest.skip_if_no_module(module)

	

	
datalad.tests.utils_pytest.skip_if_no_network(func=None)

	Skip test completely in NONETWORK settings

If not used as a decorator, and just a function, could be used at the module level

	
datalad.tests.utils_pytest.skip_if_on_windows(func=None)

	Skip test completely under Windows

	
datalad.tests.utils_pytest.skip_if_root(func=None)

	Skip test if uid == 0.

Note that on Windows (or anywhere else os.geteuid is not available) the
test is _not_ skipped.

	
datalad.tests.utils_pytest.skip_if_scrapy_without_selector()

	A little helper to skip some tests which require recent scrapy

	
datalad.tests.utils_pytest.skip_if_url_is_not_available(url, regex=None)

	

	
datalad.tests.utils_pytest.skip_known_failure(func, method='raise')

	Test decorator allowing to skip a test that is known to fail

Setting config datalad.tests.knownfailures.skip to a bool enables/disables
skipping.

	
datalad.tests.utils_pytest.skip_nomultiplex_ssh(func)

	Skips SSH tests if default connection/manager does not support multiplexing

e.g. currently on windows or if set via datalad.ssh.multiplex-connections config variable

	
datalad.tests.utils_pytest.skip_ssh(func)

	Skips SSH tests if on windows or if environment variable
DATALAD_TESTS_SSH was not set

	
datalad.tests.utils_pytest.skip_wo_symlink_capability(func)

	Skip test when environment does not support symlinks

Perform a behavioral test instead of top-down logic, as on
windows this could be on or off on a case-by-case basis.

	
datalad.tests.utils_pytest.slow(f)

	Mark test as a slow, although not necessarily integration or usecase test

Rule of thumb cut-off to mark as slow is 10 sec

	
datalad.tests.utils_pytest.turtle(f)

	Mark test as very slow, meaning to not run it on Travis due to its
time limit

Rule of thumb cut-off to mark as turtle is 2 minutes

	
datalad.tests.utils_pytest.usecase(f)

	Mark test as a usecase user ran into and which (typically) caused bug report
to be filed/troubleshooted

Should be used in combination with @slow and @turtle if slow.

	
datalad.tests.utils_pytest.with_fake_cookies_db(func, cookies={})

	mock original cookies db with a fake one for the duration of the test

	
datalad.tests.utils_pytest.with_memory_keyring(t)

	Decorator to use non-persistent MemoryKeyring instance

	
datalad.tests.utils_pytest.with_sameas_remote(func, autoenabled=False)

	Provide a repository with a git-annex sameas remote configured.

The repository will have two special remotes: r_dir (type=directory) and
r_rsync (type=rsync). The rsync remote will be configured with
–sameas=r_dir, and autoenabled if autoenabled is true.

	
datalad.tests.utils_pytest.with_tempfile(t, **tkwargs)

	Decorator function to provide a temporary file name and remove it at the end

	Parameters:

	
	set (To change the used directory without providing keyword argument 'dir')

	DATALAD_TESTS_TEMP_DIR.

	mkdir (bool, optional (default: False)) – If True, temporary directory created using tempfile.mkdtemp()

	content (str or bytes, optional) – Content to be stored in the file created

	wrapped (function, optional) – If set, function name used to prefix temporary file name

	**tkwargs – All other arguments are passed into the call to tempfile.mk{,d}temp(),
and resultant temporary filename is passed as the first argument into
the function t. If no ‘prefix’ argument is provided, it will be
constructed using module and function names (‘.’ replaced with
‘_’).

Examples

@with_tempfile
def test_write(tfile=None):
 open(tfile, 'w').write('silly test')

	
datalad.tests.utils_pytest.with_testsui(t, responses=None, interactive=True)

	Switch main UI to be ‘tests’ UI and possibly provide answers to be used

	
datalad.tests.utils_pytest.with_tree(t, tree=None, archives_leading_dir=True, delete=True, **tkwargs)

	

	
datalad.tests.utils_pytest.without_http_proxy(tfunc)

	Decorator to remove http*_proxy env variables for the duration of the test

datalad.tests.utils_testrepos

	
class datalad.tests.utils_testrepos.BasicAnnexTestRepo(path=None, puke_if_exists=True)

	Bases: TestRepo

Creates a basic test git-annex repository

	
REPO_CLASS

	alias of AnnexRepo

	
create_info_file()

	

	
populate()

	

	
class datalad.tests.utils_testrepos.BasicGitTestRepo(path=None, puke_if_exists=True)

	Bases: TestRepo

Creates a basic test git repository.

	
REPO_CLASS

	alias of GitRepo

	
create_info_file()

	

	
populate()

	

	
class datalad.tests.utils_testrepos.InnerSubmodule

	Bases: object

	
create()

	

	
property path

	

	
property url

	

	
class datalad.tests.utils_testrepos.NestedDataset(path=None, puke_if_exists=True)

	Bases: BasicAnnexTestRepo

	
populate()

	

	
class datalad.tests.utils_testrepos.SubmoduleDataset(path=None, puke_if_exists=True)

	Bases: BasicAnnexTestRepo

	
populate()

	

	
class datalad.tests.utils_testrepos.TestRepo(path=None, puke_if_exists=True)

	Bases: object

	
REPO_CLASS = None

	

	
create()

	

	
create_file(name, content, add=True, annex=False)

	

	
property path

	

	
abstract populate()

	

	
property url

	

datalad.tests.heavyoutput

Helper to provide heavy load on stdout and stderr

datalad.interface.base

High-level interface generation

	
class datalad.interface.base.Interface

	Bases: ABC

Abstract base class for DataLad command implementations

Any DataLad command implementation must be derived from this class. The
code snippet below shows a complete sketch of a Python class with such an
implementation.

Importantly, no instances of command classes will created. Instead the main
entry point is a static __call__() method, which must be implemented
for any command. It is incorporated as a function in datalad.api, by
default under the name of the file the implementation resides (e.g.,
command for a command.py file). Therefore the file should have a
name that is a syntax-compliant function name. The default naming rule can
be overwritten with an explicit alternative name (see
datalad.interface.base.get_api_name()).

For commands implementing functionality that is operating on DataLad
datasets, a command can be also be bound to the
Dataset class as a method using
the @datasetmethod decorator, under the specified name.

Any __call__() implementation should be decorated with
datalad.interface.utils.eval_results(). This adds support for
standard result processing, and a range of common command parameters that
do not need to be manually added to the signature of __call__(). Any
implementation decorated in this way should be implemented as a generator,
and yield result records.

Any argument or keyword argument that appears in the signature of
__call__() must have a matching item in Interface._params_.
The dictionary maps argument names to
datalad.support.param.Parameter specifications. The specification
contain CLI argument declarations, value constraint and data type
conversation specifications, documentation, and optional
argparse-specific arguments for CLI parser construction.

The class decorator datalad.interface.base.build_doc() inspects an
Interface implementation, and builds a standard docstring from
various sources of structured information within the class (also see
below). The documentation is automatically tuned differently, depending on
the target API (Python vs CLI).

@build_doc
class ExampleCommand(Interface):
 """SHORT DESCRIPTION

 LONG DESCRIPTION
 ...
 """

 # COMMAND PARAMETER DEFINITIONS
 params = dict(
 example=Parameter(
 args=("--example",),
 doc="""Parameter description....""",
 constraints=...),
 ...
)
)

 # RESULT PARAMETER OVERRIDES
 return_type= 'list'
 ...

 # USAGE EXAMPLES
 examples = [
 dict(text="Example description...",
 code_py="Example Python code...",
 code_cmd="Example shell code ..."),
 ...
]

 @staticmethod
 @datasetmethod(name='example_command')
 @eval_results
 def __call__(example=None, ...):
 ...

 yield dict(...)

The basic implementation setup described above can be customized for
individual commands in various way that alter the behavior and
presentation of a specific command. The following overview uses
the code comment markers in the above snippet to illustrate where
in the class implementation these adjustments can be made.

(SHORT/LONG) DESCRIPTION

Interface.short_description can be defined to provide an
explicit short description to be used in documentation and help output,
replacing the auto-generated extract from the first line of the full
description.

COMMAND PARAMETER DEFINITIONS

When a parameter specification declares Parameter(args=tuple(), ...),
i.e. no arguments specified, it will be ignored by the CLI. Likewise, any
Parameter specification for which is_api_arg() returns False
will also be ignored by the CLI. Additionally, any such parameter will
not be added to the parameter description list in the Python docstring.

RESULT PARAMETER OVERRIDES

The datalad.interface.utils.eval_results() decorator automatically
add a range of additional arguments to a command, which are defined in
datalad.interface.common_opts.eval_params. For any such
parameter an Interface implementation can define an interface-specific
default value, by declaring a class member with the respective parameter
name and the desired default as its assigned value. This feature can be
used to tune the default command behavior, for example, with respect to the
default result rendering style, or its error behavior.

In addition to the common parameters of the Python API, an additional
Interface.result_renderer_cmdline can be defined, in order to
instruct the CLI to prefer the specified alternative result renderer
over an Interface.result_renderer specification.

USAGE EXAMPLES

Any number of usage examples can be described in an _examples_ list
class attribute. Such an example contains a description, and code examples
for Python and CLI.

	
classmethod get_refds_path(dataset)

	Return a resolved reference dataset path from a dataset argument

Deprecated since version 0.16: Use require_dataset() instead.

	
on_failure = 'continue'

	

	
result_filter = None

	

	
result_renderer = 'tailored'

	

	
result_xfm = None

	

	
return_type = 'list'

	

	
datalad.interface.base.alter_interface_docs_for_api(docs)

	Apply modifications to interface docstrings for Python API use.

	
datalad.interface.base.build_doc(cls, **kwargs)

	Decorator to build docstrings for datalad commands

It’s intended to decorate the class, the __call__-method of which is the
actual command. It expects that __call__-method to be decorated by
eval_results.

Note that values for any eval_params keys in cls._params_ are
ignored. This means one class may extend another’s _params_
without worrying about filtering out eval_params.

	Parameters:

	cls (Interface) – DataLad command implementation

	
datalad.interface.base.build_example(example, api='python')

	Build a code example.

Take a dict from a classes _example_ specification (list of dicts) and
build a string with an api or cmd example (for use in cmd help or
docstring).

	Parameters:

	api ({'python', 'cmdline'}) – If ‘python’, build Python example for docstring. If ‘cmdline’, build
cmd example.

	Returns:

	ex – Concatenated examples for the given class.

	Return type:

	str

	
datalad.interface.base.dedent_docstring(text)

	Remove uniform indentation from a multiline docstring

	
datalad.interface.base.eval_results(wrapped)

	Decorator for return value evaluation of datalad commands.

Note, this decorator is only compatible with commands that return
status dict sequences!

Two basic modes of operation are supported: 1) “generator mode” that
yields individual results, and 2) “list mode” that returns a sequence of
results. The behavior can be selected via the kwarg return_type.
Default is “list mode”.

This decorator implements common functionality for result rendering/output,
error detection/handling, and logging.

Result rendering/output configured via the result_renderer keyword
argument of each decorated command. Supported modes are: ‘generic’ (a
generic renderer producing one line per result with key info like action,
status, path, and an optional message); ‘json’ (a complete JSON line
serialization of the full result record), ‘json_pp’ (like ‘json’, but
pretty-printed spanning multiple lines), ‘tailored’ custom output
formatting provided by each command class (if any), or ‘disabled’ for
no result rendering.

Error detection works by inspecting the status item of all result
dictionaries. Any occurrence of a status other than ‘ok’ or ‘notneeded’
will cause an IncompleteResultsError exception to be raised that carries
the failed actions’ status dictionaries in its failed attribute.

Status messages will be logged automatically, by default the following
association of result status and log channel will be used: ‘ok’ (debug),
‘notneeded’ (debug), ‘impossible’ (warning), ‘error’ (error). Logger
instances included in the results are used to capture the origin of a
status report.

	Parameters:

	func (function) – __call__ method of a subclass of Interface,
i.e. a datalad command definition

	
datalad.interface.base.get_allargs_as_kwargs(call, args, kwargs)

	Generate a kwargs dict from a call signature and *args, **kwargs

Basically resolving the argnames for all positional arguments, and
resolving the defaults for all kwargs that are not given in a kwargs
dict

	
datalad.interface.base.get_api_name(intfspec)

	Given an interface specification return an API name for it

	
datalad.interface.base.get_cmd_doc(interface)

	Return the documentation for the command defined by interface.

	Parameters:

	interface (subclass of Interface)

	
datalad.interface.base.get_cmd_summaries(descriptions, groups, width=79)

	Return summaries for the commands in groups.

	Parameters:

	
	descriptions (dict) – A map of group names to summaries.

	groups (list of tuples) – A list of groups and commands in the form described by
get_interface_groups.

	width (int, optional) – The maximum width of each line in the summary text.

	Returns:

	
	A list with a formatted entry for each command. The first command of each

	group is preceded by an entry describing the group.

	
datalad.interface.base.get_interface_groups(include_plugins=False)

	Return a list of command groups.

	Return type:

	A list of tuples with the form (GROUP_NAME, GROUP_DESCRIPTION, COMMANDS).

	
datalad.interface.base.is_api_arg(arg)

	Return True if argument is our API argument or self or used for internal
purposes

	
datalad.interface.base.load_interface(spec)

	Load and return the class for spec.

	Parameters:

	spec (tuple) – For a standard interface, the first item is the datalad source module
and the second object name for the interface.

	Return type:

	The interface class or, if importing the module fails, None.

	
datalad.interface.base.update_docstring_with_examples(cls_doc, ex)

	Update a commands docstring with examples.

Take _examples_ of a command, build the Python examples, and append
them to the docstring.

	Parameters:

	
	cls_doc (str) – docstring

	ex (list) – list of dicts with examples

	
datalad.interface.base.update_docstring_with_parameters(func, params, prefix=None, suffix=None, add_args=None)

	Generate a useful docstring from a parameter spec

Amends any existing docstring of a callable with a textual
description of its parameters. The Parameter spec needs to match
the number and names of the callables arguments.

datalad.cli.exec

Call a command interface

Provide a callable to register in a cmdline parser, for executing
a parameterized command call.

	
datalad.cli.exec.call_from_parser(cls, args)

	Executable to be registered with the parser for a particular command

	Parameters:

	
	cls (Interface) – Class implementing a particular interface.

	args (Namespace) – Populated argparse namespace instance.

	Returns:

	Returns the iterable return by an command’s implementation of
__call__(). It is unwound, in case of a generator being
returned to actually trigger the underlying processing.

	Return type:

	iterable

datalad.cli.main

This is the main() CLI entryproint

	
datalad.cli.main.main(args=['/home/docs/checkouts/readthedocs.org/user_builds/datalad/envs/latest/lib/python3.9/site-packages/sphinx/__main__.py', '-T', '-b', 'html', '-d', '_build/doctrees', '-D', 'language=en', '.', '/home/docs/checkouts/readthedocs.org/user_builds/datalad/checkouts/latest/_readthedocs//html'])

	Main CLI entrypoint

datalad.cli.parser

Components to build the parser instance for the CLI

This module must import (and run) really fast for a responsive CLI.
It is unconditionally imported by the main() entrypoint.

	
class datalad.cli.parser.ArgumentParserDisableAbbrev(prog=None, usage=None, description=None, epilog=None, parents=[], formatter_class=<class 'argparse.HelpFormatter'>, prefix_chars='-', fromfile_prefix_chars=None, argument_default=None, conflict_handler='error', add_help=True, allow_abbrev=True, exit_on_error=True)

	Bases: ArgumentParser

	
datalad.cli.parser.add_subparser(_intfspec, subparsers, cmd_name, formatter_class, completing=False)

	Given an interface spec, add a subparser to subparsers under cmd_name

	
datalad.cli.parser.fail_with_short_help(parser=None, msg=None, known=None, provided=None, hint=None, exit_code=1, what='command', out=None)

	Generic helper to fail
with short help possibly hinting on what was intended if known
were provided

	
datalad.cli.parser.parser_add_common_opt(parser, opt, names=None, **kwargs)

	

	
datalad.cli.parser.parser_add_common_options(parser, version=None)

	Add all options defined in common_args, but excludes ‘help’

	
datalad.cli.parser.parser_add_version_opt(parser, mod_name, include_name=False, delay=False)

	Setup –version option

	Parameters:

	
	parser

	mod_name (str, optional)

	include_name (bool, optional)

	delay (bool, optional) – If set to True, no action is taken immediately, and rather
we assign the function which would print the version. Necessary for
early pre-parsing of the cmdline

	
datalad.cli.parser.setup_parser(cmdlineargs, formatter_class=<class 'argparse.RawDescriptionHelpFormatter'>, return_subparsers=False, completing=False, help_ignore_extensions=False)

	The holy grail of establishing CLI for DataLad’s Interfaces

	Parameters:

	
	cmdlineargs (sys.argv) – Used to make some shortcuts when construction of a full parser can be
avoided.

	formatter_class – Passed to argparse

	return_subparsers (bool, optional) – is used ATM only by BuildManPage in _datalad_build_support

	completing (bool, optional) – Flag to indicate whether the process was invoked by argcomplete

	help_ignore_extensions (bool, optional) – Prevent loading of extension entrypoints when –help is requested.
This is enabled when building docs to avoid pollution of generated
manpages with extensions commands (that should appear in their own
docs, but not in the core datalad package docs)

	
datalad.cli.parser.setup_parser_for_interface(parser, cls, completing=False)

	

	
datalad.cli.parser.setup_parserarg_for_interface(parser, param_name, param, defaults_idx, prefix_chars, defaults, completing=False)

	

	
datalad.cli.parser.single_subparser_possible(cmdlineargs, parser, completing)

	Performs early analysis of the cmdline

Looks at the first unparsed argument and if a known command,
would return only that one.

When a plain command invocation with –version is detected, it will be
acted on directly (until sys.exit(0) to avoid wasting time on unnecessary
further processing.

	Returns:

	Returns a status label and a parameter for this status.
‘error’: parsing failed, ‘allknown’: the parser successfully
identified all arguments, ‘help’: a help request option was found,
‘unknownopt’: an unknown or incomplete option was found,
‘subcommand’: a potential subcommand name was found. For the latter
two modes the second return value is the option or command name.
For all other modes the second return value is None.

	Return type:

	{‘error’, ‘allknown’, ‘help’, ‘unknownopt’, ‘subcommand’}, None or str

	
datalad.cli.parser.try_suggest_extension_with_command(parser, cmd, completing, known_cmds)

	If completing=False, this function will trigger sys.exit()

datalad.cli.renderer

Render results in a terminal

	
class datalad.cli.renderer.DefaultOutputFormatter(missing=nagen())

	Bases: Formatter

A custom formatter for default output rendering using .format

	
get_value(key, args, kwds)

	

	
class datalad.cli.renderer.DefaultOutputRenderer(format)

	Bases: object

A default renderer for .format’ed output line

	
datalad.cli.renderer.nadict(*items)

	A generator of default dictionary with the default nagen

	
class datalad.cli.renderer.nagen(missing='N/A')

	Bases: object

A helper to provide a desired missing value if no value is known

Usecases

	could be used as a generator for defaultdict

	since it returns itself upon getitem, should work even for complex
nested dictionaries/lists .format templates

Configuration

DataLad uses the same configuration mechanism and syntax as Git itself.
Consequently, datalad can be configured using the git config
command. Both a global user configuration (typically at
~/.gitconfig), and a local repository-specific configuration
(.git/config) are inspected.

In addition, datalad supports a persistent dataset-specific configuration.
This configuration is stored at .datalad/config in any dataset. As it
is part of a dataset, settings stored there will also be in effect for any
consumer of such a dataset. Both global and local settings on a particular
machine always override configuration shipped with a dataset.

All datalad-specific configuration variables are prefixed with datalad..

It is possible to override or amend the configuration using environment
variables. Any variable with a name that starts with DATALAD_ will
be available as the corresponding datalad. configuration variable,
replacing any __ (two underscores) with a hyphen, then any _
(single underscore) with a dot, and finally converting all letters to
lower case. Values from environment variables take precedence over
configuration file settings.

In addition, the DATALAD_CONFIG_OVERRIDES_JSON environment variable can
be set to a JSON record with configuration values. This is
particularly useful for options that aren’t accessible through the
naming scheme described above (e.g., an option name that includes an
underscore).

The following sections provide a (non-exhaustive) list of settings honored
by datalad. They are categorized according to the scope they are typically
associated with.

Global user configuration

	datalad.clone.url-substitute.github
	GitHub URL substitution rule:
Mangling for GitHub-related URL. A substitution specification is a string with a match and substitution
expression, each following Python’s regular expression syntax. Both expressions
are concatenated to a single string with an arbitrary delimiter character. The
delimiter is defined by prefixing the string with the delimiter. Prefix and
delimiter are stripped from the expressions (Example:
“,^http://(.*)$,https://1”). This setting can be defined multiple times.
Substitutions will be applied incrementally, in order of their definition. The
first substitution in such a series must match, otherwise no further
substitutions in a series will be considered. However, following the first
match all further substitutions in a series are processed, regardless whether
intermediate expressions match or not.
Default: (‘,https?://github.com/([^/]+)/(.*)$,\1###\2’, ‘,[/\\]+(?!$),-’, ‘,\s+|(%2520)+|(%20)+,_’, ‘,([^#]+)###(.*),https://github.com/\1/\2’)

	datalad.clone.url-substitute.osf
	Open Science Framework URL substitution rule:
Mangling for OSF-related URLs. A substitution specification is a string with a match and substitution
expression, each following Python’s regular expression syntax. Both expressions
are concatenated to a single string with an arbitrary delimiter character. The
delimiter is defined by prefixing the string with the delimiter. Prefix and
delimiter are stripped from the expressions (Example:
“,^http://(.*)$,https://1”). This setting can be defined multiple times.
Substitutions will be applied incrementally, in order of their definition. The
first substitution in such a series must match, otherwise no further
substitutions in a series will be considered. However, following the first
match all further substitutions in a series are processed, regardless whether
intermediate expressions match or not.
Default: (‘,^https://osf.io/([^/]+)[/]*$,osf://\1’,)

	datalad.extensions.load
	DataLad extension packages to load:
Indicate which extension packages should be loaded unconditionally on CLI startup or on importing ‘datalad.[core]api’. This enables the respective extensions to customize DataLad with functionality and configurability outside the scope of extension commands. For merely running extension commands it is not necessary to load them specifically
Default: None

	datalad.externals.nda.dbserver
	NDA database server:
Hostname of the database server
Default: https://nda.nih.gov/DataManager/dataManager

	datalad.locations.cache
	Cache directory:
Where should datalad cache files?
Default: ~/.cache/datalad

	datalad.locations.default-dataset
	Default dataset path:
Where should datalad should look for (or install) a default dataset?
Default: ~/datalad

	datalad.locations.extra-procedures
	Extra procedure directory:
Where should datalad search for some additional procedures?

	datalad.locations.locks
	Lockfile directory:
Where should datalad store lock files?
Default: ~/.cache/datalad/locks

	datalad.locations.sockets
	Socket directory:
Where should datalad store socket files?
Default: ~/.cache/datalad/sockets

	datalad.locations.system-procedures
	System procedure directory:
Where should datalad search for system procedures?
Default: /etc/xdg/datalad/procedures

	datalad.locations.user-procedures
	User procedure directory:
Where should datalad search for user procedures?
Default: ~/.config/datalad/procedures

	datalad.ssh.executable
	Name of ssh executable for ‘datalad sshrun’:
Specifies the name of the ssh-client executable thatdatalad will use. This might be an absolute path. On Windows systems it is currently by default set to point to the ssh executable of OpenSSH for Windows, if OpenSSH for Windows is installed. On other systems it defaults to ‘ssh’.
Default: ssh

[value must be a string]

	datalad.ssh.identityfile
	If set, pass this file as ssh’s -i option.:
Default: None

	datalad.ssh.multiplex-connections
	Whether to use a single shared connection for multiple SSH processes aiming at the same target.:
Default: True

[value must be convertible to type bool]

	datalad.ssh.try-use-annex-bundled-git
	Whether to attempt adjusting the PATH in a remote shell to include Git binaries located in a detected git-annex bundle:
If enabled, this will be a ‘best-effort’ attempt that only supports remote hosts with a Bourne shell and the which command available. The remote PATH must already contain a git-annex installation. If git-annex is not found, or the detected git-annex does not have a bundled Git installation, detection failure will not result in an error, but only slow remote execution by one-time sensing overhead per each opened connection.
Default: False

[value must be convertible to type bool]

	datalad.tests.cache
	Cache directory for tests:
Where should datalad cache test files?
Default: ~/.cache/datalad/tests

	datalad.tests.credentials
	Credentials to use during tests:
Which credentials should be available while running tests? If “plaintext” (default), a new plaintext keyring would be created in tests temporary HOME. If “system”, no custom configuration would be passed to keyring and known to system credentials could be used.
Default: plaintext

[value must be one of [CMD: (‘plaintext’, ‘system’) CMD][PY: (‘plaintext’, ‘system’) PY]]

Local repository configuration

	datalad.crawl.cache
	Crawler download caching:
Should the crawler cache downloaded files?

[value must be convertible to type bool]

	datalad.fake-dates
	Fake (anonymize) dates:
Should the dates in the logs be faked?
Default: False

[value must be convertible to type bool]

Sticky dataset configuration

	datalad.locations.dataset-procedures
	Dataset procedure directory:
Where should datalad search for dataset procedures (relative to a dataset root)?
Default: .datalad/procedures

Miscellaneous configuration

	datalad.annex.retry
	Value for annex.retry to use for git-annex calls:
On transfer failure, annex.retry (sans “datalad.”) controls the number of times that git-annex retries. DataLad will call git-annex with annex.retry set to the value here unless the annex.retry is explicitly configured
Default: 3

[value must be convertible to type ‘int’]

	datalad.credentials.force-ask
	Force (re-)entry of credentials:
Should DataLad prompt for credential (re-)entry? This can be used to update previously stored credentials.
Default: False

[value must be convertible to type bool]

	datalad.credentials.githelper.noninteractive
	Non-interactive mode for git-credential helper:
Should git-credential-datalad operate in non-interactive mode? This would mean to not ask for user confirmation when storing new credentials/provider configs.
Default: False

[bool]

	datalad.exc.str.tblimit
	This flag is used by datalad to cap the number of traceback steps included in exception logging and result reporting to DATALAD_EXC_STR_TBLIMIT of pre-processed entries from traceback.:

	datalad.fake-dates-start
	Initial fake date:
When faking dates and there are no commits in any local branches, generate the date by adding one second to this value (Unix epoch time). The value must be positive.
Default: 1112911993

[value must be convertible to type ‘int’]

	datalad.github.token-note
	GitHub token note:
Description for a Personal access token to generate.
Default: DataLad

	datalad.install.inherit-local-origin
	Inherit local origin of dataset source:
If enabled, a local ‘origin’ remote of a local dataset clone source is configured as an ‘origin-2’ remote to make its annex automatically available. The process is repeated recursively for any further qualifying ‘origin’ dataset thereof.Note that if clone.defaultRemoteName is configured to use a name other than ‘origin’, that name will be used instead.
Default: True

[value must be convertible to type bool]

	datalad.log.level
	Used for control the verbosity of logs printed to stdout while running datalad commands/debugging:

	datalad.log.name
	Include name of the log target in the log line:

	datalad.log.names
	Which names (,-separated) to print log lines for:

	datalad.log.namesre
	Regular expression for which names to print log lines for:

	datalad.log.outputs
	Whether to log stdout and stderr for executed commands:
When enabled, setting the log level to 5 should catch all execution output, though some output may be logged at higher levels
Default: False

[value must be convertible to type bool]

	datalad.log.result-level
	Log level for command result messages:
If ‘match-status’, it will log ‘impossible’ results as a warning, ‘error’ results as errors, and everything else as ‘debug’. Otherwise the indicated log-level will be used for all such messages
Default: debug

[value must be one of [CMD: (‘debug’, ‘info’, ‘warning’, ‘error’, ‘match-status’) CMD][PY: (‘debug’, ‘info’, ‘warning’, ‘error’, ‘match-status’) PY]]

	datalad.log.timestamp
	Used to add timestamp to datalad logs:
Default: False

[value must be convertible to type bool]

	datalad.log.traceback
	Includes a compact traceback in a log message, with generic components removed. This setting is only in effect when given as an environment variable DATALAD_LOG_TRACEBACK. An integer value specifies the maximum traceback depth to be considered. If set to “collide”, a common traceback prefix between a current traceback and a previously logged traceback is replaced with “…” (maximum depth 100).:

	datalad.repo.backend
	git-annex backend:
Backend to use when creating git-annex repositories
Default: MD5E

	datalad.repo.direct
	Direct Mode for git-annex repositories:
Set this flag to create annex repositories in direct mode by default
Default: False

[value must be convertible to type bool]

	datalad.repo.version
	git-annex repository version:
Specifies the repository version for git-annex to be used by default
Default: 8

[value must be convertible to type ‘int’]

	datalad.runtime.max-annex-jobs
	Maximum number of git-annex jobs to request when “jobs” option set to “auto” (default):
Set this value to enable parallel annex jobs that may speed up certain operations (e.g. get file content). The effective number of jobs will not exceed the number of available CPU cores (or 3 if there is less than 3 cores).
Default: 1

[value must be convertible to type ‘int’]

	datalad.runtime.max-batched
	Maximum number of batched commands to run in parallel:
Automatic cleanup of batched commands will try to keep at most this many commands running.
Default: 20

[value must be convertible to type ‘int’]

	datalad.runtime.max-inactive-age
	Maximum time (in seconds) a batched command can be inactive before it is eligible for cleanup:
Automatic cleanup of batched commands will consider an inactive command eligible for cleanup if more than this many seconds have transpired since the command’s last activity.
Default: 60

[value must be convertible to type ‘int’]

	datalad.runtime.max-jobs
	Maximum number of jobs DataLad can run in “parallel”:
Set this value to enable parallel multi-threaded DataLad jobs that may speed up certain operations, in particular operation across multiple datasets (e.g., install multiple subdatasets, etc).
Default: 1

[value must be convertible to type ‘int’]

	datalad.runtime.pathspec-from-file
	Provide list of files to git commands via –pathspec-from-file:
Instructs when DataLad will provide list of paths to ‘git’ commands which support –pathspec-from-file option via some temporary file. If set to ‘multi-chunk’ it will be done only if multiple invocations of the command on chunks of files list is needed. If set to ‘always’, DataLad will always use –pathspec-from-file.
Default: multi-chunk

[value must be one of [CMD: (‘multi-chunk’, ‘always’) CMD][PY: (‘multi-chunk’, ‘always’) PY]]

	datalad.runtime.raiseonerror
	Error behavior:
Set this flag to cause DataLad to raise an exception on errors that would have otherwise just get logged
Default: False

[value must be convertible to type bool]

	datalad.runtime.report-status
	Command line result reporting behavior:
If set (to other than ‘all’), constrains command result report to records matching the given status. ‘success’ is a synonym for ‘ok’ OR ‘notneeded’, ‘failure’ stands for ‘impossible’ OR ‘error’
Default: None

[value must be one of [CMD: (‘all’, ‘success’, ‘failure’, ‘ok’, ‘notneeded’, ‘impossible’, ‘error’) CMD][PY: (‘all’, ‘success’, ‘failure’, ‘ok’, ‘notneeded’, ‘impossible’, ‘error’) PY]]

	datalad.runtime.stalled-external
	Behavior for handing external processes:
What to do with external processes if they do not finish in some minimal reasonable time. If “abandon”, datalad would proceed without waiting for external process to exit. ATM applies only to batched git-annex processes. Should be changed with caution.
Default: wait

[value must be one of [CMD: (‘wait’, ‘abandon’) CMD][PY: (‘wait’, ‘abandon’) PY]]

	datalad.save.no-message
	Commit message handling:
When no commit message was provided: attempt to obtain one interactively (interactive); or use a generic commit message (generic). NOTE: The interactive option is experimental. The behavior may change in backwards-incompatible ways.
Default: generic

[value must be one of [CMD: (‘interactive’, ‘generic’) CMD][PY: (‘interactive’, ‘generic’) PY]]

	datalad.save.windows-compat-warning
	Action when Windows-incompatible file names are saved:
Certain characters or names can make file names incompatible with Windows. If such files are saved ‘warning’ will alert users with a log message, ‘error’ will yield an ‘impossible’ result, and ‘none’ will ignore the incompatibility.
Default: warning

[value must be one of [CMD: (‘warning’, ‘error’, ‘none’) CMD][PY: (‘warning’, ‘error’, ‘none’) PY]]

	datalad.source.epoch
	Datetime epoch to use for dates in built materials:
Datetime to use for reproducible builds. Originally introduced for Debian packages to interface SOURCE_DATE_EPOCH described at https://reproducible-builds.org/docs/source-date-epoch/ .By default - current time
Default: 1730430158.9946733

[value must be convertible to type ‘float’]

	datalad.tests.dataladremote
	Binary flag to specify whether each annex repository should get datalad special remote in every test repository:

[value must be convertible to type bool]

	datalad.tests.knownfailures.probe
	Probes tests that are known to fail on whether or not they are actually still failing:
Default: False

[value must be convertible to type bool]

	datalad.tests.knownfailures.skip
	Skips tests that are known to currently fail:
Default: True

[value must be convertible to type bool]

	datalad.tests.nonetwork
	Skips network tests completely if this flag is set, Examples include test for S3, git_repositories, OpenfMRI, etc:

[value must be convertible to type bool]

	datalad.tests.nonlo
	Specifies network interfaces to bring down/up for testing. Currently used by Travis CI.:

	datalad.tests.noteardown
	Does not execute teardown_package which cleans up temp files and directories created by tests if this flag is set:

[value must be convertible to type bool]

	datalad.tests.runcmdline
	Binary flag to specify if shell testing using shunit2 to be carried out:

[value must be convertible to type bool]

	datalad.tests.setup.testrepos
	Pre-creates repositories for @with_testrepos within setup_package:
Default: False

[value must be convertible to type bool]

	datalad.tests.ssh
	Skips SSH tests if this flag is not set:

[value must be convertible to type bool]

	datalad.tests.temp.dir
	Create a temporary directory at location specified by this flag. It is used by tests to create a temporary git directory while testing git annex archives etc:
Default: None

[value must be a string]

	datalad.tests.temp.fs
	Specify the temporary file system to use as loop device for testing DATALAD_TESTS_TEMP_DIR creation:

	datalad.tests.temp.fssize
	Specify the size of temporary file system to use as loop device for testing DATALAD_TESTS_TEMP_DIR creation:

	datalad.tests.temp.keep
	Function rmtemp will not remove temporary file/directory created for testing if this flag is set:

[value must be convertible to type bool]

	datalad.tests.ui.backend
	Tests UI backend:
Which UI backend to use
Default: tests-noninteractive

	datalad.tests.usecassette
	Specifies the location of the file to record network transactions by the VCR module. Currently used by when testing custom special remotes:

	datalad.ui.color
	Colored terminal output:
Enable or disable ANSI color codes in outputs; “on” overrides NO_COLOR environment variable
Default: auto

[value must be one of [CMD: (‘on’, ‘off’, ‘auto’) CMD][PY: (‘on’, ‘off’, ‘auto’) PY]]

	datalad.ui.progressbar
	UI progress bars:
Default backend for progress reporting
Default: None

[value must be one of [CMD: (‘tqdm’, ‘tqdm-ipython’, ‘log’, ‘none’) CMD][PY: (‘tqdm’, ‘tqdm-ipython’, ‘log’, ‘none’) PY]]

	datalad.ui.suppress-similar-results
	Suppress rendering of similar repetitive results:
If enabled, after a certain number of subsequent results that are identical regarding key properties, such as ‘status’, ‘action’, and ‘type’, additional similar results are not rendered by the common result renderer anymore. Instead, a count of suppressed results is displayed. If disabled, or when not running in an interactive terminal, all results are rendered.
Default: True

[value must be convertible to type bool]

	datalad.ui.suppress-similar-results-threshold
	Threshold for suppressing similar repetitive results:
Minimum number of similar results to occur before suppression is considered. See ‘datalad.ui.suppress-similar-results’ for more information.
Default: 10

[value must be convertible to type ‘int’]

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 datalad	

 	
 	
 datalad.cli.exec	

 	
 	
 datalad.cli.main	

 	
 	
 datalad.cli.parser	

 	
 	
 datalad.cli.renderer	

 	
 	
 datalad.cmd	

 	
 	
 datalad.config	

 	
 	
 datalad.consts	

 	
 	
 datalad.customremotes.archives	

 	
 	
 datalad.customremotes.base	

 	
 	
 datalad.interface.base	

 	
 	
 datalad.log	

 	
 	
 datalad.runner.nonasyncrunner	

 	
 	
 datalad.runner.protocol	

 	
 	
 datalad.support.annexrepo	

 	
 	
 datalad.support.archives	

 	
 	
 datalad.support.extensions	

 	
 	
 datalad.support.gitrepo	

 	
 	
 datalad.tests.heavyoutput	

 	
 	
 datalad.tests.utils_pytest	

 	
 	
 datalad.tests.utils_testrepos	

 	
 	
 datalad.utils	

 	
 	
 datalad.version	

 Index

 Index pages by letter:

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

 Full index on one page
 (can be huge)

Index – A

 	
 	add() (datalad.config.ConfigManager method)

 	(datalad.support.annexrepo.AnnexRepo method)

 	(datalad.support.gitrepo.GitRepo method)

 	add_() (datalad.support.annexrepo.AnnexRepo method)

 	(datalad.support.gitrepo.GitRepo method)

 	add_archive_content() (in module datalad.api)

 	add_fake_dates() (datalad.support.gitrepo.GitRepo method)

 	add_readme() (in module datalad.api)

 	add_remote() (datalad.support.gitrepo.GitRepo method)

 	add_subparser() (in module datalad.cli.parser)

 	add_to_output() (datalad.support.annexrepo.AnnexJsonProtocol method)

 	(datalad.support.annexrepo.GeneratorAnnexJsonProtocol method)

 	add_url_to_file() (datalad.support.annexrepo.AnnexRepo method)

 	add_urls() (datalad.support.annexrepo.AnnexRepo method)

 	addurls() (in module datalad.api)

 	adjust() (datalad.support.annexrepo.AnnexRepo method)

 	alter_interface_docs_for_api() (in module datalad.interface.base)

 	annex

 	AnnexCustomRemote (class in datalad.customremotes.base)

 	AnnexInitOutput (class in datalad.support.annexrepo)

 	AnnexJsonProtocol (class in datalad.support.annexrepo)

 	AnnexRepo (class in datalad.support.annexrepo)

 	annexstatus() (datalad.support.annexrepo.AnnexRepo method)

 	any_re_search() (in module datalad.utils)

 	anything2bool() (in module datalad.config)

 	ArchiveAnnexCustomRemote (class in datalad.customremotes.archives)

 	ArchivesCache (class in datalad.support.archives)

 	args (datalad.utils.ArgSpecFake attribute)

 	ArgSpecFake (class in datalad.utils)

 	ArgumentParserDisableAbbrev (class in datalad.cli.parser)

 	assert_cwd_unchanged() (in module datalad.tests.utils_pytest)

 	assert_dict_equal() (in module datalad.tests.utils_pytest)

 	assert_equal() (in module datalad.tests.utils_pytest)

 	assert_false() (in module datalad.tests.utils_pytest)

 	assert_greater() (in module datalad.tests.utils_pytest)

 	assert_greater_equal() (in module datalad.tests.utils_pytest)

 	assert_in() (in module datalad.tests.utils_pytest)

 	assert_in_results() (in module datalad.tests.utils_pytest)

 	assert_is() (in module datalad.tests.utils_pytest)

 	
 	assert_is_generator() (in module datalad.tests.utils_pytest)

 	assert_is_instance() (in module datalad.tests.utils_pytest)

 	assert_is_none() (in module datalad.tests.utils_pytest)

 	assert_is_not() (in module datalad.tests.utils_pytest)

 	assert_is_not_none() (in module datalad.tests.utils_pytest)

 	assert_logged() (datalad.utils.SwallowLogsAdapter method)

 	assert_message() (in module datalad.tests.utils_pytest)

 	assert_no_errors_logged() (in module datalad.tests.utils_pytest)

 	assert_no_open_files() (in module datalad.utils)

 	assert_not_equal() (in module datalad.tests.utils_pytest)

 	assert_not_in() (in module datalad.tests.utils_pytest)

 	assert_not_in_results() (in module datalad.tests.utils_pytest)

 	assert_not_is_instance() (in module datalad.tests.utils_pytest)

 	assert_re_in() (in module datalad.tests.utils_pytest)

 	assert_repo_status() (in module datalad.tests.utils_pytest)

 	assert_result_count() (in module datalad.tests.utils_pytest)

 	assert_result_values_cond() (in module datalad.tests.utils_pytest)

 	assert_result_values_equal() (in module datalad.tests.utils_pytest)

 	assert_set_equal() (in module datalad.tests.utils_pytest)

 	assert_status() (in module datalad.tests.utils_pytest)

 	assert_str_equal() (in module datalad.tests.utils_pytest)

 	assert_true() (in module datalad.tests.utils_pytest)

 	assure_bool() (in module datalad.utils)

 	assure_bytes() (in module datalad.utils)

 	assure_dict_from_str() (in module datalad.utils)

 	assure_dir() (in module datalad.utils)

 	assure_extracted() (datalad.support.archives.ExtractedArchive method)

 	assure_iter() (in module datalad.utils)

 	assure_list() (in module datalad.utils)

 	assure_list_from_str() (in module datalad.utils)

 	assure_tuple_or_list() (in module datalad.utils)

 	assure_unicode() (in module datalad.utils)

 	attr() (in module datalad.tests.utils_pytest)

 	auto_repr() (in module datalad.utils)

 	AVAILABILITY (datalad.customremotes.base.AnnexCustomRemote attribute)

Index – B

 	
 	bare (datalad.support.gitrepo.GitRepo property)

 	BasicAnnexTestRepo (class in datalad.tests.utils_testrepos)

 	BasicGitTestRepo (class in datalad.tests.utils_testrepos)

 	BatchedAnnex (class in datalad.support.annexrepo)

 	BatchedAnnexes (class in datalad.support.annexrepo)

 	BatchedCommand (class in datalad.cmd)

 	
 	BatchedCommandError

 	BatchedCommandProtocol (class in datalad.cmd)

 	BEGIN (datalad.support.gitrepo.GitProgress attribute)

 	build_doc() (in module datalad.interface.base)

 	build_example() (in module datalad.interface.base)

 	bytes2human() (in module datalad.utils)

Index – C

 	
 	cache (datalad.customremotes.archives.ArchiveAnnexCustomRemote property)

 	call_annex() (datalad.support.annexrepo.AnnexRepo method)

 	call_annex_items_() (datalad.support.annexrepo.AnnexRepo method)

 	call_annex_oneline() (datalad.support.annexrepo.AnnexRepo method)

 	call_annex_records() (datalad.support.annexrepo.AnnexRepo method)

 	call_annex_success() (datalad.support.annexrepo.AnnexRepo method)

 	call_from_parser() (in module datalad.cli.exec)

 	check_dates() (in module datalad.api)

 	check_direct_mode_support() (datalad.support.annexrepo.AnnexRepo class method)

 	check_for_stall() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	check_not_generatorfunction() (in module datalad.tests.utils_pytest)

 	check_repository_versions() (datalad.support.annexrepo.AnnexRepo class method)

 	check_symlink_capability() (in module datalad.utils)

 	CHECKING_OUT (datalad.support.gitrepo.GitProgress attribute)

 	checkout() (datalad.support.gitrepo.GitRepo method)

 	checkpresent() (datalad.customremotes.archives.ArchiveAnnexCustomRemote method)

 	checkurl() (datalad.customremotes.archives.ArchiveAnnexCustomRemote method)

 	cherry_pick() (datalad.support.gitrepo.GitRepo method)

 	chpwd (class in datalad.utils)

 	claimurl() (datalad.customremotes.archives.ArchiveAnnexCustomRemote method)

 	clean() (datalad.support.archives.ArchivesCache method)

 	(datalad.support.archives.ExtractedArchive method)

 	(in module datalad.api)

 	clean_inactive() (datalad.cmd.BatchedCommand class method)

 	cleanup() (datalad.utils.SwallowLogsAdapter method)

 	(datalad.utils.SwallowOutputsAdapter method)

 	clear() (datalad.support.annexrepo.BatchedAnnexes method)

 	CLI

 	clone() (datalad.support.gitrepo.GitRepo class method)

 	(in module datalad.api)

 	close() (datalad.cmd.BatchedCommand method)

 	(datalad.support.annexrepo.BatchedAnnexes method)

 	close_stdin() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	collect_method_callstats() (in module datalad.utils)

 	
 	ColorFormatter (class in datalad.log)

 	commit() (datalad.support.gitrepo.GitRepo method)

 	commit_exists() (datalad.support.gitrepo.GitRepo method)

 	COMPRESSING (datalad.support.gitrepo.GitProgress attribute)

 	config (datalad.support.gitrepo.GitRepo property)

 	ConfigManager (class in datalad.config)

 	configuration() (in module datalad.api)

 	configure_fake_dates() (datalad.support.gitrepo.GitRepo method)

 	connection_lost() (datalad.runner.protocol.WitlessProtocol method)

 	connection_made() (datalad.runner.protocol.WitlessProtocol method)

 	(datalad.support.annexrepo.AnnexJsonProtocol method)

 	(datalad.support.gitrepo.GitProgress method)

 	copy_file() (in module datalad.api)

 	copy_to() (datalad.support.annexrepo.AnnexRepo method)

 	COST (datalad.customremotes.archives.ArchiveAnnexCustomRemote attribute)

 	(datalad.customremotes.base.AnnexCustomRemote attribute)

 	count_objects (datalad.support.gitrepo.GitRepo property)

 	COUNTING (datalad.support.gitrepo.GitProgress attribute)

 	create() (datalad.tests.utils_testrepos.InnerSubmodule method)

 	(datalad.tests.utils_testrepos.TestRepo method)

 	(in module datalad.api)

 	create_file() (datalad.tests.utils_testrepos.TestRepo method)

 	create_info_file() (datalad.tests.utils_testrepos.BasicAnnexTestRepo method)

 	(datalad.tests.utils_testrepos.BasicGitTestRepo method)

 	create_sibling() (in module datalad.api)

 	create_sibling_gin() (in module datalad.api)

 	create_sibling_gitea() (in module datalad.api)

 	create_sibling_github() (in module datalad.api)

 	create_sibling_gitlab() (in module datalad.api)

 	create_sibling_gogs() (in module datalad.api)

 	create_sibling_ria() (in module datalad.api)

 	create_test_dataset() (in module datalad.api)

 	create_tree() (in module datalad.utils)

 	create_tree_archive() (in module datalad.utils)

 	CUSTOM_REMOTE_NAME (datalad.customremotes.archives.ArchiveAnnexCustomRemote attribute)

Index – D

 	
 	DataLad extension

 	datalad.annex.retry

 	
 datalad.cli.exec

 	module

 	
 datalad.cli.main

 	module

 	
 datalad.cli.parser

 	module

 	
 datalad.cli.renderer

 	module

 	datalad.clone.url-substitute.github

 	datalad.clone.url-substitute.osf

 	
 datalad.cmd

 	module

 	
 datalad.config

 	module

 	
 datalad.consts

 	module

 	datalad.crawl.cache

 	datalad.credentials.force-ask

 	datalad.credentials.githelper.noninteractive

 	
 datalad.customremotes.archives

 	module

 	
 datalad.customremotes.base

 	module

 	datalad.exc.str.tblimit

 	datalad.extensions.load

 	datalad.externals.nda.dbserver

 	datalad.fake-dates

 	datalad.fake-dates-start

 	datalad.github.token-note

 	datalad.install.inherit-local-origin

 	
 datalad.interface.base

 	module

 	datalad.locations.cache

 	datalad.locations.dataset-procedures

 	datalad.locations.default-dataset

 	datalad.locations.extra-procedures

 	datalad.locations.locks

 	datalad.locations.sockets

 	datalad.locations.system-procedures

 	datalad.locations.user-procedures

 	
 datalad.log

 	module

 	datalad.log.level

 	datalad.log.name

 	datalad.log.names

 	datalad.log.namesre

 	datalad.log.outputs

 	datalad.log.result-level

 	datalad.log.timestamp

 	datalad.log.traceback

 	datalad.repo.backend

 	datalad.repo.direct

 	datalad.repo.version

 	
 datalad.runner.nonasyncrunner

 	module

 	
 datalad.runner.protocol

 	module

 	datalad.runtime.max-annex-jobs

 	datalad.runtime.max-batched

 	datalad.runtime.max-inactive-age

 	datalad.runtime.max-jobs

 	datalad.runtime.pathspec-from-file

 	datalad.runtime.raiseonerror

 	datalad.runtime.report-status

 	datalad.runtime.stalled-external

 	datalad.save.no-message

 	datalad.save.windows-compat-warning

 	
 	datalad.source.epoch

 	datalad.ssh.executable

 	datalad.ssh.identityfile

 	datalad.ssh.multiplex-connections

 	datalad.ssh.try-use-annex-bundled-git

 	
 datalad.support.annexrepo

 	module

 	
 datalad.support.archives

 	module

 	
 datalad.support.extensions

 	module

 	
 datalad.support.gitrepo

 	module

 	datalad.tests.cache

 	datalad.tests.credentials

 	datalad.tests.dataladremote

 	
 datalad.tests.heavyoutput

 	module

 	datalad.tests.knownfailures.probe

 	datalad.tests.knownfailures.skip

 	datalad.tests.nonetwork

 	datalad.tests.nonlo

 	datalad.tests.noteardown

 	datalad.tests.runcmdline

 	datalad.tests.setup.testrepos

 	datalad.tests.ssh

 	datalad.tests.temp.dir

 	datalad.tests.temp.fs

 	datalad.tests.temp.fssize

 	datalad.tests.temp.keep

 	datalad.tests.ui.backend

 	datalad.tests.usecassette

 	
 datalad.tests.utils_pytest

 	module

 	
 datalad.tests.utils_testrepos

 	module

 	datalad.ui.color

 	datalad.ui.progressbar

 	datalad.ui.suppress-similar-results

 	datalad.ui.suppress-similar-results-threshold

 	
 datalad.utils

 	module

 	
 datalad.version

 	module

 	dataset

 	Dataset (class in datalad.api)

 	decode_input() (in module datalad.utils)

 	decompress_file() (in module datalad.support.archives)

 	dedent_docstring() (in module datalad.interface.base)

 	default_backends (datalad.support.annexrepo.AnnexRepo property)

 	DefaultOutputFormatter (class in datalad.cli.renderer)

 	DefaultOutputRenderer (class in datalad.cli.renderer)

 	defaults (datalad.utils.ArgSpecFake attribute)

 	DELETED (datalad.support.gitrepo.PushInfo attribute)

 	describe() (datalad.support.gitrepo.GitRepo method)

 	diff() (datalad.support.gitrepo.GitRepo method)

 	(in module datalad.api)

 	diffstatus() (datalad.support.gitrepo.GitRepo method)

 	dirty (datalad.support.gitrepo.GitRepo property)

 	disable_logger() (in module datalad.utils)

 	dlabspath() (in module datalad.utils)

 	DONE_TOKEN (datalad.support.gitrepo.GitProgress attribute)

 	download_url() (in module datalad.api)

 	drop() (datalad.support.annexrepo.AnnexRepo method)

 	(in module datalad.api)

 	drop_key() (datalad.support.annexrepo.AnnexRepo method)

Index – E

 	
 	enable_remote() (datalad.support.annexrepo.AnnexRepo method)

 	encode_filename() (in module datalad.utils)

 	END (datalad.support.gitrepo.GitProgress attribute)

 	ensure_bool() (in module datalad.utils)

 	ensure_bytes() (in module datalad.utils)

 	ensure_datalad_remote() (in module datalad.customremotes.base)

 	ensure_dict_from_str() (in module datalad.utils)

 	ensure_dir() (in module datalad.utils)

 	ensure_iter() (in module datalad.utils)

 	ensure_list() (in module datalad.utils)

 	ensure_list_from_str() (in module datalad.utils)

 	ensure_result_list() (in module datalad.utils)

 	ensure_stdin_stdout_stderr_closed() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	ensure_stdout_stderr_closed() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	
 	ensure_tuple_or_list() (in module datalad.utils)

 	ensure_unicode() (in module datalad.utils)

 	ensure_write_permission() (in module datalad.utils)

 	ENUMERATING (datalad.support.gitrepo.GitProgress attribute)

 	eq_() (in module datalad.tests.utils_pytest)

 	err (datalad.utils.SwallowOutputsAdapter property)

 	ERROR (datalad.support.gitrepo.FetchInfo attribute)

 	(datalad.support.gitrepo.PushInfo attribute)

 	escape_filename() (in module datalad.utils)

 	eval_results() (in module datalad.interface.base)

 	expandpath() (in module datalad.utils)

 	export_archive() (in module datalad.api)

 	export_archive_ora() (in module datalad.api)

 	export_to_figshare() (in module datalad.api)

 	ExtractedArchive (class in datalad.support.archives)

Index – F

 	
 	fail_with_short_help() (in module datalad.cli.parser)

 	fake_dates_enabled (datalad.support.gitrepo.GitRepo property)

 	FAST_FORWARD (datalad.support.gitrepo.FetchInfo attribute)

 	(datalad.support.gitrepo.PushInfo attribute)

 	fetch() (datalad.support.gitrepo.GitRepo method)

 	fetch_() (datalad.support.gitrepo.GitRepo method)

 	FetchInfo (class in datalad.support.gitrepo)

 	File (class in datalad.utils)

 	file (datalad.support.gitrepo.GitAddOutput attribute)

 	file_basename() (in module datalad.utils)

 	file_has_content() (datalad.support.annexrepo.AnnexRepo method)

 	filter_noninteractive_progress() (in module datalad.log)

 	
 	find() (datalad.support.annexrepo.AnnexRepo method)

 	find_files() (in module datalad.utils)

 	FINDING_SOURCES (datalad.support.gitrepo.GitProgress attribute)

 	FORCED_UPDATE (datalad.support.gitrepo.FetchInfo attribute)

 	(datalad.support.gitrepo.PushInfo attribute)

 	foreach_dataset() (in module datalad.api)

 	format() (datalad.log.ColorFormatter method)

 	format_commit() (datalad.support.gitrepo.GitRepo method)

 	format_element() (datalad.utils.SequenceFormatter method)

 	format_field() (datalad.utils.SequenceFormatter method)

 	fsck() (datalad.support.annexrepo.AnnexRepo method)

Index – G

 	
 	gc() (datalad.support.gitrepo.GitRepo method)

 	gen_URLS() (datalad.customremotes.base.AnnexCustomRemote method)

 	generate_chunks() (in module datalad.utils)

 	generate_file_chunks() (in module datalad.utils)

 	generate_uuids() (in module datalad.customremotes.base)

 	GeneratorAnnexJsonNoStderrProtocol (class in datalad.support.annexrepo)

 	GeneratorAnnexJsonProtocol (class in datalad.support.annexrepo)

 	GeneratorMixIn (class in datalad.runner.protocol)

 	get() (datalad.config.ConfigManager method)

 	(datalad.support.annexrepo.AnnexRepo method)

 	(datalad.support.annexrepo.BatchedAnnexes method)

 	(in module datalad.api)

 	get_active_branch() (datalad.support.gitrepo.GitRepo method)

 	get_allargs_as_kwargs() (in module datalad.interface.base)

 	get_annexed_files() (datalad.support.annexrepo.AnnexRepo method)

 	get_annexstatus() (in module datalad.tests.utils_pytest)

 	get_api_name() (in module datalad.interface.base)

 	get_archive() (datalad.support.archives.ArchivesCache method)

 	get_branch_commits_() (datalad.support.gitrepo.GitRepo method)

 	get_branches() (datalad.support.gitrepo.GitRepo method)

 	get_cmd_doc() (in module datalad.interface.base)

 	get_cmd_summaries() (in module datalad.interface.base)

 	get_commit_date() (datalad.support.gitrepo.GitRepo method)

 	get_content_annexinfo() (datalad.support.annexrepo.AnnexRepo method)

 	get_content_info() (datalad.support.gitrepo.GitRepo method)

 	get_contentlocation() (datalad.customremotes.archives.ArchiveAnnexCustomRemote method)

 	(datalad.support.annexrepo.AnnexRepo method)

 	get_convoluted_situation() (in module datalad.tests.utils_pytest)

 	get_corresponding_branch() (datalad.support.annexrepo.AnnexRepo method)

 	(datalad.support.gitrepo.GitRepo method)

 	get_dataset_root() (in module datalad.utils)

 	get_datasets_topdir() (in module datalad.tests.utils_pytest)

 	get_deeply_nested_structure() (in module datalad.tests.utils_pytest)

 	get_description() (datalad.support.annexrepo.AnnexRepo method)

 	get_encoding_info() (in module datalad.utils)

 	get_envvars_info() (in module datalad.utils)

 	get_extracted_file() (datalad.support.archives.ExtractedArchive method)

 	get_extracted_filename() (datalad.support.archives.ExtractedArchive method)

 	get_extracted_files() (datalad.support.archives.ExtractedArchive method)

 	get_file_annexinfo() (datalad.support.annexrepo.AnnexRepo method)

 	get_file_backend() (datalad.support.annexrepo.AnnexRepo method)

 	get_file_key() (datalad.support.annexrepo.AnnexRepo method)

 	get_file_size() (datalad.support.annexrepo.AnnexRepo method)

 	get_file_url() (datalad.customremotes.archives.ArchiveAnnexCustomRemote method)

 	get_files() (datalad.support.gitrepo.GitRepo method)

 	get_from_source() (datalad.config.ConfigManager method)

 	get_git_attributes() (datalad.support.gitrepo.GitRepo method)

 	get_git_dir() (datalad.support.gitrepo.GitRepo static method)

 	get_git_version() (in module datalad.config)

 	get_gitattributes() (datalad.support.gitrepo.GitRepo method)

 	get_groupwanted() (datalad.support.annexrepo.AnnexRepo method)

 	get_hexsha() (datalad.support.gitrepo.GitRepo method)

 	get_home_envvars() (in module datalad.utils)

 	get_indexed_files() (datalad.support.gitrepo.GitRepo method)

 	get_initialized_logger() (datalad.log.LoggerHelper method)

 	get_interface_groups() (in module datalad.interface.base)

 	get_ipython_shell() (in module datalad.utils)

 	
 	get_key_backend() (datalad.support.annexrepo.AnnexRepo class method)

 	get_last_commit_hexsha() (datalad.support.gitrepo.GitRepo method)

 	get_leading_directory() (datalad.support.archives.ExtractedArchive method)

 	get_linux_distribution() (in module datalad.utils)

 	get_logfilename() (in module datalad.utils)

 	get_merge_base() (datalad.support.gitrepo.GitRepo method)

 	get_metadata() (datalad.support.annexrepo.AnnexRepo method)

 	get_most_obscure_supported_name() (in module datalad.tests.utils_pytest)

 	get_mtimes_and_digests() (in module datalad.tests.utils_pytest)

 	get_one_line() (datalad.cmd.BatchedCommand method)

 	get_open_files() (in module datalad.utils)

 	get_path_prefix() (in module datalad.utils)

 	get_preferred_content() (datalad.support.annexrepo.AnnexRepo method)

 	get_refds_path() (datalad.interface.base.Interface class method)

 	get_remote_branches() (datalad.support.gitrepo.GitRepo method)

 	get_remote_url() (datalad.support.gitrepo.GitRepo method)

 	get_remotes() (datalad.support.annexrepo.AnnexRepo method)

 	(datalad.support.gitrepo.GitRepo method)

 	get_requested_error_output() (datalad.cmd.BatchedCommand method)

 	get_revisions() (datalad.support.gitrepo.GitRepo method)

 	get_sig_param_names() (in module datalad.utils)

 	get_size_from_key() (datalad.support.annexrepo.AnnexRepo static method)

 	get_special_remotes() (datalad.support.annexrepo.AnnexRepo method)

 	get_ssh_port() (in module datalad.tests.utils_pytest)

 	get_staged_paths() (datalad.support.gitrepo.GitRepo method)

 	get_submodules() (datalad.support.gitrepo.GitRepo method)

 	get_submodules_() (datalad.support.gitrepo.GitRepo method)

 	get_suggestions_msg() (in module datalad.utils)

 	get_tags() (datalad.support.gitrepo.GitRepo method)

 	get_tempfile_kwargs() (in module datalad.utils)

 	get_timeout_exception() (datalad.cmd.BatchedCommand method)

 	get_timestamp_suffix() (in module datalad.utils)

 	get_toppath() (datalad.support.gitrepo.GitRepo class method)

 	get_trace() (in module datalad.utils)

 	get_tracking_branch() (datalad.support.annexrepo.AnnexRepo method)

 	(datalad.support.gitrepo.GitRepo method)

 	get_urls() (datalad.support.annexrepo.AnnexRepo method)

 	get_value() (datalad.cli.renderer.DefaultOutputFormatter method)

 	(datalad.config.ConfigManager method)

 	get_wrapped_class() (in module datalad.utils)

 	getargspec() (in module datalad.utils)

 	getavailability() (datalad.customremotes.base.AnnexCustomRemote method)

 	getbool() (datalad.config.ConfigManager method)

 	getcost() (datalad.customremotes.base.AnnexCustomRemote method)

 	getfloat() (datalad.config.ConfigManager method)

 	getint() (datalad.config.ConfigManager method)

 	getpwd() (in module datalad.utils)

 	GIT_ANNEX_MIN_VERSION (datalad.support.annexrepo.AnnexRepo attribute)

 	git_annex_version (datalad.support.annexrepo.AnnexRepo attribute)

 	GIT_MIN_VERSION (datalad.support.gitrepo.GitRepo attribute)

 	git_version (datalad.support.gitrepo.GitRepo attribute)

 	GitAddOutput (class in datalad.support.gitrepo)

 	GitProgress (class in datalad.support.gitrepo)

 	GitRepo (class in datalad.support.gitrepo)

 	guard_for_format() (in module datalad.utils)

Index – H

 	
 	handle (datalad.utils.SwallowLogsAdapter property)

 	handles (datalad.utils.SwallowOutputsAdapter property)

 	has_config() (in module datalad.support.extensions)

 	has_option() (datalad.config.ConfigManager method)

 	
 	has_section() (datalad.config.ConfigManager method)

 	has_symlink_capability() (in module datalad.tests.utils_pytest)

 	HEAD_UPTODATE (datalad.support.gitrepo.FetchInfo attribute)

 	HTTPPath (class in datalad.tests.utils_pytest)

Index – I

 	
 	ignore_nose_capturing_stdout() (in module datalad.tests.utils_pytest)

 	import_module_from_file() (in module datalad.utils)

 	import_modules() (in module datalad.utils)

 	in_() (in module datalad.tests.utils_pytest)

 	info() (datalad.support.annexrepo.AnnexRepo method)

 	init_datalad_remote() (in module datalad.customremotes.base)

 	init_remote() (datalad.support.annexrepo.AnnexRepo method)

 	initremote() (datalad.customremotes.base.AnnexCustomRemote method)

 	InnerSubmodule (class in datalad.tests.utils_testrepos)

 	install() (in module datalad.api)

 	integration() (in module datalad.tests.utils_pytest)

 	Interface (class in datalad.interface.base)

 	is_ancestor() (datalad.support.gitrepo.GitRepo method)

 	is_api_arg() (in module datalad.interface.base)

 	is_available() (datalad.support.annexrepo.AnnexRepo method)

 	is_crippled_fs() (datalad.support.annexrepo.AnnexRepo method)

 	
 	is_direct_mode() (datalad.support.annexrepo.AnnexRepo method)

 	is_explicit_path() (in module datalad.utils)

 	is_extracted (datalad.support.archives.ExtractedArchive property)

 	is_initialized() (datalad.support.annexrepo.AnnexRepo method)

 	is_interactive() (in module datalad.utils)

 	is_managed_branch() (datalad.support.annexrepo.AnnexRepo method)

 	is_remote_annex_ignored() (datalad.support.annexrepo.AnnexRepo method)

 	is_special_annex_remote() (datalad.support.annexrepo.AnnexRepo method)

 	is_stalled() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	is_under_annex() (datalad.support.annexrepo.AnnexRepo method)

 	is_valid_annex() (datalad.support.annexrepo.AnnexRepo method)

 	is_valid_git() (datalad.support.gitrepo.GitRepo method)

 	is_valid_repo() (datalad.support.annexrepo.AnnexRepo class method)

 	(datalad.support.gitrepo.GitRepo class method)

 	is_with_annex() (datalad.support.gitrepo.GitRepo method)

 	items() (datalad.config.ConfigManager method)

Index – J

 	
 	join_cmdline() (in module datalad.utils)

Index – K

 	
 	keys() (datalad.config.ConfigManager method)

 	keywords (datalad.utils.ArgSpecFake attribute)

 	known_failure() (in module datalad.tests.utils_pytest)

 	known_failure_direct_mode() (in module datalad.tests.utils_pytest)

 	known_failure_githubci_osx() (in module datalad.tests.utils_pytest)

 	
 	known_failure_githubci_win() (in module datalad.tests.utils_pytest)

 	known_failure_osx() (in module datalad.tests.utils_pytest)

 	known_failure_windows() (in module datalad.tests.utils_pytest)

 	knows_annex() (in module datalad.utils)

Index – L

 	
 	line_profile() (in module datalad.utils)

 	lines (datalad.utils.SwallowLogsAdapter property)

 	link_file_load() (in module datalad.customremotes.archives)

 	lmtime() (in module datalad.utils)

 	load_interface() (in module datalad.interface.base)

 	
 	localsync() (datalad.support.annexrepo.AnnexRepo method)

 	lock_if_required() (in module datalad.utils)

 	log_message() (datalad.tests.utils_pytest.SilentHTTPHandler method)

 	log_progress() (in module datalad.log)

 	LoggerHelper (class in datalad.log)

Index – M

 	
 	main() (in module datalad.cli.main)

 	(in module datalad.customremotes.archives)

 	make_tempfile() (in module datalad.utils)

 	map_items() (in module datalad.utils)

 	maybe_adjust_repo() (in module datalad.tests.utils_pytest)

 	md5sum() (in module datalad.utils)

 	
 	merge() (datalad.support.gitrepo.GitRepo method)

 	merge_annex() (datalad.support.annexrepo.AnnexRepo method)

 	migrate_backend() (datalad.support.annexrepo.AnnexRepo method)

 	
 module

 	datalad.cli.exec

 	datalad.cli.main

 	datalad.cli.parser

 	datalad.cli.renderer

 	datalad.cmd

 	datalad.config

 	datalad.consts

 	datalad.customremotes.archives

 	datalad.customremotes.base

 	datalad.interface.base

 	datalad.log

 	datalad.runner.nonasyncrunner

 	datalad.runner.protocol

 	datalad.support.annexrepo

 	datalad.support.archives

 	datalad.support.extensions

 	datalad.support.gitrepo

 	datalad.tests.heavyoutput

 	datalad.tests.utils_pytest

 	datalad.tests.utils_testrepos

 	datalad.utils

 	datalad.version

Index – N

 	
 	nadict() (in module datalad.cli.renderer)

 	nagen (class in datalad.cli.renderer)

 	neq_() (in module datalad.tests.utils_pytest)

 	NestedDataset (class in datalad.tests.utils_testrepos)

 	never_fail() (in module datalad.utils)

 	NEW_HEAD (datalad.support.gitrepo.FetchInfo attribute)

 	(datalad.support.gitrepo.PushInfo attribute)

 	NEW_TAG (datalad.support.gitrepo.FetchInfo attribute)

 	(datalad.support.gitrepo.PushInfo attribute)

 	no_annex() (in module datalad.api)

 	
 	NO_MATCH (datalad.support.gitrepo.PushInfo attribute)

 	nok_() (in module datalad.tests.utils_pytest)

 	nok_startswith() (in module datalad.tests.utils_pytest)

 	normalize_path() (in module datalad.support.gitrepo)

 	normalize_paths() (in module datalad.support.gitrepo)

 	not_supported_on_windows() (in module datalad.utils)

 	nothing_cm() (in module datalad.utils)

Index – O

 	
 	obtain() (datalad.config.ConfigManager method)

 	obtain_write_permission() (in module datalad.utils)

 	ok_() (in module datalad.tests.utils_pytest)

 	ok_annex_get() (in module datalad.tests.utils_pytest)

 	ok_archives_caches() (in module datalad.tests.utils_pytest)

 	ok_broken_symlink() (in module datalad.tests.utils_pytest)

 	ok_clean_git() (in module datalad.tests.utils_pytest)

 	ok_endswith() (in module datalad.tests.utils_pytest)

 	ok_exists() (in module datalad.tests.utils_pytest)

 	ok_file_has_content() (in module datalad.tests.utils_pytest)

 	ok_file_under_git() (in module datalad.tests.utils_pytest)

 	
 	ok_generator() (in module datalad.tests.utils_pytest)

 	ok_git_config_not_empty() (in module datalad.tests.utils_pytest)

 	ok_good_symlink() (in module datalad.tests.utils_pytest)

 	ok_startswith() (in module datalad.tests.utils_pytest)

 	ok_symlink() (in module datalad.tests.utils_pytest)

 	on_failure (datalad.interface.base.Interface attribute)

 	OP_MASK (datalad.support.gitrepo.GitProgress attribute)

 	open_r_encdetect() (in module datalad.utils)

 	optional_args() (in module datalad.utils)

 	options() (datalad.config.ConfigManager method)

 	out (datalad.utils.SwallowLogsAdapter property)

 	(datalad.utils.SwallowOutputsAdapter property)

Index – P

 	
 	parse_gitconfig_dump() (in module datalad.config)

 	parser_add_common_opt() (in module datalad.cli.parser)

 	parser_add_common_options() (in module datalad.cli.parser)

 	parser_add_version_opt() (in module datalad.cli.parser)

 	partition() (in module datalad.utils)

 	patch_config() (in module datalad.tests.utils_pytest)

 	path (datalad.support.archives.ArchivesCache property)

 	(datalad.support.archives.ExtractedArchive property)

 	(datalad.tests.utils_testrepos.InnerSubmodule property)

 	(datalad.tests.utils_testrepos.TestRepo property)

 	path_is_subpath() (in module datalad.utils)

 	path_startswith() (in module datalad.utils)

 	pipe_connection_lost() (datalad.cmd.BatchedCommandProtocol method)

 	(datalad.runner.protocol.WitlessProtocol method)

 	pipe_data_received() (datalad.cmd.BatchedCommandProtocol method)

 	(datalad.runner.protocol.WitlessProtocol method)

 	(datalad.support.annexrepo.AnnexInitOutput method)

 	(datalad.support.annexrepo.AnnexJsonProtocol method)

 	(datalad.support.annexrepo.GeneratorAnnexJsonNoStderrProtocol method)

 	(datalad.support.gitrepo.GitProgress method)

 	populate() (datalad.tests.utils_testrepos.BasicAnnexTestRepo method)

 	(datalad.tests.utils_testrepos.BasicGitTestRepo method)

 	(datalad.tests.utils_testrepos.NestedDataset method)

 	(datalad.tests.utils_testrepos.SubmoduleDataset method)

 	(datalad.tests.utils_testrepos.TestRepo method)

 	posix_relpath() (in module datalad.utils)

 	precommit() (datalad.support.annexrepo.AnnexRepo method)

 	(datalad.support.gitrepo.GitRepo method)

 	prepare() (datalad.customremotes.base.AnnexCustomRemote method)

 	
 	probe_known_failure() (in module datalad.tests.utils_pytest)

 	proc1() (datalad.cmd.BatchedCommand method)

 	proc_err (datalad.runner.protocol.WitlessProtocol attribute)

 	(datalad.support.annexrepo.AnnexInitOutput attribute)

 	(datalad.support.annexrepo.AnnexJsonProtocol attribute)

 	(datalad.support.gitrepo.GitProgress attribute)

 	proc_out (datalad.runner.protocol.WitlessProtocol attribute)

 	(datalad.support.annexrepo.AnnexInitOutput attribute)

 	(datalad.support.annexrepo.AnnexJsonProtocol attribute)

 	(datalad.support.gitrepo.StdOutCaptureWithGitProgress attribute)

 	process_exited() (datalad.runner.protocol.WitlessProtocol method)

 	(datalad.support.annexrepo.AnnexJsonProtocol method)

 	(datalad.support.annexrepo.GeneratorAnnexJsonNoStderrProtocol method)

 	(datalad.support.gitrepo.GitProgress method)

 	process_loop() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	process_queue() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	process_request() (datalad.cmd.BatchedCommand method)

 	process_running() (datalad.cmd.BatchedCommand method)

 	process_timeouts() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	push() (datalad.support.gitrepo.GitRepo method)

 	(in module datalad.api)

 	push_() (datalad.support.gitrepo.GitRepo method)

 	PushInfo (class in datalad.support.gitrepo)

 	put_file_under_git() (in module datalad.tests.utils_pytest)

Index – Q

 	
 	quote_cmdlinearg() (in module datalad.utils)

 	
 	quote_config() (in module datalad.config)

Index – R

 	
 	re_op_absolute (datalad.support.gitrepo.GitProgress attribute)

 	re_op_relative (datalad.support.gitrepo.GitProgress attribute)

 	read_csv_lines() (in module datalad.utils)

 	read_file() (in module datalad.utils)

 	readline() (datalad.cmd.ReadlineEmulator method)

 	readline_json() (in module datalad.support.annexrepo)

 	readline_rstripped() (in module datalad.cmd)

 	ReadlineEmulator (class in datalad.cmd)

 	readlines_until_ok_or_failed() (in module datalad.support.annexrepo)

 	RECEIVING (datalad.support.gitrepo.GitProgress attribute)

 	register_config() (in module datalad.support.extensions)

 	REJECTED (datalad.support.gitrepo.FetchInfo attribute)

 	(datalad.support.gitrepo.PushInfo attribute)

 	reload() (datalad.config.ConfigManager method)

 	REMOTE_FAILURE (datalad.support.gitrepo.PushInfo attribute)

 	REMOTE_REJECTED (datalad.support.gitrepo.PushInfo attribute)

 	remove() (datalad.customremotes.archives.ArchiveAnnexCustomRemote method)

 	(datalad.customremotes.base.AnnexCustomRemote method)

 	(datalad.support.gitrepo.GitRepo method)

 	(in module datalad.api)

 	remove_branch() (datalad.support.gitrepo.GitRepo method)

 	remove_file_number() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	remove_process() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	remove_remote() (datalad.support.gitrepo.GitRepo method)

 	remove_section() (datalad.config.ConfigManager method)

 	
 	rename_section() (datalad.config.ConfigManager method)

 	REPO_CLASS (datalad.tests.utils_testrepos.BasicAnnexTestRepo attribute)

 	(datalad.tests.utils_testrepos.BasicGitTestRepo attribute)

 	(datalad.tests.utils_testrepos.TestRepo attribute)

 	repo_info() (datalad.support.annexrepo.AnnexRepo method)

 	repository_versions (datalad.support.annexrepo.AnnexRepo attribute)

 	rerun() (in module datalad.api)

 	RESOLVING (datalad.support.gitrepo.GitProgress attribute)

 	result_filter (datalad.interface.base.Interface attribute)

 	result_renderer (datalad.interface.base.Interface attribute)

 	result_xfm (datalad.interface.base.Interface attribute)

 	return_type (datalad.interface.base.Interface attribute)

 	rewrite_url() (datalad.config.ConfigManager method)

 	(in module datalad.config)

 	rm_url() (datalad.support.annexrepo.AnnexRepo method)

 	rmdir() (in module datalad.utils)

 	rmtemp() (in module datalad.utils)

 	rmtree() (in module datalad.utils)

 	rotree() (in module datalad.utils)

 	run() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	(in module datalad.api)

 	run_command() (in module datalad.runner.nonasyncrunner)

 	run_procedure() (in module datalad.api)

 	run_under_dir() (in module datalad.tests.utils_pytest)

Index – S

 	
 	SafeDelCloseMixin (class in datalad.cmd)

 	save() (datalad.support.gitrepo.GitRepo method)

 	(in module datalad.api)

 	save_() (datalad.support.gitrepo.GitRepo method)

 	saved_generator() (in module datalad.utils)

 	sections() (datalad.config.ConfigManager method)

 	send_result() (datalad.runner.protocol.GeneratorMixIn method)

 	SequenceFormatter (class in datalad.utils)

 	serve_path_via_http() (in module datalad.tests.utils_pytest)

 	set() (datalad.config.ConfigManager method)

 	set_annex_version() (in module datalad.tests.utils_pytest)

 	set_date() (in module datalad.tests.utils_pytest)

 	set_default_backend() (datalad.support.annexrepo.AnnexRepo method)

 	set_gitattributes() (datalad.support.gitrepo.GitRepo method)

 	set_groupwanted() (datalad.support.annexrepo.AnnexRepo method)

 	set_level() (datalad.log.LoggerHelper method)

 	set_metadata() (datalad.support.annexrepo.AnnexRepo method)

 	set_metadata_() (datalad.support.annexrepo.AnnexRepo method)

 	set_preferred_content() (datalad.support.annexrepo.AnnexRepo method)

 	set_remote_dead() (datalad.support.annexrepo.AnnexRepo method)

 	set_remote_url() (datalad.support.annexrepo.AnnexRepo method)

 	(datalad.support.gitrepo.GitRepo method)

 	setup_parser() (in module datalad.cli.parser)

 	setup_parser_for_interface() (in module datalad.cli.parser)

 	setup_parserarg_for_interface() (in module datalad.cli.parser)

 	shell_completion() (in module datalad.api)

 	shortened_repr() (in module datalad.utils)

 	should_continue() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	sibling

 	siblings() (in module datalad.api)

 	SilentHTTPHandler (class in datalad.tests.utils_pytest)

 	single_subparser_possible() (in module datalad.cli.parser)

 	skip_if() (in module datalad.tests.utils_pytest)

 	skip_if_adjusted_branch() (in module datalad.tests.utils_pytest)

 	skip_if_no_module() (in module datalad.tests.utils_pytest)

 	
 	skip_if_no_network() (in module datalad.tests.utils_pytest)

 	skip_if_on_windows() (in module datalad.tests.utils_pytest)

 	skip_if_root() (in module datalad.tests.utils_pytest)

 	skip_if_scrapy_without_selector() (in module datalad.tests.utils_pytest)

 	skip_if_url_is_not_available() (in module datalad.tests.utils_pytest)

 	skip_known_failure() (in module datalad.tests.utils_pytest)

 	skip_nomultiplex_ssh() (in module datalad.tests.utils_pytest)

 	skip_ssh() (in module datalad.tests.utils_pytest)

 	skip_wo_symlink_capability() (in module datalad.tests.utils_pytest)

 	slash_join() (in module datalad.utils)

 	slow() (in module datalad.tests.utils_pytest)

 	split_cmdline() (in module datalad.utils)

 	sshrun() (in module datalad.api)

 	STAGE_MASK (datalad.support.gitrepo.GitProgress attribute)

 	stamp_path (datalad.support.archives.ExtractedArchive property)

 	STAMP_SUFFIX (datalad.support.archives.ExtractedArchive attribute)

 	start() (datalad.tests.utils_pytest.HTTPPath method)

 	status() (datalad.support.gitrepo.GitRepo method)

 	(in module datalad.api)

 	StdOutCaptureWithGitProgress (class in datalad.support.gitrepo)

 	stop() (datalad.customremotes.archives.ArchiveAnnexCustomRemote method)

 	(datalad.tests.utils_pytest.HTTPPath method)

 	subdataset

 	subdatasets() (in module datalad.api)

 	SubmoduleDataset (class in datalad.tests.utils_testrepos)

 	success (datalad.support.gitrepo.GitAddOutput attribute)

 	superdataset

 	SUPPORTED_SCHEMES (datalad.customremotes.archives.ArchiveAnnexCustomRemote attribute)

 	supports_direct_mode (datalad.support.annexrepo.AnnexRepo attribute)

 	supports_unlocked_pointers (datalad.support.annexrepo.AnnexRepo property)

 	swallow_logs() (in module datalad.utils)

 	swallow_outputs() (in module datalad.utils)

 	SwallowLogsAdapter (class in datalad.utils)

 	SwallowOutputsAdapter (class in datalad.utils)

 	sync() (datalad.support.annexrepo.AnnexRepo method)

Index – T

 	
 	tag() (datalad.support.gitrepo.GitRepo method)

 	TAG_UPDATE (datalad.support.gitrepo.FetchInfo attribute)

 	TestRepo (class in datalad.tests.utils_testrepos)

 	ThreadedRunner (class in datalad.runner.nonasyncrunner)

 	timeout() (datalad.cmd.BatchedCommandProtocol method)

 	(datalad.runner.protocol.WitlessProtocol method)

 	timeout_resolution (datalad.runner.nonasyncrunner.ThreadedRunner attribute)

 	to_options() (in module datalad.support.gitrepo)

 	todo_interface_for_extensions() (in module datalad.utils)

 	
 	TOKEN_SEPARATOR (datalad.support.gitrepo.GitProgress attribute)

 	transfer_retrieve() (datalad.customremotes.archives.ArchiveAnnexCustomRemote method)

 	transfer_store() (datalad.customremotes.base.AnnexCustomRemote method)

 	try_multiple() (in module datalad.utils)

 	try_multiple_dec() (in module datalad.utils)

 	try_suggest_extension_with_command() (in module datalad.cli.parser)

 	turtle() (in module datalad.tests.utils_pytest)

Index – U

 	
 	unannex() (datalad.support.annexrepo.AnnexRepo method)

 	unique() (in module datalad.utils)

 	unlink() (in module datalad.utils)

 	unlock() (datalad.support.annexrepo.AnnexRepo method)

 	(in module datalad.api)

 	unset() (datalad.config.ConfigManager method)

 	untracked_files (datalad.support.gitrepo.GitRepo property)

 	UP_TO_DATE (datalad.support.gitrepo.PushInfo attribute)

 	update() (in module datalad.api)

 	update_docstring_with_examples() (in module datalad.interface.base)

 	
 	update_docstring_with_parameters() (in module datalad.interface.base)

 	update_ref() (datalad.support.gitrepo.GitRepo method)

 	update_remote() (datalad.support.gitrepo.GitRepo method)

 	updated() (in module datalad.utils)

 	url (datalad.tests.utils_testrepos.InnerSubmodule property)

 	(datalad.tests.utils_testrepos.TestRepo property)

 	URL_PREFIX (datalad.customremotes.archives.ArchiveAnnexCustomRemote attribute)

 	URL_SCHEME (datalad.customremotes.archives.ArchiveAnnexCustomRemote attribute)

 	usecase() (in module datalad.tests.utils_pytest)

 	uuid (datalad.support.annexrepo.AnnexRepo property)

Index – V

 	
 	varargs (datalad.utils.ArgSpecFake attribute)

Index – W

 	
 	wait_for_threads() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	warn_on_undefined_git_identity() (in module datalad.config)

 	WEB_UUID (datalad.support.annexrepo.AnnexRepo attribute)

 	whereis() (datalad.customremotes.archives.ArchiveAnnexCustomRemote method)

 	(datalad.support.annexrepo.AnnexRepo method)

 	with_fake_cookies_db() (in module datalad.tests.utils_pytest)

 	with_memory_keyring() (in module datalad.tests.utils_pytest)

 	with_pathsep() (in module datalad.utils)

 	with_progress() (in module datalad.log)

 	with_result_progress() (in module datalad.log)

 	
 	with_sameas_remote() (in module datalad.tests.utils_pytest)

 	with_tempfile() (in module datalad.tests.utils_pytest)

 	with_testsui() (in module datalad.tests.utils_pytest)

 	with_tree() (in module datalad.tests.utils_pytest)

 	without_http_proxy() (in module datalad.tests.utils_pytest)

 	WitlessProtocol (class in datalad.runner.protocol)

 	write_config_section() (in module datalad.config)

 	WRITING (datalad.support.gitrepo.GitProgress attribute)

 	wtf() (in module datalad.api)

Index – _

 	
 	__init__() (datalad.api.Dataset method)

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__init__() (datalad.api.Dataset method)

A

 	
 	add() (datalad.config.ConfigManager method)

 	(datalad.support.annexrepo.AnnexRepo method)

 	(datalad.support.gitrepo.GitRepo method)

 	add_() (datalad.support.annexrepo.AnnexRepo method)

 	(datalad.support.gitrepo.GitRepo method)

 	add_archive_content() (in module datalad.api)

 	add_fake_dates() (datalad.support.gitrepo.GitRepo method)

 	add_readme() (in module datalad.api)

 	add_remote() (datalad.support.gitrepo.GitRepo method)

 	add_subparser() (in module datalad.cli.parser)

 	add_to_output() (datalad.support.annexrepo.AnnexJsonProtocol method)

 	(datalad.support.annexrepo.GeneratorAnnexJsonProtocol method)

 	add_url_to_file() (datalad.support.annexrepo.AnnexRepo method)

 	add_urls() (datalad.support.annexrepo.AnnexRepo method)

 	addurls() (in module datalad.api)

 	adjust() (datalad.support.annexrepo.AnnexRepo method)

 	alter_interface_docs_for_api() (in module datalad.interface.base)

 	annex

 	AnnexCustomRemote (class in datalad.customremotes.base)

 	AnnexInitOutput (class in datalad.support.annexrepo)

 	AnnexJsonProtocol (class in datalad.support.annexrepo)

 	AnnexRepo (class in datalad.support.annexrepo)

 	annexstatus() (datalad.support.annexrepo.AnnexRepo method)

 	any_re_search() (in module datalad.utils)

 	anything2bool() (in module datalad.config)

 	ArchiveAnnexCustomRemote (class in datalad.customremotes.archives)

 	ArchivesCache (class in datalad.support.archives)

 	args (datalad.utils.ArgSpecFake attribute)

 	ArgSpecFake (class in datalad.utils)

 	ArgumentParserDisableAbbrev (class in datalad.cli.parser)

 	assert_cwd_unchanged() (in module datalad.tests.utils_pytest)

 	assert_dict_equal() (in module datalad.tests.utils_pytest)

 	assert_equal() (in module datalad.tests.utils_pytest)

 	assert_false() (in module datalad.tests.utils_pytest)

 	assert_greater() (in module datalad.tests.utils_pytest)

 	assert_greater_equal() (in module datalad.tests.utils_pytest)

 	assert_in() (in module datalad.tests.utils_pytest)

 	
 	assert_in_results() (in module datalad.tests.utils_pytest)

 	assert_is() (in module datalad.tests.utils_pytest)

 	assert_is_generator() (in module datalad.tests.utils_pytest)

 	assert_is_instance() (in module datalad.tests.utils_pytest)

 	assert_is_none() (in module datalad.tests.utils_pytest)

 	assert_is_not() (in module datalad.tests.utils_pytest)

 	assert_is_not_none() (in module datalad.tests.utils_pytest)

 	assert_logged() (datalad.utils.SwallowLogsAdapter method)

 	assert_message() (in module datalad.tests.utils_pytest)

 	assert_no_errors_logged() (in module datalad.tests.utils_pytest)

 	assert_no_open_files() (in module datalad.utils)

 	assert_not_equal() (in module datalad.tests.utils_pytest)

 	assert_not_in() (in module datalad.tests.utils_pytest)

 	assert_not_in_results() (in module datalad.tests.utils_pytest)

 	assert_not_is_instance() (in module datalad.tests.utils_pytest)

 	assert_re_in() (in module datalad.tests.utils_pytest)

 	assert_repo_status() (in module datalad.tests.utils_pytest)

 	assert_result_count() (in module datalad.tests.utils_pytest)

 	assert_result_values_cond() (in module datalad.tests.utils_pytest)

 	assert_result_values_equal() (in module datalad.tests.utils_pytest)

 	assert_set_equal() (in module datalad.tests.utils_pytest)

 	assert_status() (in module datalad.tests.utils_pytest)

 	assert_str_equal() (in module datalad.tests.utils_pytest)

 	assert_true() (in module datalad.tests.utils_pytest)

 	assure_bool() (in module datalad.utils)

 	assure_bytes() (in module datalad.utils)

 	assure_dict_from_str() (in module datalad.utils)

 	assure_dir() (in module datalad.utils)

 	assure_extracted() (datalad.support.archives.ExtractedArchive method)

 	assure_iter() (in module datalad.utils)

 	assure_list() (in module datalad.utils)

 	assure_list_from_str() (in module datalad.utils)

 	assure_tuple_or_list() (in module datalad.utils)

 	assure_unicode() (in module datalad.utils)

 	attr() (in module datalad.tests.utils_pytest)

 	auto_repr() (in module datalad.utils)

 	AVAILABILITY (datalad.customremotes.base.AnnexCustomRemote attribute)

B

 	
 	bare (datalad.support.gitrepo.GitRepo property)

 	BasicAnnexTestRepo (class in datalad.tests.utils_testrepos)

 	BasicGitTestRepo (class in datalad.tests.utils_testrepos)

 	BatchedAnnex (class in datalad.support.annexrepo)

 	BatchedAnnexes (class in datalad.support.annexrepo)

 	BatchedCommand (class in datalad.cmd)

 	
 	BatchedCommandError

 	BatchedCommandProtocol (class in datalad.cmd)

 	BEGIN (datalad.support.gitrepo.GitProgress attribute)

 	build_doc() (in module datalad.interface.base)

 	build_example() (in module datalad.interface.base)

 	bytes2human() (in module datalad.utils)

C

 	
 	cache (datalad.customremotes.archives.ArchiveAnnexCustomRemote property)

 	call_annex() (datalad.support.annexrepo.AnnexRepo method)

 	call_annex_items_() (datalad.support.annexrepo.AnnexRepo method)

 	call_annex_oneline() (datalad.support.annexrepo.AnnexRepo method)

 	call_annex_records() (datalad.support.annexrepo.AnnexRepo method)

 	call_annex_success() (datalad.support.annexrepo.AnnexRepo method)

 	call_from_parser() (in module datalad.cli.exec)

 	check_dates() (in module datalad.api)

 	check_direct_mode_support() (datalad.support.annexrepo.AnnexRepo class method)

 	check_for_stall() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	check_not_generatorfunction() (in module datalad.tests.utils_pytest)

 	check_repository_versions() (datalad.support.annexrepo.AnnexRepo class method)

 	check_symlink_capability() (in module datalad.utils)

 	CHECKING_OUT (datalad.support.gitrepo.GitProgress attribute)

 	checkout() (datalad.support.gitrepo.GitRepo method)

 	checkpresent() (datalad.customremotes.archives.ArchiveAnnexCustomRemote method)

 	checkurl() (datalad.customremotes.archives.ArchiveAnnexCustomRemote method)

 	cherry_pick() (datalad.support.gitrepo.GitRepo method)

 	chpwd (class in datalad.utils)

 	claimurl() (datalad.customremotes.archives.ArchiveAnnexCustomRemote method)

 	clean() (datalad.support.archives.ArchivesCache method)

 	(datalad.support.archives.ExtractedArchive method)

 	(in module datalad.api)

 	clean_inactive() (datalad.cmd.BatchedCommand class method)

 	cleanup() (datalad.utils.SwallowLogsAdapter method)

 	(datalad.utils.SwallowOutputsAdapter method)

 	clear() (datalad.support.annexrepo.BatchedAnnexes method)

 	CLI

 	clone() (datalad.support.gitrepo.GitRepo class method)

 	(in module datalad.api)

 	close() (datalad.cmd.BatchedCommand method)

 	(datalad.support.annexrepo.BatchedAnnexes method)

 	close_stdin() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	collect_method_callstats() (in module datalad.utils)

 	
 	ColorFormatter (class in datalad.log)

 	commit() (datalad.support.gitrepo.GitRepo method)

 	commit_exists() (datalad.support.gitrepo.GitRepo method)

 	COMPRESSING (datalad.support.gitrepo.GitProgress attribute)

 	config (datalad.support.gitrepo.GitRepo property)

 	ConfigManager (class in datalad.config)

 	configuration() (in module datalad.api)

 	configure_fake_dates() (datalad.support.gitrepo.GitRepo method)

 	connection_lost() (datalad.runner.protocol.WitlessProtocol method)

 	connection_made() (datalad.runner.protocol.WitlessProtocol method)

 	(datalad.support.annexrepo.AnnexJsonProtocol method)

 	(datalad.support.gitrepo.GitProgress method)

 	copy_file() (in module datalad.api)

 	copy_to() (datalad.support.annexrepo.AnnexRepo method)

 	COST (datalad.customremotes.archives.ArchiveAnnexCustomRemote attribute)

 	(datalad.customremotes.base.AnnexCustomRemote attribute)

 	count_objects (datalad.support.gitrepo.GitRepo property)

 	COUNTING (datalad.support.gitrepo.GitProgress attribute)

 	create() (datalad.tests.utils_testrepos.InnerSubmodule method)

 	(datalad.tests.utils_testrepos.TestRepo method)

 	(in module datalad.api)

 	create_file() (datalad.tests.utils_testrepos.TestRepo method)

 	create_info_file() (datalad.tests.utils_testrepos.BasicAnnexTestRepo method)

 	(datalad.tests.utils_testrepos.BasicGitTestRepo method)

 	create_sibling() (in module datalad.api)

 	create_sibling_gin() (in module datalad.api)

 	create_sibling_gitea() (in module datalad.api)

 	create_sibling_github() (in module datalad.api)

 	create_sibling_gitlab() (in module datalad.api)

 	create_sibling_gogs() (in module datalad.api)

 	create_sibling_ria() (in module datalad.api)

 	create_test_dataset() (in module datalad.api)

 	create_tree() (in module datalad.utils)

 	create_tree_archive() (in module datalad.utils)

 	CUSTOM_REMOTE_NAME (datalad.customremotes.archives.ArchiveAnnexCustomRemote attribute)

D

 	
 	DataLad extension

 	datalad.annex.retry

 	
 datalad.cli.exec

 	module

 	
 datalad.cli.main

 	module

 	
 datalad.cli.parser

 	module

 	
 datalad.cli.renderer

 	module

 	datalad.clone.url-substitute.github

 	datalad.clone.url-substitute.osf

 	
 datalad.cmd

 	module

 	
 datalad.config

 	module

 	
 datalad.consts

 	module

 	datalad.crawl.cache

 	datalad.credentials.force-ask

 	datalad.credentials.githelper.noninteractive

 	
 datalad.customremotes.archives

 	module

 	
 datalad.customremotes.base

 	module

 	datalad.exc.str.tblimit

 	datalad.extensions.load

 	datalad.externals.nda.dbserver

 	datalad.fake-dates

 	datalad.fake-dates-start

 	datalad.github.token-note

 	datalad.install.inherit-local-origin

 	
 datalad.interface.base

 	module

 	datalad.locations.cache

 	datalad.locations.dataset-procedures

 	datalad.locations.default-dataset

 	datalad.locations.extra-procedures

 	datalad.locations.locks

 	datalad.locations.sockets

 	datalad.locations.system-procedures

 	datalad.locations.user-procedures

 	
 datalad.log

 	module

 	datalad.log.level

 	datalad.log.name

 	datalad.log.names

 	datalad.log.namesre

 	datalad.log.outputs

 	datalad.log.result-level

 	datalad.log.timestamp

 	datalad.log.traceback

 	datalad.repo.backend

 	datalad.repo.direct

 	datalad.repo.version

 	
 datalad.runner.nonasyncrunner

 	module

 	
 datalad.runner.protocol

 	module

 	datalad.runtime.max-annex-jobs

 	datalad.runtime.max-batched

 	datalad.runtime.max-inactive-age

 	datalad.runtime.max-jobs

 	datalad.runtime.pathspec-from-file

 	datalad.runtime.raiseonerror

 	datalad.runtime.report-status

 	datalad.runtime.stalled-external

 	
 	datalad.save.no-message

 	datalad.save.windows-compat-warning

 	datalad.source.epoch

 	datalad.ssh.executable

 	datalad.ssh.identityfile

 	datalad.ssh.multiplex-connections

 	datalad.ssh.try-use-annex-bundled-git

 	
 datalad.support.annexrepo

 	module

 	
 datalad.support.archives

 	module

 	
 datalad.support.extensions

 	module

 	
 datalad.support.gitrepo

 	module

 	datalad.tests.cache

 	datalad.tests.credentials

 	datalad.tests.dataladremote

 	
 datalad.tests.heavyoutput

 	module

 	datalad.tests.knownfailures.probe

 	datalad.tests.knownfailures.skip

 	datalad.tests.nonetwork

 	datalad.tests.nonlo

 	datalad.tests.noteardown

 	datalad.tests.runcmdline

 	datalad.tests.setup.testrepos

 	datalad.tests.ssh

 	datalad.tests.temp.dir

 	datalad.tests.temp.fs

 	datalad.tests.temp.fssize

 	datalad.tests.temp.keep

 	datalad.tests.ui.backend

 	datalad.tests.usecassette

 	
 datalad.tests.utils_pytest

 	module

 	
 datalad.tests.utils_testrepos

 	module

 	datalad.ui.color

 	datalad.ui.progressbar

 	datalad.ui.suppress-similar-results

 	datalad.ui.suppress-similar-results-threshold

 	
 datalad.utils

 	module

 	
 datalad.version

 	module

 	dataset

 	Dataset (class in datalad.api)

 	decode_input() (in module datalad.utils)

 	decompress_file() (in module datalad.support.archives)

 	dedent_docstring() (in module datalad.interface.base)

 	default_backends (datalad.support.annexrepo.AnnexRepo property)

 	DefaultOutputFormatter (class in datalad.cli.renderer)

 	DefaultOutputRenderer (class in datalad.cli.renderer)

 	defaults (datalad.utils.ArgSpecFake attribute)

 	DELETED (datalad.support.gitrepo.PushInfo attribute)

 	describe() (datalad.support.gitrepo.GitRepo method)

 	diff() (datalad.support.gitrepo.GitRepo method)

 	(in module datalad.api)

 	diffstatus() (datalad.support.gitrepo.GitRepo method)

 	dirty (datalad.support.gitrepo.GitRepo property)

 	disable_logger() (in module datalad.utils)

 	dlabspath() (in module datalad.utils)

 	DONE_TOKEN (datalad.support.gitrepo.GitProgress attribute)

 	download_url() (in module datalad.api)

 	drop() (datalad.support.annexrepo.AnnexRepo method)

 	(in module datalad.api)

 	drop_key() (datalad.support.annexrepo.AnnexRepo method)

E

 	
 	enable_remote() (datalad.support.annexrepo.AnnexRepo method)

 	encode_filename() (in module datalad.utils)

 	END (datalad.support.gitrepo.GitProgress attribute)

 	ensure_bool() (in module datalad.utils)

 	ensure_bytes() (in module datalad.utils)

 	ensure_datalad_remote() (in module datalad.customremotes.base)

 	ensure_dict_from_str() (in module datalad.utils)

 	ensure_dir() (in module datalad.utils)

 	ensure_iter() (in module datalad.utils)

 	ensure_list() (in module datalad.utils)

 	ensure_list_from_str() (in module datalad.utils)

 	ensure_result_list() (in module datalad.utils)

 	ensure_stdin_stdout_stderr_closed() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	ensure_stdout_stderr_closed() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	
 	ensure_tuple_or_list() (in module datalad.utils)

 	ensure_unicode() (in module datalad.utils)

 	ensure_write_permission() (in module datalad.utils)

 	ENUMERATING (datalad.support.gitrepo.GitProgress attribute)

 	eq_() (in module datalad.tests.utils_pytest)

 	err (datalad.utils.SwallowOutputsAdapter property)

 	ERROR (datalad.support.gitrepo.FetchInfo attribute)

 	(datalad.support.gitrepo.PushInfo attribute)

 	escape_filename() (in module datalad.utils)

 	eval_results() (in module datalad.interface.base)

 	expandpath() (in module datalad.utils)

 	export_archive() (in module datalad.api)

 	export_archive_ora() (in module datalad.api)

 	export_to_figshare() (in module datalad.api)

 	ExtractedArchive (class in datalad.support.archives)

F

 	
 	fail_with_short_help() (in module datalad.cli.parser)

 	fake_dates_enabled (datalad.support.gitrepo.GitRepo property)

 	FAST_FORWARD (datalad.support.gitrepo.FetchInfo attribute)

 	(datalad.support.gitrepo.PushInfo attribute)

 	fetch() (datalad.support.gitrepo.GitRepo method)

 	fetch_() (datalad.support.gitrepo.GitRepo method)

 	FetchInfo (class in datalad.support.gitrepo)

 	File (class in datalad.utils)

 	file (datalad.support.gitrepo.GitAddOutput attribute)

 	file_basename() (in module datalad.utils)

 	file_has_content() (datalad.support.annexrepo.AnnexRepo method)

 	
 	filter_noninteractive_progress() (in module datalad.log)

 	find() (datalad.support.annexrepo.AnnexRepo method)

 	find_files() (in module datalad.utils)

 	FINDING_SOURCES (datalad.support.gitrepo.GitProgress attribute)

 	FORCED_UPDATE (datalad.support.gitrepo.FetchInfo attribute)

 	(datalad.support.gitrepo.PushInfo attribute)

 	foreach_dataset() (in module datalad.api)

 	format() (datalad.log.ColorFormatter method)

 	format_commit() (datalad.support.gitrepo.GitRepo method)

 	format_element() (datalad.utils.SequenceFormatter method)

 	format_field() (datalad.utils.SequenceFormatter method)

 	fsck() (datalad.support.annexrepo.AnnexRepo method)

G

 	
 	gc() (datalad.support.gitrepo.GitRepo method)

 	gen_URLS() (datalad.customremotes.base.AnnexCustomRemote method)

 	generate_chunks() (in module datalad.utils)

 	generate_file_chunks() (in module datalad.utils)

 	generate_uuids() (in module datalad.customremotes.base)

 	GeneratorAnnexJsonNoStderrProtocol (class in datalad.support.annexrepo)

 	GeneratorAnnexJsonProtocol (class in datalad.support.annexrepo)

 	GeneratorMixIn (class in datalad.runner.protocol)

 	get() (datalad.config.ConfigManager method)

 	(datalad.support.annexrepo.AnnexRepo method)

 	(datalad.support.annexrepo.BatchedAnnexes method)

 	(in module datalad.api)

 	get_active_branch() (datalad.support.gitrepo.GitRepo method)

 	get_allargs_as_kwargs() (in module datalad.interface.base)

 	get_annexed_files() (datalad.support.annexrepo.AnnexRepo method)

 	get_annexstatus() (in module datalad.tests.utils_pytest)

 	get_api_name() (in module datalad.interface.base)

 	get_archive() (datalad.support.archives.ArchivesCache method)

 	get_branch_commits_() (datalad.support.gitrepo.GitRepo method)

 	get_branches() (datalad.support.gitrepo.GitRepo method)

 	get_cmd_doc() (in module datalad.interface.base)

 	get_cmd_summaries() (in module datalad.interface.base)

 	get_commit_date() (datalad.support.gitrepo.GitRepo method)

 	get_content_annexinfo() (datalad.support.annexrepo.AnnexRepo method)

 	get_content_info() (datalad.support.gitrepo.GitRepo method)

 	get_contentlocation() (datalad.customremotes.archives.ArchiveAnnexCustomRemote method)

 	(datalad.support.annexrepo.AnnexRepo method)

 	get_convoluted_situation() (in module datalad.tests.utils_pytest)

 	get_corresponding_branch() (datalad.support.annexrepo.AnnexRepo method)

 	(datalad.support.gitrepo.GitRepo method)

 	get_dataset_root() (in module datalad.utils)

 	get_datasets_topdir() (in module datalad.tests.utils_pytest)

 	get_deeply_nested_structure() (in module datalad.tests.utils_pytest)

 	get_description() (datalad.support.annexrepo.AnnexRepo method)

 	get_encoding_info() (in module datalad.utils)

 	get_envvars_info() (in module datalad.utils)

 	get_extracted_file() (datalad.support.archives.ExtractedArchive method)

 	get_extracted_filename() (datalad.support.archives.ExtractedArchive method)

 	get_extracted_files() (datalad.support.archives.ExtractedArchive method)

 	get_file_annexinfo() (datalad.support.annexrepo.AnnexRepo method)

 	get_file_backend() (datalad.support.annexrepo.AnnexRepo method)

 	get_file_key() (datalad.support.annexrepo.AnnexRepo method)

 	get_file_size() (datalad.support.annexrepo.AnnexRepo method)

 	get_file_url() (datalad.customremotes.archives.ArchiveAnnexCustomRemote method)

 	get_files() (datalad.support.gitrepo.GitRepo method)

 	get_from_source() (datalad.config.ConfigManager method)

 	get_git_attributes() (datalad.support.gitrepo.GitRepo method)

 	get_git_dir() (datalad.support.gitrepo.GitRepo static method)

 	get_git_version() (in module datalad.config)

 	get_gitattributes() (datalad.support.gitrepo.GitRepo method)

 	get_groupwanted() (datalad.support.annexrepo.AnnexRepo method)

 	get_hexsha() (datalad.support.gitrepo.GitRepo method)

 	get_home_envvars() (in module datalad.utils)

 	get_indexed_files() (datalad.support.gitrepo.GitRepo method)

 	get_initialized_logger() (datalad.log.LoggerHelper method)

 	get_interface_groups() (in module datalad.interface.base)

 	
 	get_ipython_shell() (in module datalad.utils)

 	get_key_backend() (datalad.support.annexrepo.AnnexRepo class method)

 	get_last_commit_hexsha() (datalad.support.gitrepo.GitRepo method)

 	get_leading_directory() (datalad.support.archives.ExtractedArchive method)

 	get_linux_distribution() (in module datalad.utils)

 	get_logfilename() (in module datalad.utils)

 	get_merge_base() (datalad.support.gitrepo.GitRepo method)

 	get_metadata() (datalad.support.annexrepo.AnnexRepo method)

 	get_most_obscure_supported_name() (in module datalad.tests.utils_pytest)

 	get_mtimes_and_digests() (in module datalad.tests.utils_pytest)

 	get_one_line() (datalad.cmd.BatchedCommand method)

 	get_open_files() (in module datalad.utils)

 	get_path_prefix() (in module datalad.utils)

 	get_preferred_content() (datalad.support.annexrepo.AnnexRepo method)

 	get_refds_path() (datalad.interface.base.Interface class method)

 	get_remote_branches() (datalad.support.gitrepo.GitRepo method)

 	get_remote_url() (datalad.support.gitrepo.GitRepo method)

 	get_remotes() (datalad.support.annexrepo.AnnexRepo method)

 	(datalad.support.gitrepo.GitRepo method)

 	get_requested_error_output() (datalad.cmd.BatchedCommand method)

 	get_revisions() (datalad.support.gitrepo.GitRepo method)

 	get_sig_param_names() (in module datalad.utils)

 	get_size_from_key() (datalad.support.annexrepo.AnnexRepo static method)

 	get_special_remotes() (datalad.support.annexrepo.AnnexRepo method)

 	get_ssh_port() (in module datalad.tests.utils_pytest)

 	get_staged_paths() (datalad.support.gitrepo.GitRepo method)

 	get_submodules() (datalad.support.gitrepo.GitRepo method)

 	get_submodules_() (datalad.support.gitrepo.GitRepo method)

 	get_suggestions_msg() (in module datalad.utils)

 	get_tags() (datalad.support.gitrepo.GitRepo method)

 	get_tempfile_kwargs() (in module datalad.utils)

 	get_timeout_exception() (datalad.cmd.BatchedCommand method)

 	get_timestamp_suffix() (in module datalad.utils)

 	get_toppath() (datalad.support.gitrepo.GitRepo class method)

 	get_trace() (in module datalad.utils)

 	get_tracking_branch() (datalad.support.annexrepo.AnnexRepo method)

 	(datalad.support.gitrepo.GitRepo method)

 	get_urls() (datalad.support.annexrepo.AnnexRepo method)

 	get_value() (datalad.cli.renderer.DefaultOutputFormatter method)

 	(datalad.config.ConfigManager method)

 	get_wrapped_class() (in module datalad.utils)

 	getargspec() (in module datalad.utils)

 	getavailability() (datalad.customremotes.base.AnnexCustomRemote method)

 	getbool() (datalad.config.ConfigManager method)

 	getcost() (datalad.customremotes.base.AnnexCustomRemote method)

 	getfloat() (datalad.config.ConfigManager method)

 	getint() (datalad.config.ConfigManager method)

 	getpwd() (in module datalad.utils)

 	GIT_ANNEX_MIN_VERSION (datalad.support.annexrepo.AnnexRepo attribute)

 	git_annex_version (datalad.support.annexrepo.AnnexRepo attribute)

 	GIT_MIN_VERSION (datalad.support.gitrepo.GitRepo attribute)

 	git_version (datalad.support.gitrepo.GitRepo attribute)

 	GitAddOutput (class in datalad.support.gitrepo)

 	GitProgress (class in datalad.support.gitrepo)

 	GitRepo (class in datalad.support.gitrepo)

 	guard_for_format() (in module datalad.utils)

H

 	
 	handle (datalad.utils.SwallowLogsAdapter property)

 	handles (datalad.utils.SwallowOutputsAdapter property)

 	has_config() (in module datalad.support.extensions)

 	has_option() (datalad.config.ConfigManager method)

 	
 	has_section() (datalad.config.ConfigManager method)

 	has_symlink_capability() (in module datalad.tests.utils_pytest)

 	HEAD_UPTODATE (datalad.support.gitrepo.FetchInfo attribute)

 	HTTPPath (class in datalad.tests.utils_pytest)

I

 	
 	ignore_nose_capturing_stdout() (in module datalad.tests.utils_pytest)

 	import_module_from_file() (in module datalad.utils)

 	import_modules() (in module datalad.utils)

 	in_() (in module datalad.tests.utils_pytest)

 	info() (datalad.support.annexrepo.AnnexRepo method)

 	init_datalad_remote() (in module datalad.customremotes.base)

 	init_remote() (datalad.support.annexrepo.AnnexRepo method)

 	initremote() (datalad.customremotes.base.AnnexCustomRemote method)

 	InnerSubmodule (class in datalad.tests.utils_testrepos)

 	install() (in module datalad.api)

 	integration() (in module datalad.tests.utils_pytest)

 	Interface (class in datalad.interface.base)

 	is_ancestor() (datalad.support.gitrepo.GitRepo method)

 	is_api_arg() (in module datalad.interface.base)

 	is_available() (datalad.support.annexrepo.AnnexRepo method)

 	is_crippled_fs() (datalad.support.annexrepo.AnnexRepo method)

 	
 	is_direct_mode() (datalad.support.annexrepo.AnnexRepo method)

 	is_explicit_path() (in module datalad.utils)

 	is_extracted (datalad.support.archives.ExtractedArchive property)

 	is_initialized() (datalad.support.annexrepo.AnnexRepo method)

 	is_interactive() (in module datalad.utils)

 	is_managed_branch() (datalad.support.annexrepo.AnnexRepo method)

 	is_remote_annex_ignored() (datalad.support.annexrepo.AnnexRepo method)

 	is_special_annex_remote() (datalad.support.annexrepo.AnnexRepo method)

 	is_stalled() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	is_under_annex() (datalad.support.annexrepo.AnnexRepo method)

 	is_valid_annex() (datalad.support.annexrepo.AnnexRepo method)

 	is_valid_git() (datalad.support.gitrepo.GitRepo method)

 	is_valid_repo() (datalad.support.annexrepo.AnnexRepo class method)

 	(datalad.support.gitrepo.GitRepo class method)

 	is_with_annex() (datalad.support.gitrepo.GitRepo method)

 	items() (datalad.config.ConfigManager method)

J

 	
 	join_cmdline() (in module datalad.utils)

K

 	
 	keys() (datalad.config.ConfigManager method)

 	keywords (datalad.utils.ArgSpecFake attribute)

 	known_failure() (in module datalad.tests.utils_pytest)

 	known_failure_direct_mode() (in module datalad.tests.utils_pytest)

 	
 	known_failure_githubci_osx() (in module datalad.tests.utils_pytest)

 	known_failure_githubci_win() (in module datalad.tests.utils_pytest)

 	known_failure_osx() (in module datalad.tests.utils_pytest)

 	known_failure_windows() (in module datalad.tests.utils_pytest)

 	knows_annex() (in module datalad.utils)

L

 	
 	line_profile() (in module datalad.utils)

 	lines (datalad.utils.SwallowLogsAdapter property)

 	link_file_load() (in module datalad.customremotes.archives)

 	lmtime() (in module datalad.utils)

 	load_interface() (in module datalad.interface.base)

 	
 	localsync() (datalad.support.annexrepo.AnnexRepo method)

 	lock_if_required() (in module datalad.utils)

 	log_message() (datalad.tests.utils_pytest.SilentHTTPHandler method)

 	log_progress() (in module datalad.log)

 	LoggerHelper (class in datalad.log)

M

 	
 	main() (in module datalad.cli.main)

 	(in module datalad.customremotes.archives)

 	make_tempfile() (in module datalad.utils)

 	map_items() (in module datalad.utils)

 	maybe_adjust_repo() (in module datalad.tests.utils_pytest)

 	md5sum() (in module datalad.utils)

 	merge() (datalad.support.gitrepo.GitRepo method)

 	merge_annex() (datalad.support.annexrepo.AnnexRepo method)

 	migrate_backend() (datalad.support.annexrepo.AnnexRepo method)

 	
 module

 	datalad.cli.exec

 	datalad.cli.main

 	datalad.cli.parser

 	datalad.cli.renderer

 	datalad.cmd

 	datalad.config

 	datalad.consts

 	datalad.customremotes.archives

 	datalad.customremotes.base

 	datalad.interface.base

 	datalad.log

 	datalad.runner.nonasyncrunner

 	datalad.runner.protocol

 	datalad.support.annexrepo

 	datalad.support.archives

 	datalad.support.extensions

 	datalad.support.gitrepo

 	datalad.tests.heavyoutput

 	datalad.tests.utils_pytest

 	datalad.tests.utils_testrepos

 	datalad.utils

 	datalad.version

N

 	
 	nadict() (in module datalad.cli.renderer)

 	nagen (class in datalad.cli.renderer)

 	neq_() (in module datalad.tests.utils_pytest)

 	NestedDataset (class in datalad.tests.utils_testrepos)

 	never_fail() (in module datalad.utils)

 	NEW_HEAD (datalad.support.gitrepo.FetchInfo attribute)

 	(datalad.support.gitrepo.PushInfo attribute)

 	NEW_TAG (datalad.support.gitrepo.FetchInfo attribute)

 	(datalad.support.gitrepo.PushInfo attribute)

 	
 	no_annex() (in module datalad.api)

 	NO_MATCH (datalad.support.gitrepo.PushInfo attribute)

 	nok_() (in module datalad.tests.utils_pytest)

 	nok_startswith() (in module datalad.tests.utils_pytest)

 	normalize_path() (in module datalad.support.gitrepo)

 	normalize_paths() (in module datalad.support.gitrepo)

 	not_supported_on_windows() (in module datalad.utils)

 	nothing_cm() (in module datalad.utils)

O

 	
 	obtain() (datalad.config.ConfigManager method)

 	obtain_write_permission() (in module datalad.utils)

 	ok_() (in module datalad.tests.utils_pytest)

 	ok_annex_get() (in module datalad.tests.utils_pytest)

 	ok_archives_caches() (in module datalad.tests.utils_pytest)

 	ok_broken_symlink() (in module datalad.tests.utils_pytest)

 	ok_clean_git() (in module datalad.tests.utils_pytest)

 	ok_endswith() (in module datalad.tests.utils_pytest)

 	ok_exists() (in module datalad.tests.utils_pytest)

 	ok_file_has_content() (in module datalad.tests.utils_pytest)

 	ok_file_under_git() (in module datalad.tests.utils_pytest)

 	
 	ok_generator() (in module datalad.tests.utils_pytest)

 	ok_git_config_not_empty() (in module datalad.tests.utils_pytest)

 	ok_good_symlink() (in module datalad.tests.utils_pytest)

 	ok_startswith() (in module datalad.tests.utils_pytest)

 	ok_symlink() (in module datalad.tests.utils_pytest)

 	on_failure (datalad.interface.base.Interface attribute)

 	OP_MASK (datalad.support.gitrepo.GitProgress attribute)

 	open_r_encdetect() (in module datalad.utils)

 	optional_args() (in module datalad.utils)

 	options() (datalad.config.ConfigManager method)

 	out (datalad.utils.SwallowLogsAdapter property)

 	(datalad.utils.SwallowOutputsAdapter property)

P

 	
 	parse_gitconfig_dump() (in module datalad.config)

 	parser_add_common_opt() (in module datalad.cli.parser)

 	parser_add_common_options() (in module datalad.cli.parser)

 	parser_add_version_opt() (in module datalad.cli.parser)

 	partition() (in module datalad.utils)

 	patch_config() (in module datalad.tests.utils_pytest)

 	path (datalad.support.archives.ArchivesCache property)

 	(datalad.support.archives.ExtractedArchive property)

 	(datalad.tests.utils_testrepos.InnerSubmodule property)

 	(datalad.tests.utils_testrepos.TestRepo property)

 	path_is_subpath() (in module datalad.utils)

 	path_startswith() (in module datalad.utils)

 	pipe_connection_lost() (datalad.cmd.BatchedCommandProtocol method)

 	(datalad.runner.protocol.WitlessProtocol method)

 	pipe_data_received() (datalad.cmd.BatchedCommandProtocol method)

 	(datalad.runner.protocol.WitlessProtocol method)

 	(datalad.support.annexrepo.AnnexInitOutput method)

 	(datalad.support.annexrepo.AnnexJsonProtocol method)

 	(datalad.support.annexrepo.GeneratorAnnexJsonNoStderrProtocol method)

 	(datalad.support.gitrepo.GitProgress method)

 	populate() (datalad.tests.utils_testrepos.BasicAnnexTestRepo method)

 	(datalad.tests.utils_testrepos.BasicGitTestRepo method)

 	(datalad.tests.utils_testrepos.NestedDataset method)

 	(datalad.tests.utils_testrepos.SubmoduleDataset method)

 	(datalad.tests.utils_testrepos.TestRepo method)

 	posix_relpath() (in module datalad.utils)

 	
 	precommit() (datalad.support.annexrepo.AnnexRepo method)

 	(datalad.support.gitrepo.GitRepo method)

 	prepare() (datalad.customremotes.base.AnnexCustomRemote method)

 	probe_known_failure() (in module datalad.tests.utils_pytest)

 	proc1() (datalad.cmd.BatchedCommand method)

 	proc_err (datalad.runner.protocol.WitlessProtocol attribute)

 	(datalad.support.annexrepo.AnnexInitOutput attribute)

 	(datalad.support.annexrepo.AnnexJsonProtocol attribute)

 	(datalad.support.gitrepo.GitProgress attribute)

 	proc_out (datalad.runner.protocol.WitlessProtocol attribute)

 	(datalad.support.annexrepo.AnnexInitOutput attribute)

 	(datalad.support.annexrepo.AnnexJsonProtocol attribute)

 	(datalad.support.gitrepo.StdOutCaptureWithGitProgress attribute)

 	process_exited() (datalad.runner.protocol.WitlessProtocol method)

 	(datalad.support.annexrepo.AnnexJsonProtocol method)

 	(datalad.support.annexrepo.GeneratorAnnexJsonNoStderrProtocol method)

 	(datalad.support.gitrepo.GitProgress method)

 	process_loop() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	process_queue() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	process_request() (datalad.cmd.BatchedCommand method)

 	process_running() (datalad.cmd.BatchedCommand method)

 	process_timeouts() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	push() (datalad.support.gitrepo.GitRepo method)

 	(in module datalad.api)

 	push_() (datalad.support.gitrepo.GitRepo method)

 	PushInfo (class in datalad.support.gitrepo)

 	put_file_under_git() (in module datalad.tests.utils_pytest)

Q

 	
 	quote_cmdlinearg() (in module datalad.utils)

 	
 	quote_config() (in module datalad.config)

R

 	
 	re_op_absolute (datalad.support.gitrepo.GitProgress attribute)

 	re_op_relative (datalad.support.gitrepo.GitProgress attribute)

 	read_csv_lines() (in module datalad.utils)

 	read_file() (in module datalad.utils)

 	readline() (datalad.cmd.ReadlineEmulator method)

 	readline_json() (in module datalad.support.annexrepo)

 	readline_rstripped() (in module datalad.cmd)

 	ReadlineEmulator (class in datalad.cmd)

 	readlines_until_ok_or_failed() (in module datalad.support.annexrepo)

 	RECEIVING (datalad.support.gitrepo.GitProgress attribute)

 	register_config() (in module datalad.support.extensions)

 	REJECTED (datalad.support.gitrepo.FetchInfo attribute)

 	(datalad.support.gitrepo.PushInfo attribute)

 	reload() (datalad.config.ConfigManager method)

 	REMOTE_FAILURE (datalad.support.gitrepo.PushInfo attribute)

 	REMOTE_REJECTED (datalad.support.gitrepo.PushInfo attribute)

 	remove() (datalad.customremotes.archives.ArchiveAnnexCustomRemote method)

 	(datalad.customremotes.base.AnnexCustomRemote method)

 	(datalad.support.gitrepo.GitRepo method)

 	(in module datalad.api)

 	remove_branch() (datalad.support.gitrepo.GitRepo method)

 	remove_file_number() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	remove_process() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	remove_remote() (datalad.support.gitrepo.GitRepo method)

 	
 	remove_section() (datalad.config.ConfigManager method)

 	rename_section() (datalad.config.ConfigManager method)

 	REPO_CLASS (datalad.tests.utils_testrepos.BasicAnnexTestRepo attribute)

 	(datalad.tests.utils_testrepos.BasicGitTestRepo attribute)

 	(datalad.tests.utils_testrepos.TestRepo attribute)

 	repo_info() (datalad.support.annexrepo.AnnexRepo method)

 	repository_versions (datalad.support.annexrepo.AnnexRepo attribute)

 	rerun() (in module datalad.api)

 	RESOLVING (datalad.support.gitrepo.GitProgress attribute)

 	result_filter (datalad.interface.base.Interface attribute)

 	result_renderer (datalad.interface.base.Interface attribute)

 	result_xfm (datalad.interface.base.Interface attribute)

 	return_type (datalad.interface.base.Interface attribute)

 	rewrite_url() (datalad.config.ConfigManager method)

 	(in module datalad.config)

 	rm_url() (datalad.support.annexrepo.AnnexRepo method)

 	rmdir() (in module datalad.utils)

 	rmtemp() (in module datalad.utils)

 	rmtree() (in module datalad.utils)

 	rotree() (in module datalad.utils)

 	run() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	(in module datalad.api)

 	run_command() (in module datalad.runner.nonasyncrunner)

 	run_procedure() (in module datalad.api)

 	run_under_dir() (in module datalad.tests.utils_pytest)

S

 	
 	SafeDelCloseMixin (class in datalad.cmd)

 	save() (datalad.support.gitrepo.GitRepo method)

 	(in module datalad.api)

 	save_() (datalad.support.gitrepo.GitRepo method)

 	saved_generator() (in module datalad.utils)

 	sections() (datalad.config.ConfigManager method)

 	send_result() (datalad.runner.protocol.GeneratorMixIn method)

 	SequenceFormatter (class in datalad.utils)

 	serve_path_via_http() (in module datalad.tests.utils_pytest)

 	set() (datalad.config.ConfigManager method)

 	set_annex_version() (in module datalad.tests.utils_pytest)

 	set_date() (in module datalad.tests.utils_pytest)

 	set_default_backend() (datalad.support.annexrepo.AnnexRepo method)

 	set_gitattributes() (datalad.support.gitrepo.GitRepo method)

 	set_groupwanted() (datalad.support.annexrepo.AnnexRepo method)

 	set_level() (datalad.log.LoggerHelper method)

 	set_metadata() (datalad.support.annexrepo.AnnexRepo method)

 	set_metadata_() (datalad.support.annexrepo.AnnexRepo method)

 	set_preferred_content() (datalad.support.annexrepo.AnnexRepo method)

 	set_remote_dead() (datalad.support.annexrepo.AnnexRepo method)

 	set_remote_url() (datalad.support.annexrepo.AnnexRepo method)

 	(datalad.support.gitrepo.GitRepo method)

 	setup_parser() (in module datalad.cli.parser)

 	setup_parser_for_interface() (in module datalad.cli.parser)

 	setup_parserarg_for_interface() (in module datalad.cli.parser)

 	shell_completion() (in module datalad.api)

 	shortened_repr() (in module datalad.utils)

 	should_continue() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	sibling

 	siblings() (in module datalad.api)

 	SilentHTTPHandler (class in datalad.tests.utils_pytest)

 	single_subparser_possible() (in module datalad.cli.parser)

 	skip_if() (in module datalad.tests.utils_pytest)

 	skip_if_adjusted_branch() (in module datalad.tests.utils_pytest)

 	skip_if_no_module() (in module datalad.tests.utils_pytest)

 	
 	skip_if_no_network() (in module datalad.tests.utils_pytest)

 	skip_if_on_windows() (in module datalad.tests.utils_pytest)

 	skip_if_root() (in module datalad.tests.utils_pytest)

 	skip_if_scrapy_without_selector() (in module datalad.tests.utils_pytest)

 	skip_if_url_is_not_available() (in module datalad.tests.utils_pytest)

 	skip_known_failure() (in module datalad.tests.utils_pytest)

 	skip_nomultiplex_ssh() (in module datalad.tests.utils_pytest)

 	skip_ssh() (in module datalad.tests.utils_pytest)

 	skip_wo_symlink_capability() (in module datalad.tests.utils_pytest)

 	slash_join() (in module datalad.utils)

 	slow() (in module datalad.tests.utils_pytest)

 	split_cmdline() (in module datalad.utils)

 	sshrun() (in module datalad.api)

 	STAGE_MASK (datalad.support.gitrepo.GitProgress attribute)

 	stamp_path (datalad.support.archives.ExtractedArchive property)

 	STAMP_SUFFIX (datalad.support.archives.ExtractedArchive attribute)

 	start() (datalad.tests.utils_pytest.HTTPPath method)

 	status() (datalad.support.gitrepo.GitRepo method)

 	(in module datalad.api)

 	StdOutCaptureWithGitProgress (class in datalad.support.gitrepo)

 	stop() (datalad.customremotes.archives.ArchiveAnnexCustomRemote method)

 	(datalad.tests.utils_pytest.HTTPPath method)

 	subdataset

 	subdatasets() (in module datalad.api)

 	SubmoduleDataset (class in datalad.tests.utils_testrepos)

 	success (datalad.support.gitrepo.GitAddOutput attribute)

 	superdataset

 	SUPPORTED_SCHEMES (datalad.customremotes.archives.ArchiveAnnexCustomRemote attribute)

 	supports_direct_mode (datalad.support.annexrepo.AnnexRepo attribute)

 	supports_unlocked_pointers (datalad.support.annexrepo.AnnexRepo property)

 	swallow_logs() (in module datalad.utils)

 	swallow_outputs() (in module datalad.utils)

 	SwallowLogsAdapter (class in datalad.utils)

 	SwallowOutputsAdapter (class in datalad.utils)

 	sync() (datalad.support.annexrepo.AnnexRepo method)

T

 	
 	tag() (datalad.support.gitrepo.GitRepo method)

 	TAG_UPDATE (datalad.support.gitrepo.FetchInfo attribute)

 	TestRepo (class in datalad.tests.utils_testrepos)

 	ThreadedRunner (class in datalad.runner.nonasyncrunner)

 	timeout() (datalad.cmd.BatchedCommandProtocol method)

 	(datalad.runner.protocol.WitlessProtocol method)

 	timeout_resolution (datalad.runner.nonasyncrunner.ThreadedRunner attribute)

 	to_options() (in module datalad.support.gitrepo)

 	
 	todo_interface_for_extensions() (in module datalad.utils)

 	TOKEN_SEPARATOR (datalad.support.gitrepo.GitProgress attribute)

 	transfer_retrieve() (datalad.customremotes.archives.ArchiveAnnexCustomRemote method)

 	transfer_store() (datalad.customremotes.base.AnnexCustomRemote method)

 	try_multiple() (in module datalad.utils)

 	try_multiple_dec() (in module datalad.utils)

 	try_suggest_extension_with_command() (in module datalad.cli.parser)

 	turtle() (in module datalad.tests.utils_pytest)

U

 	
 	unannex() (datalad.support.annexrepo.AnnexRepo method)

 	unique() (in module datalad.utils)

 	unlink() (in module datalad.utils)

 	unlock() (datalad.support.annexrepo.AnnexRepo method)

 	(in module datalad.api)

 	unset() (datalad.config.ConfigManager method)

 	untracked_files (datalad.support.gitrepo.GitRepo property)

 	UP_TO_DATE (datalad.support.gitrepo.PushInfo attribute)

 	update() (in module datalad.api)

 	update_docstring_with_examples() (in module datalad.interface.base)

 	
 	update_docstring_with_parameters() (in module datalad.interface.base)

 	update_ref() (datalad.support.gitrepo.GitRepo method)

 	update_remote() (datalad.support.gitrepo.GitRepo method)

 	updated() (in module datalad.utils)

 	url (datalad.tests.utils_testrepos.InnerSubmodule property)

 	(datalad.tests.utils_testrepos.TestRepo property)

 	URL_PREFIX (datalad.customremotes.archives.ArchiveAnnexCustomRemote attribute)

 	URL_SCHEME (datalad.customremotes.archives.ArchiveAnnexCustomRemote attribute)

 	usecase() (in module datalad.tests.utils_pytest)

 	uuid (datalad.support.annexrepo.AnnexRepo property)

V

 	
 	varargs (datalad.utils.ArgSpecFake attribute)

W

 	
 	wait_for_threads() (datalad.runner.nonasyncrunner.ThreadedRunner method)

 	warn_on_undefined_git_identity() (in module datalad.config)

 	WEB_UUID (datalad.support.annexrepo.AnnexRepo attribute)

 	whereis() (datalad.customremotes.archives.ArchiveAnnexCustomRemote method)

 	(datalad.support.annexrepo.AnnexRepo method)

 	with_fake_cookies_db() (in module datalad.tests.utils_pytest)

 	with_memory_keyring() (in module datalad.tests.utils_pytest)

 	with_pathsep() (in module datalad.utils)

 	with_progress() (in module datalad.log)

 	
 	with_result_progress() (in module datalad.log)

 	with_sameas_remote() (in module datalad.tests.utils_pytest)

 	with_tempfile() (in module datalad.tests.utils_pytest)

 	with_testsui() (in module datalad.tests.utils_pytest)

 	with_tree() (in module datalad.tests.utils_pytest)

 	without_http_proxy() (in module datalad.tests.utils_pytest)

 	WitlessProtocol (class in datalad.runner.protocol)

 	write_config_section() (in module datalad.config)

 	WRITING (datalad.support.gitrepo.GitProgress attribute)

 	wtf() (in module datalad.api)

 nav.xhtml

 Table of Contents

 		
 DataLad — data management and publication multitool

 		
 Change log

 		
 1.1.3 (2024-08-08)

 		
 Tests

 		
 1.1.2 (2024-07-25)

 		
 Bug Fixes

 		
 1.1.1 (2024-07-03)

 		
 Bug Fixes

 		
 Documentation

 		
 Internal

 		
 Tests

 		
 1.1.0 (2024-06-06)

 		
 Dependencies

 		
 Internal

 		
 1.0.3 (2024-06-06)

 		
 Bug Fixes

 		
 Internal

 		
 Tests

 		
 1.0.2 (2024-04-19)

 		
 Tests

 		
 1.0.1 (2024-04-17)

 		
 Internal

 		
 1.0.0 (2024-04-06)

 		
 Breaking Changes

 		
 Enhancements and New Features

 		
 0.19.6 (2024-02-02)

 		
 Enhancements and New Features

 		
 Internal

 		
 0.19.5 (2023-12-28)

 		
 Tests

 		
 0.19.4 (2023-12-13)

 		
 Bug Fixes

 		
 Documentation

 		
 Internal

 		
 Tests

 		
 0.19.3 (2023-08-10)

 		
 Bug Fixes

 		
 Documentation

 		
 Internal

 		
 Tests

 		
 0.19.2 (2023-07-03)

 		
 Bug Fixes

 		
 Documentation

 		
 0.19.1 (2023-06-26)

 		
 Internal

 		
 Tests

 		
 0.19.0 (2023-06-14)

 		
 Enhancements and New Features

 		
 Bug Fixes

 		
 Dependencies

 		
 Documentation

 		
 Tests

 		
 0.18.5 (2023-06-13)

 		
 Bug Fixes

 		
 Documentation

 		
 Internal

 		
 Tests

 		
 0.18.4 (2023-05-16)

 		
 Bug Fixes

 		
 Documentation

 		
 Internal

 		
 Tests

 		
 0.18.3 (2023-03-25)

 		
 Bug Fixes

 		
 Documentation

 		
 Internal

 		
 Tests

 		
 0.18.2 (2023-02-27)

 		
 Bug Fixes

 		
 Dependencies

 		
 Internal

 		
 Tests

 		
 0.18.1 (2023-01-16)

 		
 Bug Fixes

 		
 Documentation

 		
 Performance

 		
 0.18.0 (2022-12-31)

 		
 Breaking Changes

 		
 Enhancements and New Features

 		
 Bug Fixes

 		
 Documentation

 		
 Internal

 		
 Performance

 		
 Tests

 		
 0.17.10 (2022-12-14)

 		
 Enhancements and New Features

 		
 Bug Fixes

 		
 Documentation

 		
 Internal

 		
 Tests

 		
 0.17.9 (2022-11-07)

 		
 Bug Fixes

 		
 Dependencies

 		
 Internal

 		
 Tests

 		
 0.17.8 (2022-10-24)

 		
 Bug Fixes

 		
 0.17.7 (2022-10-14)

 		
 Bug Fixes

 		
 Internal

 		
 Tests

 		
 0.17.6 (2022-09-21)

 		
 Bug Fixes

 		
 Internal

 		
 Tests

 		
 0.17.5 (Fri Sep 02 2022)

 		
 Bug Fix

 		
 Authors: 3

 		
 0.17.4 (Tue Aug 30 2022)

 		
 Bug Fix

 		
 Tests

 		
 Authors: 3

 		
 0.17.3 (Tue Aug 23 2022)

 		
 Bug Fix

 		
 Pushed to maint

 		
 Tests

 		
 Authors: 5

 		
 0.17.2 (Sat Jul 16 2022)

 		
 Bug Fix

 		
 Authors: 3

 		
 0.17.1 (Mon Jul 11 2022)

 		
 Bug Fix

 		
 Authors: 3

 		
 0.17.0 (Thu Jul 7 2022) – pytest migration

 		
 Enhancements and new features

 		
 Deprecations and removals

 		
 Bug Fixes

 		
 Documentation

 		
 Internal

 		
 Authors: 7

 		
 0.16.7 (Wed Jul 06 2022)

 		
 Bug Fix

 		
 Pushed to maint

 		
 Authors: 5

 		
 0.16.6 (Tue Jun 14 2022)

 		
 Bug Fix

 		
 Authors: 2

 		
 0.16.5 (Wed Jun 08 2022)

 		
 Bug Fix

 		
 Authors: 1

 		
 0.16.4 (Thu Jun 02 2022)

 		
 Bug Fix

 		
 Authors: 3

 		
 0.16.3 (Thu May 12 2022)

 		
 Bug Fix

 		
 Authors: 4

 		
 0.16.2 (Thu Apr 21 2022)

 		
 Bug Fix

 		
 Pushed to maint

 		
 Authors: 5

 		
 0.16.1 (Fr Apr 8 2022) – April Fools’ Release

 		
 0.16.0 (Fr Apr 8 2022) – Spring cleaning!

 		
 Enhancements and new features

 		
 Deprecations and removals

 		
 Bug Fixes

 		
 Documentation

 		
 Internal

 		
 Tests

 		
 Infra

 		
 Authors: 11

 		
 0.15.6 (Sun Feb 27 2022)

 		
 Bug Fix

 		
 Authors: 1

 		
 0.15.5 (Wed Feb 09 2022)

 		
 Enhancement

 		
 Bug Fix

 		
 Authors: 5

 		
 0.15.4 (Thu Dec 16 2021)

 		
 Bug Fix

 		
 Tests

 		
 Authors: 6

 		
 0.15.3 (Sat Oct 30 2021)

 		
 Bug Fix

 		
 Pushed to maint

 		
 Internal

 		
 Documentation

 		
 Tests

 		
 Authors: 7

 		
 0.15.2 (Wed Oct 06 2021)

 		
 Bug Fix

 		
 Tests

 		
 Authors: 5

 		
 0.15.1 (Fri Sep 24 2021)

 		
 Bug Fix

 		
 Pushed to maint

 		
 Internal

 		
 Documentation

 		
 Tests

 		
 Authors: 3

 		
 0.15.0 (Tue Sep 14 2021) – We miss you Kyle!

 		
 Enhancements and new features

 		
 Fixes

 		
 Tests

 		
 0.14.8 (Sun Sep 12 2021)

 		
 Bug Fix

 		
 Pushed to maint

 		
 Internal

 		
 Tests

 		
 Authors: 4

 		
 0.14.7 (Tue Aug 03 2021)

 		
 Bug Fix

 		
 Internal

 		
 Tests

 		
 Authors: 4

 		
 0.14.6 (Sun Jun 27 2021)

 		
 Internal

 		
 Authors: 2

 		
 0.14.5 (Mon Jun 21 2021)

 		
 Bug Fix

 		
 Pushed to maint

 		
 Internal

 		
 Tests

 		
 Authors: 4

 		
 0.14.4 (May 10, 2021) – .

 		
 Fixes

 		
 0.14.3 (April 28, 2021) – .

 		
 Fixes

 		
 Enhancements and new features

 		
 0.14.2 (April 14, 2021) – .

 		
 Fixes

 		
 0.14.1 (April 01, 2021) – .

 		
 Fixes

 		
 Enhancements and new features

 		
 0.14.0 (February 02, 2021) – .

 		
 Major refactoring and deprecations

 		
 Fixes

 		
 Enhancements and new features

 		
 0.13.7 (January 04, 2021) – .

 		
 Fixes

 		
 Enhancements and new features

 		
 0.13.6 (December 14, 2020) – .

 		
 Fixes

 		
 Enhancements and new features

 		
 0.13.5 (October 30, 2020) – .

 		
 Fixes

 		
 Enhancements and new features

 		
 0.13.4 (October 6, 2020) – .

 		
 Fixes

 		
 Enhancements and new features

 		
 0.13.3 (August 28, 2020) – .

 		
 Fixes

 		
 Enhancements and new features

 		
 0.13.2 (August 10, 2020) – .

 		
 Deprecations

 		
 Fixes

 		
 Enhancements

 		
 0.13.1 (July 17, 2020) – .

 		
 Fixes

 		
 Enhancements and new features

 		
 0.13.0 (June 23, 2020) – .

 		
 Major refactoring and deprecations

 		
 Fixes

 		
 Enhancements and new features

 		
 0.12.7 (May 22, 2020) – .

 		
 Fixes

 		
 Enhancements and new features

 		
 0.12.6 (April 23, 2020) – .

 		
 Major refactoring and deprecations

 		
 Fixes

 		
 Enhancements and new features

 		
 0.12.5 (Apr 02, 2020) – a small step for datalad …

 		
 Fixes

 		
 0.12.4 (Mar 19, 2020) – Windows?!

 		
 Fixes

 		
 0.12.3 (March 16, 2020) – .

 		
 Major refactoring and deprecations

 		
 Fixes

 		
 Enhancements and new features

 		
 0.12.2 (Jan 28, 2020) – Smoothen the ride

 		
 Major refactoring and deprecations

 		
 Fixes

 		
 Enhancements and new features

 		
 0.12.1 (Jan 15, 2020) – Small bump after big bang

 		
 Fixes

 		
 0.12.0 (Jan 11, 2020) – Krakatoa

 		
 Major changes 0.12 vs 0.11

 		
 Major refactoring and deprecations since 0.12.0rc6

 		
 Fixes since 0.12.0rc6

 		
 Enhancements and new features since 0.12.0rc6

 		
 0.12.0rc6 (Oct 19, 2019) – some releases are better than the others

 		
 Major refactoring and deprecations

 		
 Fixes

 		
 Enhancements and new features

 		
 0.12.0rc5 (September 04, 2019) – .

 		
 Major refactoring and deprecations

 		
 Fixes

 		
 Enhancements and new features

 		
 0.12.0rc4 (May 15, 2019) – the revolution is over

 		
 Major refactoring and deprecations

 		
 Fixes

 		
 Enhancements and new features

 		
 0.12.0rc3 (May 07, 2019) – the revolution continues

 		
 Major refactoring and deprecations

 		
 Fixes

 		
 Enhancements and new features

 		
 0.12.0rc2 (Mar 18, 2019) – revolution!

 		
 Fixes

 		
 Enhancements and new features

 		
 0.12.0rc1 (Mar 03, 2019) – to boldly go …

 		
 Major refactoring and deprecations

 		
 Enhancements and new features

 		
 0.11.8 (Oct 11, 2019) – annex-we-are-catching-up

 		
 Fixes

 		
 Enhancements and new features

 		
 0.11.7 (Sep 06, 2019) – python2-we-still-love-you-but-…

 		
 Fixes

 		
 Enhancements and new features

 		
 0.11.6 (Jul 30, 2019) – am I the last of 0.11.x?

 		
 Fixes

 		
 Enhancements and new features

 		
 0.11.5 (May 23, 2019) – stability is not overrated

 		
 Fixes

 		
 Enhancements and new features

 		
 0.11.4 (Mar 18, 2019) – get-ready

 		
 Important

 		
 Fixes

 		
 Enhancements and new features

 		
 0.11.3 (Feb 19, 2019) – read-me-gently

 		
 Fixes

 		
 Enhancements and new features

 		
 0.11.2 (Feb 07, 2019) – live-long-and-prosper

 		
 Major refactoring and deprecations

 		
 Fixes

 		
 Enhancements and new features

 		
 0.11.1 (Nov 26, 2018) – v7-better-than-v6

 		
 Fixes

 		
 Enhancements and new features

 		
 0.11.0 (Oct 23, 2018) – Soon-to-be-perfect

 		
 Major refactoring and deprecations

 		
 Minor refactoring

 		
 Fixes

 		
 Enhancements and new features

 		
 0.10.3.1 (Sep 13, 2018) – Nothing-is-perfect

 		
 0.10.3 (Sep 13, 2018) – Almost-perfect

 		
 Fixes

 		
 Enhancements and new features

 		
 0.10.2 (Jul 09, 2018) – Thesecuriestever

 		
 Fixes

 		
 Enhancements and new features

 		
 0.10.1 (Jun 17, 2018) – OHBM polish

 		
 Fixes

 		
 0.10.0 (Jun 09, 2018) – The Release

 		
 Major refactoring and deprecations

 		
 Fixes

 		
 Enhancements and new features

 		
 0.9.3 (Mar 16, 2018) – pi+0.02 release

 		
 Fixes

 		
 Enhancements and new features

 		
 0.9.2 (Mar 04, 2018) – it is (again) better than ever

 		
 Fixes

 		
 Enhancements and new features

 		
 0.9.1 (Oct 01, 2017) – “DATALAD!”(JBTM)

 		
 Fixes

 		
 0.9.0 (Sep 19, 2017) – isn’t it a lucky day even though not a Friday?

 		
 Major refactoring and deprecations

 		
 Fixes

 		
 Enhancements and new features

 		
 0.8.1 (Aug 13, 2017) – the best birthday gift

 		
 Fixes

 		
 Enhancements and new features

 		
 0.8.0 (Jul 31, 2017) – it is better than ever

 		
 Fixes

 		
 Enhancements and new features

 		
 0.7.0 (Jun 25, 2017) – when it works - it is quite awesome!

 		
 Major refactoring and deprecations

 		
 Enhancements and new features

 		
 Fixes

 		
 0.6.0 (Jun 14, 2017) – German perfectionism

 		
 Major refactoring and deprecations

 		
 Fixes

 		
 Enhancements and new features

 		
 0.5.1 (Mar 25, 2017) – cannot stop the progress

 		
 Fixes

 		
 Enhancements and new features

 		
 0.5.0 (Mar 20, 2017) – it’s huge

 		
 Most notable changes

 		
 Fixes

 		
 Enhancements and new features

 		
 Internal refactoring

 		
 0.4.1 (Nov 10, 2016) – CA release

 		
 Fixes

 		
 Enhancements and new features

 		
 0.4 (Oct 22, 2016) – Paris is waiting

 		
 Fixes

 		
 Enhancements and new features

 		
 0.3.1 (Oct 1, 2016) – what a wonderful week

 		
 Fixes

 		
 Enhancements and new features

 		
 0.3 (Sep 23, 2016) – winter is coming

 		
 0.2.3 (Jun 28, 2016) – busy OHBM

 		
 0.2.2 (Jun 20, 2016) – OHBM we are coming!

 		
 0.2.1 (Jun 10, 2016)

 		
 0.2 (May 20, 2016)

 		
 0.1 (Oct 14, 2015)

 		
 Acknowledgments

 		
 Publications

 		
 Background and motivation

 		
 Vision

 		
 Technological foundation: git-annex

 		
 Objective

 		
 Delineation from related solutions

 		
 Data catalogs

 		
 Data delivery/management middleware

 		
 Git/Git-annex/DataLad

 		
 Basic principles

 		
 Datasets

 		
 Types of IDs used in datasets

 		
 Dataset nesting

 		
 Dataset collections

 		
 Basic command line usage

 		
 API principles

 		
 Downloading DataLad’s default superdataset

 		
 Downloading datasets via http

 		
 Downloading datasets via ssh

 		
 Commands install vs get

 		
 Credentials

 		
 Integration with Git

 		
 Let Git query DataLad

 		
 Let DataLad query Git

 		
 Customization and extension of functionality

 		
 Using an extension

 		
 Writing your own extensions

 		
 Design

 		
 Command line interface

 		
 Basic workflow of a command line based command execution

 		
 Command parser construction by Interface inspection

 		
 CLI-based execution of Interface command

 		
 Provenance capture

 		
 The provenance record

 		
 Declaration of inputs and outputs

 		
 Placeholders in commands and IO specifications

 		
 Result records emitted by run

 		
 Implementation details

 		
 Application-type vs. library-type usage

 		
 Library-mode implications

 		
 File URL handling

 		
 Extensible protocol and authentication support

 		
 Indexing and access of archive content

 		
 Result records

 		
 Mandatory fields

 		
 Common optional fields

 		
 Additional fields observed “in the wild”

 		
 dataset argument

 		
 Impact on relative path resolution

 		
 Special values

 		
 Use cases

 		
 Log levels

 		
 Common principles

 		
 Use cases

 		
 Drop dataset components

 		
 Use cases

 		
 Python import statements

 		
 Examples

 		
 Miscellaneous patterns

 		
 Generator methods in Repo classes

 		
 Calls to Git commands

 		
 Command examples

 		
 Exception handling

 		
 Catching exceptions

 		
 Messaging about an exception

 		
 Credential management

 		
 Credentials

 		
 Providers

 		
 Integration with Git

 		
 Authenticators

 		
 URL substitution

 		
 Examples

 		
 Threaded runner

 		
 Threads

 		
 Protocols

 		
 Object and Generator Results

 		
 BatchedCommand and BatchedAnnex

 		
 Batched Command

 		
 BatchedAnnex

 		
 Standard parameters

 		
 Positional vs Keyword parameters

 		
 Motivation

 		
 Interfaces

 		
 Regular functions and methods

 		
 Docstrings

 		
 Formatting overview and guidelines

 		
 Progress reporting

 		
 Design and implementation

 		
 Reporting progress with log_progress()

 		
 Reporting progress with with_(result_)progress()

 		
 Output non-progress information without interfering with progress bars

 		
 GitHub Action

 		
 Example Usage

 		
 Options

 		
 Continuous integration and testing

 		
 Running tests

 		
 Writing tests

 		
 Migrating tests from nose to pytest

 		
 User messaging: result records vs exceptions vs logging

 		
 Motivation

 		
 Specification

 		
 Examples

 		
 Glossary

 		
 Command line reference

 		
 Main command

 		
 datalad: Main command entrypoint

 		
 Core commands

 		
 Local operation

 		
 Distributed operation

 		
 Extended set of functionality

 		
 Dataset operations

 		
 Dataset siblings and 3rd-party platform support

 		
 Reproducible execution

 		
 Helpers and support utilities

 		
 Deprecated commands

 		
 Python module reference

 		
 High-level user interface

 		
 Dataset operations

 		
 Reproducible execution

 		
 Plumbing commands

 		
 Miscellaneous commands

 		
 Support functionality

 		
 datalad.cmd

 		
 datalad.consts

 		
 datalad.log

 		
 datalad.utils

 		
 datalad.version

 		
 datalad.support.gitrepo

 		
 datalad.support.annexrepo

 		
 datalad.support.archives

 		
 datalad.support.extensions

 		
 datalad.customremotes.base

 		
 datalad.customremotes.archives

 		
 datalad.runner.nonasyncrunner

 		
 datalad.runner.protocol

 		
 Configuration management

 		
 datalad.config

 		
 Test infrastructure

 		
 datalad.tests.utils_pytest

 		
 datalad.tests.utils_testrepos

 		
 datalad.tests.heavyoutput

 		
 Command interface

 		
 datalad.interface.base

 		
 Command line interface infrastructure

 		
 datalad.cli.exec

 		
 datalad.cli.main

 		
 datalad.cli.parser

 		
 datalad.cli.renderer

 		
 Configuration

 		
 Global user configuration

 		
 Local repository configuration

 		
 Sticky dataset configuration

 		
 Miscellaneous configuration

_static/datalad_logo.png

_static/minus.png

_static/plus.png

_static/file.png

