datalad rawler Documentation
Release 0.1.0

DatalLad team

May 17, 2018

Contents

1 Change log

2 Acknowledgments

3 DataLad Crawler 101

4 Demo

5 Command line reference
6 Python API

7 Indices and tables

Python Module Index

11

13

17

19

CHAPTER 1

Change log

[\ S 1 _ |
[T O A I R 2 B /A A
T e e e o I e (—1 1
7 NN N N N
Crawler

This is a high level and scarce summary of the changes between releases. We would recommend to consult log of the
DatalLad git repository for more details.

1.1 0.1 (May 11, 2018) — The Release

* First release as a DatalLad extension. Functionality remains identical to DatalL.ad 0.10.0.rc2

http://github.com/datalad/datalad-crawler

datalad.rawler Documentation, Release0.1.0

2 Chapter 1. Change log

CHAPTER 2

Acknowledgments

DatalLad development is being performed as part of a US-German collaboration in computational neuroscience (CR-
CNS) project “DataGit: converging catalogues, warehouses, and deployment logistics into a federated ‘data distribu-
tion”” (Halchenko/Hanke), co-funded by the US National Science Foundation (NSF 1429999) and the German Federal
Ministry of Education and Research (BMBF 01GQ1411). Additional support is provided by the German federal state
of Saxony-Anhalt and the European Regional Development Fund (ERDF), Project: Center for Behavioral Brain Sci-
ences, Imaging Platform

Datal_ad is built atop the git-annex software that is being developed and maintained by Joey Hess.

http://haxbylab.dartmouth.edu/ppl/yarik.html
http://www.psychoinformatics.de
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1429999
http://www.gesundheitsforschung-bmbf.de/de/2550.php
http://cbbs.eu/en/
http://cbbs.eu/en/
http://git-annex.branchable.com
https://joeyh.name

datalad.rawler Documentation, Release0.1.0

4 Chapter 2. Acknowledgments

CHAPTER 3

DatalLad Crawler 101

3.1 Nodes

A node in a pipeline is just a callable (function of a method of a class) which takes a dictionary, and yields a dictionary
any number of times. The simplest node could look like

>>> def addl_node (data, field='input'):

data_ = data.copy ()
data_['input'] += 1
yield data_

which creates a simple node, intended to increment an arbitrary (specified by field keyword argument) field in the
input dictionary and yields a modified dictionary as its output once.

>>> next (addl_node ({'input': 1}))
{"input': 2}

Nodes are generators which yield a dictionary zero, one, or multiple times and yield a dictionary. For more on
generators, reference the Python documentation on Generators.

Note: Nodes should not have side-effects, i.e. they should not modify input data, but yield a shallow copy if any of
the field values need to be added, removed, or modified. To help with creation of a new shallow copy with some fields
adjusted, use updated ().

3.2 Pipelines

A pipeline is a series of generators ordered into a list. Each generator takes the output of its predecessor as its own
input. The first node in the pipeline would need to be provided with specific input. The simplest pipeline could look
like

https://docs.python.org/2/tutorial/classes.html#generators

datalad.rawler Documentation, Release0.1.0

>>> from datalad.crawler.nodes.crawl_url import crawl_url
>>> from datalad.crawler.nodes.matches import a_href_match
>>> from datalad.crawler.nodes.annex import Annexificator
>>> annex = Annexificator (allow_dirty=True) # so we could demo right within
>>> pipeline = \
[
crawl_url ('http://map.org/datasets'),
a_href_match(".x\.mat"),
annex

]

in which the first node (method of a class) is provided with input and crawls a website. a_href_match then works to
output all files that end in .mat, and those files are lastly inputted to annex, another node, which simply annexes them.

Note: Since pipelines depend heavily on nodes, these nodes must yield in order for an output to be produced. If a
generator fails to yield, then the pipeline can no longer continue and it is stopped at that node.

3.3 Subpipelines

A subpipline is a pipeline that lives within a greater pipeline and is also denoted by []. Two subpipelines that exist on
top of one another will take in the same input, but process it with different generators. This functionality allows for
the same input to be handled in two or more (depending on the number of subpipelines) different manners.

TODO: ‘FinishPipeline* exception here FinishPipeline

6 Chapter 3. DatalLad Crawler 101

CHAPTER 4

Demo

4.1 Track data from a webpage

With a few lines DatalLad is set up to track data posted on a website, and obtain changes made in the future. ..
The website http://www.fmri-data-analysis.org/code provides code and data file for examples in a text book.
We will set up a dataset that DatalLad uses to track the content linked from this webpage

Let’s create the dataset, and configure it to track any text file directly in Git. This will make it very convenient to see
how source code changed over time.

)

~ % datalad create —--text-no-annex demo

[INFO] Creating a new annex repo at /demo/demo
create (ok): /demo/demo (dataset)

~ % cd demo

DatalLad’s crawler functionality is used to monitor the webpage. It’s configuration is stored in the dataset itself.

The crawler comes with a bunch of configuration templates. Here we are using one that extract all URLs that match
a particular pattern, and obtains the linked data. In case of this webpage, all URLs of interest on that page seems to
have ‘d=1" suffix

~/demo % datalad crawl-init —--save —-template=simple_with_archives url=http://www.
—fmri-data-analysis.org/code 'a_href_match_=.xd=1$"

[INFO] Creating a pipeline to crawl data files from http://www.fmri-data-analysis.
—org/code

[INFO] Initiating special remote datalad-archives

[INFO] Not adding annex.largefiles=exclude=READMEx and exclude=LICENSEx to git

—annex calls because already defined to be (not (mimetype=text/x*))
~/demo % datalad diff —--revision @~1
added (file): .datalad/crawl/crawl.cfg
~/demo % cat .datalad/crawl/crawl.cfg
[crawl:pipeline]
template = simple_with_archives

http://www.fmri-data-analysis.org/code

datalad.rawler Documentation, Release0.1.0

_url = http://www.fmri-data-analysis.org/code
_a_href match_ = .xd=1$

With this configuration in place, we can ask DatalLad to crawl the webpage.

o)

~/demo % datalad crawl

[INFO] Loading pipeline specification from ./.datalad/crawl/crawl.cfg

[INFO] Creating a pipeline to crawl data files from http://www.fmri-data-analysis.
—org/code

[INFO] Not adding annex.largefiles=exclude=READMEx and exclude=LICENSEx to git
—annex calls because already defined to be (not (mimetype=text/x*))

[INFO] Running pipeline [<function switch_branch at 0x7£9147061488>, [[<datalad.

—crawler.nodes.crawl_url.crawl_url object at 0x7£9135c6ad50>, a_href_match (query="'.
—*xd=1%$"), <function fix_url at 0x7£f914b7a9cf8>, <datalad.crawler.nodes.annex.
—Annexificator object at 0x7£9135c4b810>]], <function switch_branch at
—0x7£9135c51de8>, [<function merge_branch at 0x7£9135c51050>, [find_files(dirs=False,
— fail_if_ none=True, regex='\\.(zipltgz|tar(\\..+)?)$"', topdir='."'), <function _add_
—archive_content at 0x7f9135c51e60>]], <function switch_branch at 0x7£9135c51ed8>,
—<function merge_branch at 0x7£9135c51£50>, <function _finalize at 0x7£9135c74050>]

[INFO] Found branch non-dirty -- nothing was committed

[INFO] Checking out master into a new branch incoming

[INFO] Fetching 'http://www.fmri-data-analysis.org/code'

[INFO] Need to download 950 Bytes from http://www.fmri-data-analysis.org/code/
—figure_2_12.R?attredirects=0&d=1. No progress indication will be reported

[INFO] Need to download 656 Bytes from http://www.fmri-data—-analysis.org/code/
—figure_2_14.m?attredirects=0&d=1. No progress indication will be reported

[INFO] Need to download 4.3 kB from http://www.fmri-data-analysis.org/code/figure_
—2_3.m?attredirects=0&d=1. No progress indication will be reported

[INFO] Need to download 453.1 kB from http://www.fmri-data-analysis.org/code/
—figure_3_14.tgz?attredirects=0&d=1. No progress indication will be reported

[INFO] Need to download 486 Bytes from http://www.fmri-data—-analysis.org/code/
—figure_3_8.m?attredirects=0&d=1. No progress indication will be reported

[INFO] Need to download 255 Bytes from http://www.fmri-data—-analysis.org/code/
—~figure_3_9.m?attredirects=0&d=1. No progress indication will be reported

[INFO] Need to download 321.6 kB from http://www.fmri-data-analysis.org/code/
—figure_4_7.tgz?attredirects=0&d=1. No progress indication will be reported

[INFO] Need to download 2.1 kB from http://www.fmri-data-analysis.org/code/figure_
—5_10.m?attredirects=0&d=1. No progress indication will be reported

[INFO] Need to download 1.1 kB from http://www.fmri-data-analysis.org/code/figure_
—5_11.m?attredirects=0&d=1. No progress indication will be reported

[INFO] Need to download 2.5 kB from http://www.fmri-data-analysis.org/code/figure_
—5_12.zip?attredirects=0&d=1. No progress indication will be reported

[INFO] Need to download 1.5 kB from http://www.fmri-data-analysis.org/code/figure_
—5_3.m?attredirects=0&d=1. No progress indication will be reported

[INFO] Need to download 110.4 kB from http://www.fmri-data—analysis.org/code/
—figure_8_ll.tgz?attredirects=0&d=1. No progress indication will be reported

[INFO] Need to download 1.7 kB from http://www.fmri-data-analysis.org/code/figure_
—8_2.m?attredirects=0&d=1. No progress indication will be reported

[INFO] Need to download 3.2 kB from http://www.fmri-data-analysis.org/code/figure_

—9_1.R?attredirects=0&d=1. No progress indication will be reported
[INFO] Need to download 9.8 kB from http://www.fmri-data-analysis.org/code/figure_
—9_2.R?attredirects=0&d=1. No progress indication will be reported
[INFO] Need to download 9.8 kB from http://www.fmri-data—-analysis.org/code/figure_
—9_3.R?attredirects=0&d=1. No progress indication will be reported

[INFO,,

—] Repository found dirty -- adding and committing

[INFO,
<] Checking out a new detached branch incoming-processed

8 Chapter 4. Demo

datalad.rawler Documentation, Release0.1.0

[INFO] Initiating 1 merge of incoming using strategy theirs

[INFO_,
<] Adding content of the archive ./figure_4_7.tgz into annex <AnnexRepo path=/demo/
—demo (<class 'datalad.support.annexrepo.AnnexRepo'>)>
[INFO] Finished adding ./figure_4_7.tgz: Files processed: 4, +git: 1, +annex: 3
[INFO] Adding content of the archive ./figure_8_11.tgz into annex <AnnexRepo path=/
—demo/demo (<class 'datalad.support.annexrepo.AnnexRepo'>)>
[INFO] Finished adding ./figure_8_11.tgz: Files processed: 7, renamed: 7, +git: 4,
—tannex: 3
[INFO] Adding content of the archive ./figure_5_12.zip into annex <AnnexRepo path=/
—demo/demo (<class 'datalad.support.annexrepo.AnnexRepo'>)>
[INFO] Finished adding ./figure_5_12.zip: Files processed: 3, skipped: 1, renamed:
—2, +git: 2
[INFO] Adding content of the archive ./figure_3_14.tgz into annex <AnnexRepo path=/
—demo/demo (<class 'datalad.support.annexrepo.AnnexRepo'>)>
[INFO] Finished adding ./figure_3_14.tgz: Files processed: 6, renamed: 6, +annex: 6
[INFO] Repository found dirty —-- adding and committing

[INFO_,
—] Checking out an existing branch master
[INFO] Initiating 1 merge of incoming-processed using strategy None
[INFO] Found branch non-dirty —-- nothing was committed
[INFO] House keeping: gc, repack and clean
[INFO] Finished running pipeline: URLs processed: 16, downloaded: 16, size: 923.4_

—kB, Files processed: 40, skipped: 1, renamed: 15, +git: 19, +annex: 16, Branches
—merged: incoming->incoming-processed

[INFO] Total stats: URLs processed: 16, downloaded: 16, size: 923.4 kB, Files_
—processed: 40, skipped: 1, renamed: 15, +git: 19, +annex: 16, Branches merged: |
—incoming->incoming-processed, Datasets crawled: 1

All files have been obtained and are ready to use. Here is what Datal.ad recorded for this update

~/demo % git show @ -s

commit 3a8033d45cf7a96b523d927e02cf£9d6a79f£8e30e (HEAD -> master, incoming-processed)
Author: Datalad Demo <demo@datalad.org>

Date: Fri Mar 16 08:41:22 2018 +0100

[DATALAD] Added files from extracted archives

Files processed: 24

skipped: 1
renamed: 15
+git: 7

+annex: 12
Branches merged: incoming->incoming-processed

Any file from the webpage is available locally.

o

~/demo % 1s

all_rois.txt figure_4_7.sh figure_9_3.R

dat.txt figure_5_10.m flirt_thresh_zstatl.nii.gz
fair_ abbrevs.txt figure_5_11.m fnirt_thresh_zstatl.nii.gz
fair_networks.txt figure_5_12.m mean_func.nii.gz

figure_2_12.R figure_5_3.m zstatl_Omm.nii.gz
figure_2_14.m figure_8_11.R zstatl_lémm.nii.gz
figure_2_3.m figure_8_2.m zstatl_32mm.nii.gz
figure_3_8.m figure_9_1.R zstatl_4mm.nii.gz
figure_3_9.m figure_9_2.R zstatl_8mm.nii.gz

~/demo % #

4.1. Track data from a webpage 9

datalad.rawler Documentation, Release0.1.0

The webpage can be queried for potential updates at any time by re-running the ‘crawl’ command.

)

~/demo % datalad crawl

[INFO] Loading pipeline specification from ./.datalad/crawl/crawl.cfg

[INFO] Creating a pipeline to crawl data files from http://www.fmri-data-analysis.
—org/code

[INFO] Not adding annex.largefiles=exclude=READMEx and exclude=LICENSEx to git
—annex calls because already defined to be (not (mimetype=text/x*))

[INFO] Running pipeline [<function switch_branch at 0x7f47abaf3488>, [[<datalad.

—crawler.nodes.crawl_url.crawl_url object at 0x7£f479a6fcd50>, a_href_match (query="'.
—*xd=1$"), <function fix_url at 0x7f47b023acf8>, <datalad.crawler.nodes.annex.
—Annexificator object at 0x7f479a6dd810>]], <function switch_branch at
—0x7£479%9a6e3de8>, [<function merge_branch at 0x7f479a6e3050>, [find_files(dirs=False,
— fail_if_none=True, regex='\\. (zipl|tgz|tar(\\..+)?2)$', topdir='.'), <function _add_
—archive_content at 0x7f479%9a6e3e60>]], <function switch_branch at 0x7f479%9a6e3ed8>,
—<function merge_branch at 0x7£f479a6e3f50>, <function _finalize at 0x7£479a706050>]

[INFO] Found branch non-dirty —-- nothing was committed
[INFO] Checking out an existing branch incoming
[INFO] Fetching 'http://www.fmri-data-analysis.org/code’
[INFO_,
—] Found branch non-dirty -- nothing was committed
[INFO] Checking out an existing branch incoming-processed
[INFO] Found branch non-dirty —-- nothing was committed
[INFO] Checking out an existing branch master
[INFO] Finished running pipeline: URLs processed: 16, Files processed: 16,
—skipped: 16
[INFO] Total stats: URLs processed: 16, Files processed: 16, skipped: 16,

—Datasets crawled: 1

Files can be added, or removed from this dataset without impairing the ability to get updates from the webpage.
DatalLad keeps the necessary information in dedicated Git branches.

o)

~/demo % git branch
git—-annex
incoming
incoming-processed
* master

10 Chapter 4. Demo

CHAPTER B

Command line reference

11

datalad.rawler Documentation, Release0.1.0

12 Chapter 5. Command line reference

CHAPTER O

Python API

6.1 Python module reference

This module reference extends the manual with a comprehensive overview of the available functionality. Each module
in the package is documented by a general summary of its purpose and the list of classes and functions it provides.

6.1.1 Commands

crawl Interface for crawling a webpage and push extracted data
into a dataset

crawl_init Interface for a generic template in which arguments are
specified by the user

datalad_crawler.crawl

Interface for crawling a webpage and push extracted data into a dataset

class datalad_crawler.crawl.Crawl
Bases: datalad.interface.base.Interface

Crawl online resource to create or update a dataset.

Examples

$ datalad crawl # within a dataset having .datalad/crawl/crawl.cfg

datalad_crawler.crawl_init

Interface for a generic template in which arguments are specified by the user

13

datalad.rawler Documentation, Release0.1.0

class datalad_crawler.crawl_init.CrawlInit
Bases: datalad.interface.base.Interface

Initialize crawling configuration

Allows to specify template and function to generate a crawling pipeline
Examples:

$ datalad crawl-init —template openfmri —template-func superdataset_pipeline

$ datalad crawl-init —template fcptable dataset=Baltimore tarballs=True

6.1.2 Pipelines

pipeline Pipeline functionality.

datalad_crawler.pipeline

Pipeline functionality.

A pipeline is represented by a simple list or tuple of nodes or other nested pipelines. Each pipeline node is a callable
which receives a dictionary (commonly named data), does some processing, and yields (once or multiple times) a
derived dictionary (commonly a shallow copy of original dict). For a node to be parametrized it should be implemented
as a callable (i.e. define __call__) class, which could obtain parameters in its constructor.

TODO: describe PIPELINE_OPTS and how to specify them for a given (sub-)pipeline.

The data dictionary is used primarily to carry the scraped/produced data, but besides that it will carry few items which
some nodes might use. All those item names will start with the daralad_ prefix, and will be intended for ‘inplace’
modifications or querying. The following items are planned to be provided by the pipeline runner:

datalad_settings PipelineSettings object which could be used to provide configuration for the current run of the
pipeline. E.g.:

e dry: either nodes are intended not to perform any changes which would reflect on disk
* skip_existing:
datalad_stats ActivityStats/dict object to accumulate statistics on what has been done by the nodes so far

To some degree, we could make an analogy when blood is to data and venous system is to pipeline. Blood delivers
various elements which are picked up by various parts of our body when they know what to do with the corresponding
elements. To the same degree nodes can consume, augment, or produce new items to the data and send it down the
stream. Since there is no strict typing or specification on what nodes could consume or produce (yet), no verification
is done and things can go utterly wrong. So nodes must be robust and provide informative logging.

exception datalad_crawler.pipeline.FinishPipeline
Bases: exceptions.Exception

Exception to use to signal that any given pipeline should be stopped

datalad_crawler.pipeline.get_repo_pipeline_config_path (repo_path=".)
Given a path within a repo, return path to the crawl.cfg

datalad_crawler.pipeline.get_repo_pipeline_script_path (repo_path="")
If there is a single pipeline present among ‘pipelines/’, return path to it

14 Chapter 6. Python API

datalad.rawler Documentation, Release0.1.0

datalad_crawler.pipeline.initiate_pipeline_config (template, template_func=None,
template_kwargs=None, path=".,
commit=False)
TODO Gergana ;)

datalad_crawler.pipeline.load_pipeline_from_config (path)
Given a path to the pipeline configuration file, instantiate a pipeline

Typical example description
[crawl:pipeline] pipeline = standard func = pipelinel _kwargl =1

which would instantiate a pipeline from standard.py module by calling standard.pipelinel with _kwargl="1".
This definition is identical to

[crawl:pipeline] pipeline = standard?func=pipelinel & _kwargl=1
so that theoretically we could specify basic pipelines completely within a URL

datalad_crawler.pipeline.load_pipeline_from_module (module, func=None,
args=None, kwargs=None,

return_only=False)
Load pipeline from a Python module

Parameters
* module (st r)—Module name or filename of the module from which to load the pipeline
e func (str, optional)- Function within the module to use. Default: pipeline

* args (list or tuple, optional) - Positional arguments to provide to the func-
tion.

* kwargs (dict, optional)- Keyword arguments to provide to the function.
* return_only (bool, optional)-flagtrue if only to return pipeline

datalad_crawler.pipeline.load pipeline_from_template (name, func=None,
args=None, kwargs=None,

return_only="False)
Given a name, loads that pipeline from datalad_crawler.pipelines

and later from other locations
Parameters

* name (st r)— Name of the pipeline (the template) defining the filename, or the full path to
it (TODO), example: openfmri

* func (st r)-Name of function from which pipeline to run example: superdataset_pipeline

* args (dict, optional) — Positional args for the pipeline, passed as *args into the
pipeline call

* kwargs (dict, optional)— Keyword args for the pipeline, passed as **kwargs into
the pipeline call, example: {‘dataset’: ‘ds000001’}

* return_only (bool, optional)- flag true if only to return pipeline

datalad_crawler.pipeline.reset_pipeline (pipeline)
Given a pipeline, traverse its nodes and call .reset on them

Note: it doesn’t try to call reset if a node doesn’t have it

datalad_crawler.pipeline.run_pipeline (*args, **kwargs)
Run pipeline and assemble results into a list

6.1. Python module reference 15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

datalad.rawler Documentation, Release0.1.0

By default, the pipeline returns only its input (see PIPELINE_OPTS), so if no options for the pipeline were
given to return additional items, a [{}] will be provided as output

datalad_crawler.pipeline.xrun_pipeline (pipeline, data=None, stats=None, reset=True)
Yield results from the pipeline.

datalad_crawler.pipeline.xrun_pipeline_steps (pipeline, data, output="input’)
Actually run pipeline steps, feeding yielded results to the next node and yielding results back.

Recursive beast which runs a single node and then recurses to run the rest, possibly multiple times if the current
node is a generator. It yields output from the node/nested pipelines, as directed by the output argument.

16 Chapter 6. Python API

CHAPTER /

Indices and tables

* genindex
* modindex

e search

17

datalad.rawler Documentation, Release0.1.0

18 Chapter 7. Indices and tables

Python Module Index

d

datalad_crawler.crawl, 13
datalad_crawler.crawl_init, 13
datalad_crawler.pipeline, 14

19

datalad.rawler Documentation, Release0.1.0

20 Python Module Index

Index

C

Crawl (class in datalad_crawler.crawl), 13
Crawllnit (class in datalad_crawler.crawl_init), 13

D

datalad_crawler.crawl (module), 13
datalad_crawler.crawl_init (module), 13
datalad_crawler.pipeline (module), 14

F

FinishPipeline, 14

G

get_repo_pipeline_config_path() (in module data-
lad_crawler.pipeline), 14

get_repo_pipeline_script_path() (in module data-
lad_crawler.pipeline), 14

initiate_pipeline_config() (in module data-
lad_crawler.pipeline), 14

L

load_pipeline_from_config() (in module data-
lad_crawler.pipeline), 15

load_pipeline_from_module() (in module data-
lad_crawler.pipeline), 15

load_pipeline_from_template() (in module data-
lad_crawler.pipeline), 15

R

reset_pipeline() (in module datalad_crawler.pipeline), 15
run_pipeline() (in module datalad_crawler.pipeline), 15

X

xrun_pipeline() (in module datalad_crawler.pipeline), 16
xrun_pipeline_steps() (in module data-
lad_crawler.pipeline), 16

21

	Change log
	Acknowledgments
	DataLad Crawler 101
	Demo
	Command line reference
	Python API
	Indices and tables
	Python Module Index

